Software Platform Concepts and Cognitive Robotics

David Vernon

(with contributions from Bernhard Sendhoff, CTO Honda Research Institute Europe GmbH)

iCub examples courtesy of the RobotCub Project www.iCub.org

Technological Issues

- Cognitive systems are complex software systems
- Integration
 - Many researchers
 - Many years
 - Teamwork: both academic & industrial
- Must be
 - Modular
 - Interoperable
 - Industrial-grade software engineering (e.g. build, test, documentation, ..)

Technological Issues

Robotics middleware

- Hot topic
- Major players taking an interest
- Way forward
 - Open source or
 - "Hierarchically" proprietary software projects

Open Cognitive Humanoid Robot

Created to support Community research on embodied cognition

Goal: research platform of choice

- Exploit it quickly and easily
- Collaborate & Share results
- Benefit from the work of other users

icub

iCub

icub

icub

iCub

Sensors & Actuators

What is YARP?

- An open-source software library for humanoid robotics;
 born on Kismet, grew on COG
 - University of Genoa / MIT collaboration
 - G. Metta, P. Fitzpatrick, L. Natale. YARP: yet another robot platform. In the International Journal on Advanced Robotics Systems, Special Issue on Software Development and Integration in Robotics. March 2006.
- Designed to support and encourage:
 - Collaboration (code-sharing across space)
 - Longevity (code-sharing across time)

Technological Issues

Modularity and interoperability ⇒ Incremental development & configuration

- switch between different hardware platforms e.g. robot and automobile
- combine different functional modules e.g. different sensors and actuators
- processing needs
 e.g. speed can be adjusted for different hardware requirements

RE-USE!

Scientific Issues

- Research projects
 - Well-defined, functionally-oriented problems
 e.g. face recognition, dialogue system
- System-level properties receive much less attention
 - Why? Need an operational base system as a starting point
- BUT systems properties are extremely important
 - robustness, graceful degradation, e.g. safety critical applications (cars)
 - efficiency increase operation time for mobile platforms
 - security & safety (e.g. a 60 kg humanoid robot being hacked)
 - learning True learning is a system-wide property
 - control of learning & the learning path
 e.g. organization of short-term to long-term memory

Cognitive Robotics

Developmental Embodiment

- Embodiment & situatedness: well-established
- BUT, from an evolutionary point of view, morphology and processing structure are much stronger coupled.
- Genetic encoding of structure of brain and body: same mechanisms
- Embodiment and intelligence grow and develop *together*

Cognitive Robotics

Developmental Embodiment

- Robots will be one element of a personalized information infrastructure
- The future: NOT a 'brain in a machine
- Machine will be part of a personalized information infrastructure
 - (ad hoc) information networks
 - Mobile devices
 - Ubiquitous sensors
 - ...

Automotive Intelligence

- Robustness, robustness .. must be system inherent
- Learning must be restricted ("fail-safe")
- Single functionalities must be embedded
- The car will be part of a urban information infrastructure
 - intelligence will be distributed and available on demand
- The automobile must remain a personal space
 - that is part of its fascination
 - thus any cognitive aspect must be highly personalized

(cf. Christoph Eberst)

Cognitive Systems

The Roadmap

- Build simple systems
 - never(!) switched off
 - Incrementally change morphological and processing structure
- Build systems that can live even a simple life exploiting both a physical and a virtual presence
- Research system level properties (robustness/safety) in their own right
 - Not after the system functionality has been developed
- Regard intelligence and cognition as strategies to cope with limitations
- Build toys as simple cognitive systems

