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To what end?

Is this the bottleneck problem of a new AI?

Is this a solution in search of a problem? 

How is the problem of the new AI embedding 
in empirical science? 

Why become a formal science?



Disclaimer

“there is nothing more practical than a good 
theory”

=> no doubt that elements of the “new AI” are 
useful when problems close to the formalism 
are solved

e.g., in automatic vision 



Perspective
=> I’ll argue from the perspective of one who 
is interested in 

human cognition, 

in the neuronal foundations of cognition, 

and thus in the constraints that arise from the embodiment 
and situatedness of cognitive systems

because organisms/humans exist in the real 
world and do display behavior that at least 
remotely approximates what “new AI” 
addresses, these are relevant candidates for 
probing the formal approach



Embodied cognition in humans

Cognition is linked to the sensory 
and motor surfaces, constrained by 
the structure of the nervous 
system

Cognition happens while 
embodied systems are immersed 
in structured environments and 
placed in behavioral context

Cognition happens on a 
background of behavioral history 
and experience



playing soccer
see and recognize the ball and the 
other players

select target, track it as well as the 
other players, all the while controlling 
gaze

use working memory when players are 
out of view to predict where you need 
to look to update

control own motion, initiate and 
control kick

any time open to update

get better at it 

background knowledge: goal of game, 
rules, how hard is the ball, how fast are 
players 



driving
perceive and estimate ego-motion

detect and segment the road, segment and categorize cars, estimate car kinematic state 

use working memory to know where to look to update scene representation

make passing decisions, control car

adapt to car, to roads, to sight conditions 

get better at driving and seeing 

background knowledge: know typical behavior of other drivers, know geometry of roads 



repairing a toaster

visual exploration, recognizing screws, while keeping 
track of spatial arrangement of screws on the 
toaster (visual cognition, coordinate frames)

finding tools, applying them to remembered 
locations, updated by current pose of toaster 
(working memory, scene represenation)

manipulating cover, taking it off, recognizing spring, 
re-attaching it (goal-directed action plan)

mounting cover back on, generating the correct 
action sequence (sequence generation) 

background knowledge: cover, screws, how hard to 
turn screw-driver 

[image: mystery fandom theater 3000]



Neuronal principles

the neural process of cognition are time 
continuous and autonomous, not paced by 
computational steps

the neuronal populations supporting cognition 
generate graded activity

which gains significance only by the 
connectivity to sensory and motor surfaces 
and the internal connectivity: continuous space



graded spatial patterns of 
neuronal activation evolving 
continuously in time driven 

by input and interaction 
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observations x, e.g., color, shape 

state of the world/system, y, e.g., apple 

observe p(x|y) [how?...]

learn prior p(y) 

optimally estimate y from p(y|x)~ p(x|y)p(y)

Bayesian thinking 

[thanks to Christian Igel]



showed how this framework can be used to 
predict the future from the past

and how abstract algorithms could make such 
predictions in an optimal way

Jürgen Schmidhuber



A gap

(a huge one) 

between the abstraction inherent in these 
descriptions and the level at which real 
systems in real time sense and act 



autonomy

stability

integration, behavioral organization 

emergence  

development

Issues



Case study: Piaget’s “A not B” task
A trial

delay

A B

A B

A B

A B

B trial

delay

“out of sight - 
out of mind?”



contains lot’s of embodied cognition

detecting targets/objects

selecting targets/actions

stabilizing decisions against distractors

initiating actions 

learning a habit 

developing 



toyless variant of A not B: 
perseverative reaching

[Smith, Thelen, et al., 1999]
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Are young infants optimizing 
something other than older 

infants?

is the language of new AI useful to understand 
how infants make these reaches?

is a neuronally mechanistic account useful and 
possible?



Dynamic Field Theory account

a field of neuronal 
activation representing 
the direction of a 
targeted directed 
reaching movement

a peak of activation 
represents a motor plan
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[Thelen, Schöner, et al. , 2001]
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activation
field

movement parameter

A B

after the 
delay

boost-induced 
detection

boost of activation when box enters reaching 
space => stabilization of a peak and initiation 
of the reach 

reach initiation



simulation

[Dinveva, Schöner, 2007]

perseverative
errors

cues to B



behavioral history matters

[Dinveva, Schöner, 2007]

spontaneous 
errors=reaches 
to B on A trials 

leave a memory 
trace at B

which reduces 
the A not B 
error

spontaneous errors



behavioral history matters

spontaneous 
errors promote 
more 
spontaneous 
errors
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underlying neural principle

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

(u)

u

bistability 

“circular causality”

emergence 



Introduction
Infant’s reaching decisions in the A-not-B task have 
been modeled successfully using the Dynamic Field 
Theory of infant perseverative reaching (Thelen et al, 
2001). The Dynamic Field Model makes novel 
predictions about infants’ behavior in reaching tasks 
such as the affect of target asymmetry, the 
importance of real-time motor history, and the role of 
target salience. The A-not-B task is valuable because 
it allows us to examine these predictions in a space 
where both the perceptual layout and the infant’s 
recent motor history can be controlled. The A-not-B 
task is also valuable due to its rich empirical history 
and its ability to allow perseverative reaching 
behavior.

Task
The A-not-B task proceeds as follows. The 
experimenter cues infants to reach to a particular 
target location by waving the target lid above the box, 
saying the infant’s name, and tapping the lid at the 
side of the box it came from. During the first four trials 
(A trials), the target lid is waved at one side. Infants 
are then allowed to reach for the targets. After the 
initial A trials, two B trials occur. During B trials the 
target lid is waved at the opposite side of the box. 
After a 3 second delay, infants are then allowed to 
reach. During all trials infants are allowed a short 
period to handle the lids after reaching for and 
grasping them. Reaching to A on B trials is counted 
as perseveration. Reaching to B on A trials is counted 
as a spontaneous error.

Salience Conditions
Low/Low – Brown target tops (task input) and brown 
target bottoms (specific input). This condition 
corresponds to canonical lids-only A-not-B.

High/Low – Colorful target tops and brown target 
bottoms. High task input condition.

Low/ High – Brown target tops and colorful target 
bottoms. High specific input condition.

High/High – Colorful target tops and colorful target 
bottoms. Highly salient condition.

Method

60 infants aged 9 months + or – 2 weeks participated 
with 16 infants per condition except in H/H which has 
12 infants. Data collection for H/H is in progress. 
Conditions associated with high task input can be 
seen in Fig. 1 Conditions associated with high specific 
input can be seen in Fig 2. 

Manipulating the A-not-B Error by Making Both Locations More Salient

Joe Anderson1, Evelina Dineva1, Gregor Schöner2 
1Indiana University Bloomington, IN. USA; 2Ruhr-Universitat-Bochum, Germany

Predictions

• L/L will show significant perseverative reaching. 
Replicates Smith (1999).

•H/L will show a decrease in perseverative reaching.

•H/L will show an increase in spontaneous error rates. 

•L/H will show a decrease in perseverative reaching. 
Replicates Clearfield and Smith (submitted). 

Results

•L/L – showed significant rates of perseveration on 
B1 (p < .05)

•One-way ANOVA shows significant difference 
between L/L, H/L, and L/H on rates of spontaneous 
errors. Post hoc LSD shows significantly higher rates 
of spontaneous errors in H/L compared to L/L.

•H/L and L/H show reaching accuracy at chance 
levels on B1. L/H replicates Clearfield and Smith 
(submitted).

•Preliminary results of H/H also show significantly 
higher rates of spontaneous errors compared to L/L 
as well as chance reaching on B1. 

Discussion

Results support predictions made by the Dynamic Field 
Model in regards to the affect of increasing target 
salience. In the case of H/L, increasing task input 
generates high rates of spontaneous errors. These 
errors leave a memory trace of reaches to B which 
foster babies switch to B on B1. Also, preliminary 
results indicate a nonlinear effect of increasing global 
salience levels because H/H is not equivalent to L/L but 
also does not differ from either H/L or L/H in rate of 
perseveration. 

Fig. 1 – High salience for task input. 

Fig. 2 – High salience for both task input and specific input. 
Note the removal of task input on the cued side during 
presentation of specific input
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emergence: suppressing the A not B 
error by “pumping up neural energy”

making both 
locations more 
attractive reduces 
the A not B error

as predicted by 
DFT

Introduction
Infant’s reaching decisions in the A-not-B task have 
been modeled successfully using the Dynamic Field 
Theory of infant perseverative reaching (Thelen et al, 
2001). The Dynamic Field Model makes novel 
predictions about infants’ behavior in reaching tasks 
such as the affect of target asymmetry, the 
importance of real-time motor history, and the role of 
target salience. The A-not-B task is valuable because 
it allows us to examine these predictions in a space 
where both the perceptual layout and the infant’s 
recent motor history can be controlled. The A-not-B 
task is also valuable due to its rich empirical history 
and its ability to allow perseverative reaching 
behavior.

Task
The A-not-B task proceeds as follows. The 
experimenter cues infants to reach to a particular 
target location by waving the target lid above the box, 
saying the infant’s name, and tapping the lid at the 
side of the box it came from. During the first four trials 
(A trials), the target lid is waved at one side. Infants 
are then allowed to reach for the targets. After the 
initial A trials, two B trials occur. During B trials the 
target lid is waved at the opposite side of the box. 
After a 3 second delay, infants are then allowed to 
reach. During all trials infants are allowed a short 
period to handle the lids after reaching for and 
grasping them. Reaching to A on B trials is counted 
as perseveration. Reaching to B on A trials is counted 
as a spontaneous error.

Salience Conditions
Low/Low – Brown target tops (task input) and brown 
target bottoms (specific input). This condition 
corresponds to canonical lids-only A-not-B.

High/Low – Colorful target tops and brown target 
bottoms. High task input condition.

Low/ High – Brown target tops and colorful target 
bottoms. High specific input condition.

High/High – Colorful target tops and colorful target 
bottoms. Highly salient condition.

Method

60 infants aged 9 months + or – 2 weeks participated 
with 16 infants per condition except in H/H which has 
12 infants. Data collection for H/H is in progress. 
Conditions associated with high task input can be 
seen in Fig. 1 Conditions associated with high specific 
input can be seen in Fig 2. 

Manipulating the A-not-B Error by Making Both Locations More Salient

Joe Anderson1, Evelina Dineva1, Gregor Schöner2 
1Indiana University Bloomington, IN. USA; 2Ruhr-Universitat-Bochum, Germany

Predictions

• L/L will show significant perseverative reaching. 
Replicates Smith (1999).

•H/L will show a decrease in perseverative reaching.

•H/L will show an increase in spontaneous error rates. 

•L/H will show a decrease in perseverative reaching. 
Replicates Clearfield and Smith (submitted). 

Results

•L/L – showed significant rates of perseveration on 
B1 (p < .05)

•One-way ANOVA shows significant difference 
between L/L, H/L, and L/H on rates of spontaneous 
errors. Post hoc LSD shows significantly higher rates 
of spontaneous errors in H/L compared to L/L.

•H/L and L/H show reaching accuracy at chance 
levels on B1. L/H replicates Clearfield and Smith 
(submitted).

•Preliminary results of H/H also show significantly 
higher rates of spontaneous errors compared to L/L 
as well as chance reaching on B1. 

Discussion

Results support predictions made by the Dynamic Field 
Model in regards to the affect of increasing target 
salience. In the case of H/L, increasing task input 
generates high rates of spontaneous errors. These 
errors leave a memory trace of reaches to B which 
foster babies switch to B on B1. Also, preliminary 
results indicate a nonlinear effect of increasing global 
salience levels because H/H is not equivalent to L/L but 
also does not differ from either H/L or L/H in rate of 
perseveration. 

Fig. 1 – High salience for task input. 

Fig. 2 – High salience for both task input and specific input. 
Note the removal of task input on the cued side during 
presentation of specific input
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is this account actually embodied? 

proof by building a robot the instantiates the 
field dynamics

and behaves like the infants do

The A-not-B Task for the Robot

ego-position φ

start specific cue delay turns to target

six A trials are presented: response is typically correct

ego-position φ

start specific cue delay turns to target

on the B trial: perseveration or A-not-B error
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result: reproduce fundamental 
age-delay trade-off in A not B
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heuristics

this implementation uncovered a conceptual 
error in an earlier Dynamic Field Theory 
model

in which the selection decision was done by read-out of 
maximally activated action at each time step (selecting the 
optimal action?) 

this lead to random fluctuations between the two targets, 
leading to averaging

need to stabilize decisions when system in 
continuously linked to sensory input



“young” robot “old” robot

target target

no memory trace



habit formation stabilizes behavior

target

“young” 
robot with 
memory 

trace



... this example illustrates

how theoretical thinking can be used to investigate the 
emergence of cognition dependent on context, history, etc. 

how this has a very different quality that talking about 
something abstract being optimed

more and deeper examples will be available 
later

... Yulia Sandamirskaya on sequence generation

... John Spencer’s Horizon Lecture

preliminary conclusion



Is the new AI about 
human cognition?

officially not

but why is human cognition used so 
extensively to motivate and interpret the 
ideas?

“the brain is performing about 10 trillion instructions per 
second’’

is new AI a solution in search of a relevant 
problem? 



Conclusion

real, human, embodied cognition offers rich 
heuristics of what are relevant problems that a 
general new AI might want to solve

solving these may require addressing issues like autonomy, 
stability, integration, and development

these seem not very closely related to the 
problem of making AI formal 

in fact, making AI formal may be the exact opposite direction 
of what would make AI relevant


