Brain-Based Devices

Studying Cognitive Functions with Embodied Models of the Nervous System

Brain-Based Device Hall of Fame

Darwin IV-VI Darwin VII-VIII

1999 - 2002

Darwin IX-XI 2003 - 2007

BrainWorks 2004 - 2006

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without a priori knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without *a priori* knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Neurodynamics and Neuroanatomy

An efficient algorithm for network models

A. Neuronal Unit Input

B. Neuronal Unit Output

C. BCM Learning Rule

$$\mathbf{A}_i = \sum_{j=1}^N \mathbf{C}_{ij} \mathbf{S}_j$$

M.C. Diamond/A.B. Scheibel/L.M. Elson PARIETAL LOBE OUTER WORLD CENEBELLIA TEMPORAL LOBE

Functional Neuroanatomy of Darwin VII

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without a priori knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Perceptual Categorization "the world is an unlabeled place"

Fabre-Thorpe, Phil. Trans. R. Soc. Lond. B (2003) 358, 1215-1223

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without *a priori* knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Darwin VII - Before Learning

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without *a priori* knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Darwin VII: Learning and Conditioning

Innate (UCS)

Must Learn (CS)

Behavioral Response (UCR/CR)

learned – no taste,

Good **Tasting**

Bad

Tasting

unlearned – taste, eg

learned – taste,

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without *a priori* knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Value Systems

- Organisms adapt their behavior through value systems:
 - Non-specific, modulatory signals to the rest of the brain.
 - Biases the outcome of synaptic efficacy in the direction needed to satisfy global needs.

Functional Neuroanatomy of Darwin VII

Darwin VII - After Learning

Brain-Based Devices: Design Principles and Constraints

- The design should be constrained by these principles:
 - Incorporate a simulated brain with detailed neuroanatomy and neural dynamics.
 - Organize the signals from the environment into categories without a priori knowledge or instruction.
 - Active sensing and autonomous movement in the environment.
 - Engage in a behavioral task.
 - Adapt behavior when an important environmental event occurs.

Episodic and Spatial Memory in a Brain-Based Device

- Episodic memory requires:
 - putting together the 'what', 'when' and 'where' of events.
 - the integration of multimodal information over time.
- In humans and other vertebrates, the hippocampus is crucial for the rapid acquisition and persistence of such memories.

Hippocampus and its Surrounding Regions

Darwin X and XI

Neural Simulation and Network Architecture

• 57 neural areas, 80,000 neuronal units, and 1.2 million synaptic connections.

Test of Spatial Memory in BBDs: The Hidden Platform Task

Performance in the Hidden Platform Task

Darwin X: Behavioral Results and Neuronal Activity

Analyzing Neural Dynamics Underlying Behavior

- Developed novel methods for analyzing large scale neuronal networks:
 - Backtrace trace functional pathways by choosing unit at a specific time and recursively examining all neuronal units that led to the observed activity in this reference unit.
 - JL Krichmar, DA Nitz, JA Gally, and GM Edelman (2005) Proc Natl Acad Sci USA, 102: 2111-2116.
 - Causality a time series analysis that distinguishes causal interactions within and between neural regions.
 - AK Seth (2005) Network, 16, 35-54.
 - JL Krichmar, AK Seth, DA Nitz, JG Fleischer, and GM Edelman (2005)
 Neuroinformatics, 3, 197-221.

Backtrace from CA1 Reference Unit (t = -0.2s)

Reference unit – place field and strong connection to correct motor response.

Backtrace from CA1 Reference Unit (t = -0.4s)

Specificity – 57% overlap of neuronal units in other backtraces with the same reference unit.

Backtrace from CA1 Reference Unit (t = -0.6s)

Backtrace from CA1 Reference Unit (t = -0.8s)

Backtrace from CA1 Reference Unit (t = -1.0s)

Backtrace from CA1 Reference Unit (t = -1.2s)

Degeneracy – 32% overlap of neuronal units in other backtraces with the same reference unit.

Functional Hippocampal Pathways Identified by the Backtrace Networks

Darwin XI Test of Episodic Memory The Plus Maze

JG Fleischer, JA Gally, GM Edelman, JL Krichmar (2007) *Proc Natl Acad Sci USA, 104*, 3556-3561.

Neural Correlates of Current, Recent Past, and Imminent Future Events

Neural Correlates of Current, Recent Past, and Imminent Future Events

- Darwin XI CA1 place fields
 - 384 journey-dependent and 303 journey-independent
 - similar distribution to findings in rodent hippocampus
 - 2304 total CA1 neuronal units

Network Dynamics of Current, Recent Past, and Imminent Future Events

- Darwin XI Backtraces from CA1 place units show:
 - Significantly higher hippocampal influence on journeydependent responses.
 - Strong entorhinal cortex influence on network dynamics.

Functional Hippocampal Pathways Identified by the Backtrace Networks

Darwin X and XI Models of the Hippocampus and its Surrounding Regions

- Demonstrated spatial and episodic memory in a Brain-based Device
 - Acquired and recalled multimodal memories.
 - Developed goal-directed behavior.
 - Contextually and temporally sensitive responses.
- Analysis of network dynamics
 - Strong functional role of the entorhinal cortex.
 - Hippocampus necessary for:
 - novel environments.
 - context-dependent responses.
 - Degenerate pathways to neural responses that lead to behavior.

Brain-Based Devices

Practical Applications

A New Challenge

- By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team. -

RoboCup US Open Segway Soccer League

Atlanta, Georgia May 8-10, 2005

Build A Brain Team

Supported by Defense Advanced Research Agency (DARPA), Office of Naval Research (ONR), National Science Foundation (NSF) and the Keck Foundation.

The Brain is Embodied and the Body is Embedded in the Environment

- Higher brain functions depend on the cooperative activity of an entire nervous system:
 - its morphology, its dynamics, and its interaction with the environment.
 - provide heuristic bases for studying the brain.
 - may ultimately become a new and powerful class of *Intelligent Machines*.
- More information: http://www.nsi.edu/nomad

