

Probabilistic models of human sensorimotor control Daniel Wolpert, University of Cambridge

Q.Why do we and other animals have brains? A.To produce adaptable and complex movements

- movement is the only way we have of interacting with the world
 - communication: speech, gestures, writing are motor acts
 - − sensory, memory and cognitive processes → future movements

Complexity of human movement control

What to move where

VS.

VS.

Transitions from sensing to action

Bayesian Decision Theory

"I now send you an essay which I have found among the papers of our deceased friend Mr Bayes, and which, in my opinion, has great merit...."

Essay towards solving a problem in the doctrine of chances (1764) Phil. Trans. Roy. Soc.

- Bayesian statistics: making inferences based on uncertain information
- Decision theory: selecting optimal action based on inferences

Posterior

Likelihood

Prior

Bayesian Learning

Real world tasks have variability, e.g. estimating ball's bounce location

Sensory feedback (Likelihood) Vision + Task statistics (Prior) Not all locations are equally likely = Optimal estimate (Posterior)

Does skill learning use Bayes rule?

The brain would need to represent

- the statistics of the task (prior)
- the noise in its own sensors (likelihood)

(Körding & Wolpert, Nature, 2004)

- Sensorimotor systems
 - Represents the distribution of tasks
 - Estimates its own sensory uncertainty
 - Combines these two sources in a Bayesian way

 $P(\text{state}|\text{sensory input}) \propto P(\text{sensory input}|\text{state}) P(\text{state})$

II. Predicting the consequences of action

 $P(\text{state}|\text{sensory input}) \propto P(\text{sensory input}|\text{state}) P(\text{state})$

Posterior

Likelihood

Prior

Fundamental for

- 1. Control with delays
- 2. Mental simulation
- 3. Likelihood estimation

Wolpert & Kawato, Neural Networks 1998 Haruno, Wolpert, Kawato, Neural Computation 2001

4. Sensory filtering

Sensory prediction

Our sensors report afferent information combining

- Ex-afferent information:
- changes in outside world
- Re-afferent information:

changes we cause

Tickling

Self-administered tactile stimuli rated as less ticklish than external tactile stimuli.

Does prediction underlie tactile cancellation in tickle?

Gain control or precise spatio-temporal prediction?

Spatio-temporal prediction

(Blakemore, Frith & Wolpert. J. Cog. Neurosci. 1999)

The escalation of force

(Shergill, Bays, Frith & Wolpert, Science, 2003)

70% overestimate in force

Perception of force

Labelling movements & delusions of control

Failure to make correct sensory predictions (Frith 1987 Psychol. Med.)

Prediction deficits in patients with schizophrenia

- The brain predicts sensory consequences
- Sensory cancellation in force production
- Defects may be related to delusions of control in schizophrenia

(Shergill, Samson, Bays, Frith & Wolpert, Am J. Psychiatry, 2006)

Virtual pea shooter

(Körding & Wolpert, PNAS, 2004)

Loss function is robust to outliers

- Loss function for pointing
 - Mean squared error with robustness to outliers

IV. Optimal Decisions

- Tasks are usually specified at a symbolic level
- Movements are specified at a detailed level: 600 muscle activations

Movement evolution/learning results in stereotypy

The Assumption of Optimality

Movements have evolved to maximize fitness

- improve through evolution/learning
- every possible movement which can achieve a task has a cost
- we select movement with the lowest cost

Signal-dependent noise and optimal control

motor commands \rightarrow probability distribution (statistics) of movement.

Optimal motor commands ← desired distribution (statistics) of movement.

(Harris & Wolpert, 98, Hamilton & Wolpert JNP 2002, Van Beers, Haggard & Wolpert, JNP, 2004, Haruno & Wolpert 05 JNP , Harris & Wolpert Biol Cyb 2006)

Pointing movements: minimises variance

Eye, head, arm & wrist movements

- Biologically plausible underpinning for eye, arm and wrist movements
- Noise lead to statistics of movement
- We can control the statistics by choosing different ways to move

V. Transition from perception to action

In limited time tasks how do subjects trade-off time for

- sensory perception
- motor action

Catch the ball with the paddle

Catch the ball with the paddle

Sensory variability

Motor variability

Motor variability

Optimal transition time

Subjects are close to optimal

Summary

Brain

Paul

Bays

- Evolved to control movement
- Devotes a great deal of effort to minimise uncertainty through
 - Bayesian estimation
 - Predicting consequences of actions
 - Controlling statistics of action through planning
- Optimal transition form perception to action

Frith

Sarah

Blakemore

Hamilton

Haruno

Harris

 Ian
 Iames
 Kelvin
 Koprad

lan James Kelvin Konrad Sukhi Howard Ingram Jones Körding Shergill

Aldo

Faisal

www.wolpertlab.com

