

Self-Localisation and Route Learning in Mobile Robots Through System Identification

Ulrich Nehmzow Department of Computer Science University of Essex

> Analytical & Cognitive Robotics

Acknowledgements

The RobotMODIC Team:

Theocharis Kyriacou, Roberto Iglesias and Steve Billings

Robot-Environment Interaction

- Theory: coherent body of hypothetical, conceptual and pragmatic generalisations and principles that forms the general frame of reference within which mobile robotics research is conducted.
 - Formulation of testable hypotheses
 - Allow predictions
 - Essential for "off-line" design.

- Theory: coherent body of hypothetical, conceptual and pragmatic generalisations and principles that forms the general frame of reference within which mobile robotics research is conducted.
 - Formulation of testable hypotheses
 - Allow predictions
 - Essential for "off-line" design.
- 2. Modelling of robot-environment interaction

- Theory: coherent body of hypothetical, conceptual and pragmatic generalisations and principles that forms the general frame of reference within which mobile robotics research is conducted.
 - Formulation of testable hypotheses
 - Allow predictions
 - Essential for "off-line" design.
- 2. Modelling of robot-environment interaction
- 3. Identification and characterisation of robot-environment interaction

- 1. Theory: coherent body of hypothetical, conceptual and pragmatic generalisations and principles that forms the general frame of reference within which mobile robotics research is conducted.
 - Formulation of testable hypotheses
 - Allow predictions
 - Essential for "off-line" design.
- 2. Modelling of robot-environment interaction
- 3. Identification and characterisation of robot-environment interaction
- 4. Tools

Possible Approaches for Investigating Robot Behaviour

• Measurement and analysis

Possible Approaches for Investigating Robot Behaviour

- Measurement and analysis
- Obtaining simplified models that retain the essential properties of the robot

Experimental Setup

- Experimentation with *Magellan Pro* mobile robot
- Perception and action data is logged at 5Hz

Experimental Setup

- Experimentation with *Magellan Pro* mobile robot
- Perception and action data is logged at 5Hz
- Experimental Scenarios
 - 1. Perception-based self localisation (subsymbolic)
 - Perception-based, user-supervised route learning (again, subsymbolic)
- Objective: To obtain a quantitative, analysable representation of robot-environment interaction in closed mathematical form

Experiment 1: Perception-Based Localisation

Position and perception sampled every 6.25 s

Experiment 1: Perception-Based Localisation

Position and perception sampled every 6.25 s

euCognition, Vienna 3.7.06

© U. Nehmzow 2006

Interlude: Obtaining Transparent Models Through ARMAX and NARMAX

Goal: to obtain a model of the form

 $y(k) = F[y(k-1), y(k-2), ..., y(k-n_y), u(k-d), ..., u(k-d-n_\mu), e(k-1), ..., e(k-n_e)] + e(k)$

where y(k) is the sampled output, u(k) the input and e(k) noise.

 n_y, n_u, n_e , are the orders, and d is a time delay.

F[] is a (nonlinear) function and is typically taken to be a polynomial.

• ARMAX: (Linear) auto-regressive, moving average model with exogeneous inputs.

Readily available in packages such as Scilab or Matlab.

• ARMAX: (Linear) auto-regressive, moving average model with exogeneous inputs.

Readily available in packages such as Scilab or Matlab.

• NARMAX: non-linear ARMAX.

See S. Chen and S.A. Billings, Representations of non-linear systems: The NARMAX model, Int. J. Control, 49, 1989, 1013-1032.

Advantages of the (N)ARMAX Modelling Approach

- Transparent
- Compact
- Analysable
- Transferable

euCognition, Vienna 3.7.06

Localisation: The ARMAX Identification Task

© U. Nehmzow 2006

Model 1

	t	t-1	t-2	t-3	SSE
Laser 15	-47.40	-89.78	-72.11	-21.42	2506.4
Laser 30	-12.04	-14.14	-7.05	12.05	410.0
Laser 45	-17.19	-9.57	-10.05	-2.25	634.9
Laser 60	-3.37	4.99	-2.78	7.01	337.9
Laser 75	18.90	9.85	45.78	16.14	1784.3
Laser90	2.39	9.28	-7.01	-0.52	337.9
Laser 105	-14.71	-17.80	-9.74	-12.08	1435.6
Laser 120	23.16	19.02	18.91	-1.52	1734.7
Laser 135	-18.79	1.65	6.90	19.91	555.0
Laser 150	2.05	-6.87	-11.79	10.39	402.0
Laser 165	13.44	9.04	14.84	-2.08	1195.2
Laser 180	18.36	14.95	19.65	-5.86	1597.4
Sonar 1	-4.17	-3.14	-2.45	0.76	444.1
Sonar 2	-3.02	-1.93	-0.91	-1.19	474.0
Sonar 3	-3.27	1.52	2.98	2.15	364.0
Sonar 4	-0.92	-3.96	-4.57	-3.42	636.5
Sonar 5	-4.93	-5.51	-3.06	-1.11	710.4
Sonar 6	1.46	-0.80	-2.16	-3.92	418.0
Sonar 7	-1.02	-2.63	-4.06	-3.44	622.5
Sonar 8	0.99	0.99	0.99	0.99	428.8
Sonar 9	1.24	0.50	1.16	0.48	346.5
Sonar 10	1.15	2.72	0.59	-0.07	356.7
Sonar 11	-0.17	-0.39	-0.55	-0.41	317.5
Sonar 12	-0.39	0.63	0.46	1.39	322.5
Sonar 13	-0.49	0.94	2.83	-0.07	331.3
Sonar 14	1.97	2.20	2.78	1.79	374.3
Sonar 15	0.44	2.47	1.16	0.71	357.2
Sonar 16	-3.86	-1.90	-1.01	-0.88	422.4

ARMAX model 1 of x(t)

SSE indicates the sum squared error if the respective term is removed from the model.

	t	t-1	t-2	t-3	t-4	SSE
Laser 15	35.65	7.86	-38.68	-74.11	-38.72	1223.4
Laser 30	8.65	-5.01	-7.89	-12.35	-3.82	378.9
Laser 45	8.18	-9.80	-0.75	-3.61	1.90	295.0
Laser 60	-5.96	-0.57	13.33	10.59	-6.89	317.6
Laser 75	3.74	5.79	0.27	29.41	26.38	1285.7
Laser 90	-11.34	1.64	1.91	-1.28	-1.10	358.7
Laser 105	3.52	-3.97	-14.41	-8.67	-5.30	817.6
Laser 120	7.41	17.19	20.37	16.40	13.45	2114.1
Laser 135	4.13	-7.20	-12.44	-9.44	9.32	623.9
Laser 150	0.58	10.29	-2.45	-8.90	1.23	320.3
Laser 165	-6.16	1.86	11.38	15.51	0.53	794.1
Laser 180	-10.22	2.12	4.88	18.30	9.67	852.5
Sonar 1	-1.64	-2.72	-1.97	-2.74	-1.15	455.6
Sonar 2	-0.42	-1.85	1.14	1.18	-0.66	280.5
Sonar 3	-1.98	-3.82	-0.68	0.99	0.72	353.7
Sonar 4	2.50	1.30	0.37	-3.46	-4.25	349.6
Sonar 5	0.16	-1.91	-2.42	-1.83	-1.61	446.0
Sonar 6	2.67	1.77	0.41	-0.79	-1.54	307.3
Sonar 7	2.12	1.56	-1.13	-2.55	-1.00	297.4
Sonar 8	-2.93	-2.93	-2.93	-2.93	-2.93	1069.0
Sonar 9	0.75	0.35	1.02	1.72	1.56	333.0
Sonar 10	-1.07	-0.35	2.37	1.30	1.37	301.0
Sonar 11	0.24	1.19	0.66	-0.86	0.73	282.2
Sonar 12	-0.06	0.48	0.61	0.61	1.72	285.4
Sonar 13	-1.29	0.14	1.48	3.80	2.89	318.9
Sonar 14	-1.95	0.19	1.61	2.51	2.01	292.1
Sonar 15	-0.77	0.15	0.96	1.11	0.58	284.3
Sonar 16	-1.21	-2.46	-1.59	-1.48	-0.09	392.6

ARMAX model 1 of y(t)

Performance of Model 1

Actual robot position $\langle x(t), y(t) \rangle$ (thick, bold line) versus the position $\langle \tilde{x}(t), \tilde{y}(t) \rangle$ that is estimated from sensory perception, using model 1 (faint line)

$$r_x = 0.96, r_y = 0.95$$
 (sig., p< 0.05)

y [cm]

Actual robot trajectory (thick, bold line) versus the trajectory that is estimated from sonar and laser perceptions, using model 1. Mean localisation error 29.5 cm \pm 0.84 cm.

Distribution of localisation errors for the test data, using model 1

Refining Model 1

	t	t-1	t-2	t-3	SSE
Laser 15	-47.40	-89.78	-72.11	-21.42	2506.4
Laser 30	-12.04	-14.14	-7.05	12.05	410.0
Laser 45	-17.19	-9.57	-10.05	-2.25	634.9
Laser 60	-3.37	4.99	-2.78	7.01	337.9
Laser 75	18.90	9.85	45.78	16.14	1784.3
Laser90	2.39	9.28	-7.01	-0.52	337.9
Laser 105	-14.71	-17.80	-9.74	-12.08	1435.6
Laser 120	23.16	19.02	18.91	-1.52	1734.7
Laser 135	-18.79	1.65	6.90	19.91	555.0
Laser 150	2.05	-6.87	-11.79	10.39	402.0
Laser 165	13.44	9.04	14.84	-2.08	1195.2
Laser 180	18.36	14.95	19.65	-5.86	1597.4
Sonar 1	-4.17	-3.14	-2.45	0.76	444.1
Sonar 2	-3.02	-1.93	-0.91	-1.19	474.0
Sonar 3	-3.27	1.52	2.98	2.15	364.0
Sonar 4	-0.92	-3.96	-4.57	-3.42	636.5
Sonar 5	-4.93	-5.51	-3.06	-1.11	710.4
Sonar 6	1.46	-0.80	-2.16	-3.92	418.0
Sonar 7	-1.02	-2.63	-4.06	-3.44	622.5
Sonar 8	0.99	0.99	0.99	0.99	428.8
Sonar 9	1.24	0.50	1.16	0.48	346.5
Sonar 10	1.15	2.72	0.59	-0.07	356.7
Sonar 11	-0.17	-0.39	-0.55	-0.41	317.5
Sonar 12	-0.39	0.63	0.46	1.39	322.5
Sonar 13	-0.49	0.94	2.83	-0.07	331.3
Sonar 14	1.97	2.20	2.78	1.79	374.3
Sonar 15	0.44	2.47	1.16	0.71	357.2
Sonar 16	-3.86	-1.90	-1.01	-0.88	422.4

ARMAX model 1 of x(t)

Model 2: Refinement of Model 1

	t-0	t-1	t-2	t-3	t-4	t-5	t-6	t-7	t-8	t-9	t-10	t-11	t-12	SSE
L15	-56	-73	-76	-54	-5	45	67	68	51	27	-13	-39	-58	1541
L75	-	3	8	4	-2	-6	-13	-13	-13	-13	4	13	17	388
L105	-13	-12	-9	-5	7	6	9	8	-0.2	-5	-14	-14	-8	1388
L120	18	13	7	-7	-13	-19	-17	-6	6	11	9	6	6	511
L165	12	16	14	9	5	0.7	-10	-7	-7	2	13	9	9	2133
L180	-4	-1	-3	-2	0.1	4	-1	-6	-4	-0.2	1	8	12	354

Alternative model (model 2) to determine x from laser sensor signals

+ _∩	+_1	+_2	+_3	+_1	t_5	t_6	+_7	+_8	+_Q	+_10	+_11	+_12	+_13	SSE
ι-0	L-T	ι-2	ι-5	ι-4	ι-5	ι-0	L-1	ι-0	1-9	l-10	ι- ΙΙ	ι-12	l-13	55L
12	-14	-40	-71	-64	-46	8	38	48	62	49	13	-11	-41	961
0.5	0	-0.1	13	8	4	3	-9	-10	-12	-16	-5	6	10	274
7	-5	-10	-8	-8	-2	-0.2	8	9	8	3	-9	-11	-11	784.
6	19	15	10	5	-1	-16	-15	-12	-6	4	8	7	6	926
-8	4	11	15	11	7	5	-6	-7	-11	-4	7	7	8	1245
-4	-1	-2	-1	-1	0	1	-0.2	-2	-3	0.2	-2	4	11	263

Alternative model (model 2) to determine y from laser sensor signals

Performance of Model 2

Actual robot position $\langle x(t), y(t) \rangle$ (thick, bold line) versus the position that is estimated from sensory perception, using the alternative model 2 (faint line)

y [cm]

Actual robot trajectory (thick, bold line) versus the trajectory that is estimated from laser perception, using model 2 (faint line). Mean localisation error 22 cm \pm 0.7 cm.

Frequency

Distribution of localisation errors for the test data, using model 2

© U. Nehmzow 2006

Model 3: Self-Localisation Using Perception and Action

	t	t-1	t-2	t-3	t-4
X		1.06	- 0.72	0.65	- 0.70
L15	- 28.92	- 7.01	- 0.54	- 6.80	
L75	- 2.99	+ 7.08	- 2.78	+ 10.33	
L105	3.91	- 1.50	- 3.49	+ 1.68	
L120	3.63	+ 1.28	- 3.85	- 0.24	
L135	- 7.40	+ 2.14	+ 6.34	+ 0.01	
L180	2.59	+ 3.32	- 8.06	+ 3.42	

Model 3 for x(t), taking previous x estimates into account

	t	t-1	t-2	t-3	t-4
У		0.85	- 0.18	0.09	- 0.49
L15	9.96	- 5.83	- 15.84	- 8.31	+ 0.88
L30	16.80	- 9.71	- 5.20	+ 2.48	+ 0.34
L75	1.46	+ 0.41	- 5.68	+ 7.11	- 0.48
L120	1.95	+ 2.97	+ 4.06	- 4.00	+ 7.88
L135	1.99	+ 1.03	- 5.28	+ 2.58	+ 5.50
L180	- 2.62	+ 1.80	+ 4.10	- 3.82	+ 0.34

Model 3 for y(t), taking previous y estimates into account

Performance of Model 3

Actual robot trajectory (thick, bold line) versus the trajectory that is estimated from sonar perception, using model 3 (faint line). Mean localisation error 13 cm \pm 0.4 cm.

 $r_x = r_y = 0.98$ (sig., p < 0.05)

Frequency

Distribution of localisation errors for the test data, using model 3

© U. Nehmzow 2006

Model 4: Refinement of Model 3

x(t) = 1.04x(t-1) - 0.65y(t-1)(1) -6.7L₁₅(t) - 8.84L₃₀(t) + 4.05_{L75}(t) +7.1L₁₂₀(t) - 5.75L₁₃₅(t) + 14.53L₁₈₀(t)

y(t) = -0.49x(t-1) - 0.56y(t-1)-2.54L₁₅(t) + 11.43L₃₀(t) + 2.19L₇₅(t) +5.93L₁₂₀(t) - 2.14L₁₃₅(t) + 3.10L₁₈₀(t)

(2)

Performance of Model 4

Actual robot trajectory (thick, bold line) versus the trajectory that is estimated from previous position $\langle x, y \rangle$ and laser perception, using model 4.

Mean localisation error 10.5 cm \pm 0.4 cm.

Distribution of localisation errors for the test data, using model 4

What does a Model mean?

$$x(t) = 1.04x(t-1) - 0.65y(t-1)$$

$$-6.7L_{15}(t) - 8.84L_{30}(t) + 4.05_{L75}(t)$$

$$+7.1L_{120}(t) - 5.75L_{135}(t) + 14.53L_{180}(t)$$
(3)

$$y(t) = -0.49x(t-1) - 0.56y(t-1)$$

-2.54L₁₅(t) + 11.43L₃₀(t) + 2.19L₇₅(t)
+5.93L₁₂₀(t) - 2.14L₁₃₅(t) + 3.10L₁₈₀(t)

euCognition, Vienna 3.7.06

© U. Nehmzow 2006

(4)

Sensitivity Estimate Using Mutual Information

euCognition, Vienna 3.7.06

© U. Nehmzow 2006

Analysis of Model 4

y(t) = -0.49x(t-1) - 0.56y(t-1) $-2.54L_{15}(t) + 11.43L_{30}(t) + 2.19L_{75}(t)$ $+5.93L_{120}(t) - 2.14L_{135}(t) + 3.10L_{180}(t)$

Experiment 2: Route Learning

euCognition, Vienna 3.7.06

© U. Nehmzow 2006

Encoding of Sensory Perception

A)

euCognition, Vienna 3.7.06

© U. Nehmzow 2006

Route Learning: Results

Route 1: Training route steered by a human operator

 $\dot{\theta}(t) = +0.08 - 0.50 * nb[1] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[4] + 0.46 * nb[6] + 0.07 * nb[7] - 0.62 * nb[7] + 0.07 * nb[7] - 0.62 * nb[7] + 0.07 * nb[7] + 0$ +0.14 * nb[9] + 0.02 * nb[10] + 0.20 * nb[12] - 0.88 * ns[1] + 0.22 * ns[3]+0.004 * ns[6] - 0.04 * ns[7] + 0.20 * ns[10] - 0.02 * ns[14] + 0.11 * ns[2] $-0.43 * inv_min_bin + 0.041 * nb[1]^2 + 0.02 * nb[2]^2 - 0.06 * nb[3]^2 + 0.5$ $-0.44 * nb[6]^{2} + 0.01 * nb[9]^{2} - 8.70 * inv_min_bin^{2} - 0.07 * nb[1] * nb[2]$ +0.07 * nb[1] * nb[3] + 0.44 * nb[1] * nb[4] + 0.40 * nb[1] * nb[10] - 0.24 * nb[1] * nb[10] - 0.24 * nb[1] * nb[10] - 0.24 * nb[1] * nb[10] + 0.44 * nb[10] + 0.44 * nb[10] + 0.44 * nb[10] * nb[10] + 0.44 * nb[10] + 0.44+0.83 * nb[1] * ns[1] + 0.09 * nb[1] * ns[4] - 0.79 * nb[1] * ns[11] - 0.04 * nb[1] * ns[11] + 0.09 * nb[1] * ns[4] - 0.79 * nb[1] * ns[11] + 0.04 * nb[1] * ns[11] * $+0.08 * nb[1] * inv_min_sonar + 3.58 * nb[1] * inv_min_bin + 0.36 * nb[2]$ -0.73 * nb[2] * nb[9] - 0.05 * nb[2] * nb[12] + 0.04 * nb[2] * ns[13] + 0.63-0.28 * nb[3] * nb[12] + 0.11 * nb[3] * ns[3] - 0.48 * nb[4] * nb[10] - 0.27+0.11 * nb[5] * ns[1] + 0.26 * nb[6] * nb[8] + 0.02 * nb[7] * ns[5] + 0.15 * nb[6]-0.18 * nb[7] * ns[12] - 0.17 * nb[8] * nb[10] + 0.03 * nb[8] * ns[5] - 0.10+0.05 * nb[10] * ns[12] + 0.03 * nb[12] * ns[10] + 0.06 * nb[12] * ns[11] ++0.01 * nb[12] * ns[16] + 2.68 * ns[1] * ns[6] - 0.30 * ns[1] * ns[11] - 1.9 $+3.91 * ns[2] * inv_min_bin + 0.13 * ns[3] * ns[5] - 1.27 * ns[3] * ns[6] - 1.27 * ns[6] + n$ $-1.85 * ns[3] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[4] * ns[11] - 0.13 * ns[4] * inv_min_bin + 0.05 * ns[1] * ns[11] - 0.13 * ns[11] * inv_min_bin + 0.05 * ns[11] * ns[11] + 0.05 * ns[11] + 0.05$ -0.23 * ns[6] * ns[10] + 0.89 * ns[6] * ns[11] + 0.08 * ns[15] * ns[16] ++5.06 * ns[16] $* inv_min_sonar$

NARMAX model of the angular velocity $\dot{\theta}$ for the route following behaviour in route 1.

nb, *ns*, *inv_min_sonar*, and *inv_min_laser*, are the normalised bins, normalised sonar, inverted minimum sonar and laser readings respectively.

Route taken by the robot, operating autonomously under model control.

Other Routes

RobotMODIC: Relevance

1. Canonical representation of behaviour-describing aspects

- Simple transfer for competencies between platform, research groups, *etc*
- Implementation is very efficient, i.e. fast in execution with low memory requirements
- Closed mathematical form aids visualisation, modification and analysis

RobotMODIC: Relevance

- 1. Canonical representation of behaviour-describing aspects
 - Simple transfer for competencies between platform, research groups, *etc*
 - Implementation is very efficient, i.e. fast in execution with low memory requirements
 - Closed mathematical form aids visualisation, modification and analysis
- 2. Analysis of the obtained models
 - Sensitivity analysis (Sobol, mutual information)
 - Frequency response
 - Graphical methods
 - Other?

Robot Modelling, Identification and Characterisation: Summary

- Objectives
 - 1. Theory
 - 2. Modelling of robot-environment interaction
 - 3. Identification and characterisation of robot-environment interaction
 - 4. Tools

Robot Modelling, Identification and Characterisation: Summary

- Objectives
 - 1. Theory
 - 2. Modelling of robot-environment interaction
 - 3. Identification and characterisation of robot-environment interaction
 - 4. Tools
- Approach
 - Model input-output relationships, using linear or non-linear polynomial models

Robot Modelling, Identification and Characterisation: Summary

- Objectives
 - 1. Theory
 - 2. Modelling of robot-environment interaction
 - 3. Identification and characterisation of robot-environment interaction
 - 4. Tools
- Approach
 - Model input-output relationships, using linear or non-linear polynomial models
- Advantages
 - Transparent
 - Compact
 - Analysable
 - Transferable

Robot Navigation: Conclusions

 Task-achieving navigation (e.g. self-localisation or route learning) is possible without symbolic representation of the environment

Robot Navigation: Conclusions

- Task-achieving navigation (e.g. self-localisation or route learning) is possible without symbolic representation of the environment
- It is possible to express these navigational competencies in closed mathematical form, through system identification

Robot Navigation: Conclusions

- Task-achieving navigation (e.g. self-localisation or route learning) is possible without symbolic representation of the environment
- It is possible to express these navigational competencies in closed mathematical form, through system identification
- The resulting models reveal
 - The relevance or irrelevance of individual sensors
 - The behaviour of the robot under specific operating conditions
 - The stability of behaviour
 - The interdependency between richness of sensory perception and integration of perception over time

Further Information

- Ulrich Nehmzow, *Scientific Methods in Mobile Robotics* Springer Verlag 2006
- http://cswww.essex.ac.uk/staff/udfn

