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Abstract 

 

An oscillatory neural network model is presented that allows selection of a specified object 

from the image. The processing of the image is divided into two stages. The first stage 

implements contour extraction by applying traditional image processing algorithms. The 

result is raw contours accompanied by the noise and some spurious objects. During the 

second stage the searched object is segmented from the image, its boundaries are determined, 

and the noise is suppressed. The second stage is implemented by a two layer network of 

phase oscillators controlled by a central oscillator. The extraction of an object is made in 

terms of the temporal correlation hypothesis. The oscillators coding the selected object form 

an assembly with coherent activity which also runs in phase with the central oscillator. Other 

oscillators do not show synchrony with this assembly. The work of the model is illustrated on 

an example of the image used in robotics. 

 

1. Introduction 

 

Extraction of a certain object from the image is a traditional problem in computer vision and 

robotics. It is also attracts attention of psychologists and neurobiologists who are interested in 

understanding the psychological and neurobiological mechanisms underlying visual object 

selection, in particular, how attention determines the result of selection. The problem of 

object selection is closely related to the problem of image segmentation because the selected 

object should be segmented from other objects in the image and from the background. This 

task may be relatively easy if the image contains objects which are isolated and located on a 

background whose optical characteristics are homogenous and essentially different from 

those of the searched object. In real images objects can overlap and the background can be 

non-homogenous which makes the problem of segmentation rather difficult. 

 

Despite the fact that humans use more or less similar intuitive strategies for object selection 

and segmentation, it is hardly possible to invent a formal and universal measure of 

segmentation quality. It is clear that segmentation depends of the context, previous 

experience, and internal aims that are far beyond the information contained in the image 

itself. Computational methods that are used in this field are based mostly on intuition and 

common sense. Usually the procedure is divided into two stages. At the initial segmentation 

stage, some parts of the searched object are segmented basing on optical characteristics of 

these parts. At the recognition stage, a complete object is composed from its parts using 

stored memory and logical analysis. These stages can be iteratively repeated to improve the 
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results of selection and recognition. It is assumed that the computational procedures should 

be robust in the presence of noise and natural variation of objects and the background. Those 

methods are preferable that can be adapted to a larger class of images and different types of 

searched objects through supervised or unsupervised learning. 

 

In the last years a lot of investigations have been made to clear out how the problem of object 

selection and segmentation is solved by the brain. It is known that different types of features 

(such as geometrical, spectral and motion characteristics of objects) that are simultaneously 

present in the visual stimulus are initially processed in different parts of the cortex and only 

later in associative areas of the cortex they are combined into representation of individual 

objects. In this relation, the questions arise: a) how the brain is able to keep the information 

about associations between individual features and objects to which these features belong and 

b) what is the mechanism that implements feature binding?  

 

The theory that tries to answer these questions is based on the so-called temporal correlation 

hypothesis (TCH) (Malsburg, 1981; Singer and Gray, 1995) which states that the features of a 

single object are coded (binded) by coherent neural activity while there is no correlation of 

the activity corresponding to different object. Note that segmentation of an object can be 

considered in the frames of the binding problem. Suppose that an image is represented in the 

form of optical parameters of its pixels. If these parameters are included in the list of features, 

then attribution of these features to particular objects will result in segmentation of objects 

from each other.  

 

Besides feature binding, another cognitive function plays an important role in image 

processing. This is attention which is used to select a particular object from the image. The 

experiments show that attention operates in a similar way as binding: if attention is focused 

on an object, this results in increasing coherence in the activity of those neurons that 

represent this object in the cortex (Steinmetz et al., 2000; Fries et al., 2001; Fries et al., 2002; 

Doesburg et al., 2008). Attention can be directed to a particular area of the image (spatial 

attention) or to some features of the object (object-based attention). If it is known that a 

particular area of the image or particular features belongs to the searched object, then the 

whole object can be restored since all its features are coded by the same coherent activity as 

any of its part.  

 

The TCH suits well to modelling in terms of oscillatory neural networks (see reviews Ritz 

and Sejnowski, 1997; Wang, 2005). A general idea that is present in most models of binding 

is to use lateral synchronizing connections to obtain coherent activity of neurons representing 

a single object and to use long-range desynchronizing or inhibitory connections to make 

incoherent the activity of neurons representing different objects. Another idea is to set the 

connection strengths between the neurons in such a way that neighbouring neurons tend to 

work coherently if image areas located in their receptive fields have similar optical 

characteristics. If both ideas are combined, one can expect that in-phase working clusters of 

neurons will appear in the network as a result of its evolution, and the segment of the image 

that corresponds to each cluster will have similar or slowly changing optical characteristics. 

 

A large variety of models of object selection and segmentation based on synchronization of 

neural activity have appeared in the last years (Wang, 1999; Wang and Terman, 1997; Chen 

et al., 2000; Chen and Wang, 2002; Broussard et al., 1999; Labbi et al., 2001; Borisyuk and 

Kazanovich, 2004; Palm and Knoblauch, 2005; Buhmann et al., 2005; Ursino et al., 2003; 

Ursino and La Cara, 2004a; Zhao and Macau, 2001; Zhao et al., 2003; Zhao et al., 2004). 
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They differ by the degree to which biological facts are taken into account, by the type of 

processed images, by the mechanisms of functioning, and by the results of application. Some 

authors try to closely follow the experimental results, other are more interested in practical 

tasks of image processing. The models that work with grey-scale or coloured images are 

usually built of neurons or neural oscillators whose receptive fields are represented by pixels 

of the image. Multilayer constructions are used if pixels are characterized by a set of features 

(e.g., spectral components of the colour). The most advanced models working with real 

images are reported to give the results that are comparable or even exceed those obtained by 

traditional image processing methods (Chen and Wang, 2002). Unfortunately, the best results 

are obtained for those processing algorithms that are rather complex and do not have support 

in experimental evidence. Moreover, in many cases the results critically depend on the 

parameter values. 

 

In some papers the problem of segmentation is considered separately from the problems of 

attention and object selection. Other papers include object selection in their functionality but 

in this case consecutive selection of all objects present in the visual scene is implemented. In 

this work we suggest a model that combines a particular object selection with segmentation 

of this object from other objects and the background.  

 

The whole procedure is divided into two stages. At the first stage, traditional image 

processing technique is used to extract contours of objects. The only restriction on the 

algorithms used at this stage is that they should have evident neural implementation and be 

able to process the image in parallel. The result of the first stage is raw contours with noise 

and with some number of spurious objects. At the second stage the searched object is 

segmented from the image, its boundaries are determined, and the noise and spurious objects 

are suppressed. This is done by an oscillatory neural network composed of phase oscillators.  

 

The network has two layers whose activity is controlled by a special central oscillator (CO) 

that plays the role of the central executive of the attention system (Cowan, 1988; Baddeley, 

1996). The oscillators in the layers are called peripheral oscillators (POs). The first layer 

fulfils the synchronization according to the TCH using the contours obtained at the first stage 

as restrictors for synchronization spread outside the border of the searched object. The second 

layer transforms the raw image into the final results of segmentation.  

 

The central oscillator is used to select a particular object in the focus of attention. It is 

assumed that the focus of attention is represented by those POs that work in-phase with the 

CO. The dynamics of the model are organised in such a way that the CO can only 

synchronize with the assembly of oscillators that represents the searched object. The CO also 

keeps oscillators representing other objects and the background outside of the focus of 

attention. 

 

In simulations we use the image that was created for experiments with robots in the real 

world (Tikhanoff et al. 2008a; 2008b). The image is shown in Figure 1. There are four balls 

of different colour in the image that are targets for robot’s manipulations. The robot should be 

able to select a ball of a predefined colour and to pick it by its hand. So the visual system of 

the robot should provide information about the position and the boundaries of the ball to the 

mechanical system that controls the movements of robot’s hand. The model presented here 

was developed to solve this practical task. But the methods used in the model are universal 

for any coloured images where the searched object differs from other objects by its colour.  
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The paper has the following structure. In Section 2, algorithms for contour extraction from 

coloured images are described. In Section 3 we present the results of extraction of contours. 

In Section 4 an oscillatory network for image processing according to the TCH is presented. 

The results of simulations are shown in Section 5. Section 6 is devoted to the discussion of 

the results and comparison with other models. 

 
 

Figure 1. Original image of size 640480  pixels. The final aim is to select from the image a ball of a 

predefined colour and to detect its boundaries. 

 

2. Contour extraction 

 

The human visual system is very efficient in detecting contours. In most cases it surpasses 

artificial systems in the solution of this task, though errors may appear if complex textures are 

present in the image or if the image is contaminated by strong noise. There may be different 

explanations for this efficiency but at least one of the reasons is that human visual system 

contains special neurons and neural structures that react to edges, that is to an abrupt change 

of some optical characteristics of the image, such as intensity or colour. Many algorithms of 

contour detection try to reproduce this ability of human vision by computing spatial 

derivatives of some functions determined in the pixels of the image. 

 

Let F(x, y) be a function determined on the discrete plain where the image is located, (x, y) 

are the coordinates of a pixel on this plane. Different functions F can be used for contour 

extraction. In the case of grey-scale images intensities I(x, y) are used. In the case of coloured 

images the role of F can be played by the intensity of a component of the spectrum (e.g. red, 

green, or blue). Since R, G, B components are correlated (in the sense that if the intensity 

changes, all these components will change accordingly), they are often transformed to 

another set of parameters. It can be a linear transformation, e.g. for the parameter sets YIQ 

and YUV, or nonlinear transformation, e.g. for the parameter set HSI (Cheng et al., 2001). In 

the next section we specify the parameter set that has been used in our simulations. 

 

Let ),( yxp   and )(pFgradg  . A pixel p can be considered as belonging to a contour if 

the following conditions are fulfilled: 
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0))(())(( 22  gpFgpF gg  ,         (2) 

0))(( 2

3  CpFg .           (3) 

 

Here 2

g  and 3

g  denote the second and third derivatives along the direction g , respectively, 

  is a small parameter, 
1C  and 

2C  are constant parameters. Formulas (1-3) have the 

following meaning. Formula (1) states that the function F should be “steep” in the 

neighbourhood of p. Formula (2) states that the second derivative of F in direction g  should 

change sign at p. Formula (3) states that the third derivative of F in direction g  should be 

negative and below some threshold. We use expressions (1-3) as a definition of a contour 

point. 

 

In the computation of spatial derivatives for real images the following difficulties must be 

overcome. Firstly, the derivatives have to be computed using the function F that is 

determined on a discrete set of points. Secondly, the results of computations should be made 

robust in the presence of noise. Third, the computation results will strongly depend on the 

scales at which the derivative operators are applied (Lindeberg, 1998; Sumengen and 

Manjunath 2005), therefore different scales should be used in computations. 

 

To decrease the influence of the noise we use the operator 

 





r

r

Sqr

S qF
S

pA )(
1

)( ,          (4) 

 

where 
rS  is a square of size r with the pixel p in the centre, rS  is the number of pixels in 

rS . 

Thus operator (4) averages the values of F in the square neighbourhood 
rS  of the pixel p. By 

this operator the function F is transformed to the function 
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21

  rrpApApFpG
rr SS ,     (5) 

 

where   and   are weighting coefficients. The result of transformation (5) is similar to 

processing the image by a DoG filter. It averages the noise and makes slopes a bit steeper. 

 

The derivative operators are applied to the function G. Consider first the case when the 

derivatives should be computed along the direction xe  parallel to the axis x. Let rS  be a 

square with the centre in the pixel p; rlR  be a rectangle of size lr  adjoined to rS  from the 

right side as it is shown in Figure 2a; 1

rlR  and 2

rlR  be rectangles of size lr  adjoined to rS  

from the left and right sides, respectively as is shown in Figure 2b. 

 

a 

 

rS  

 

 

rlR  

 

B 

 
1

rlR  

 

 

rS  

 

 
2

rlR  

 
 

Figure 2. Computation of derivatives: a) areas used for the computation of the first derivative; b) areas used for 

the computation of the second and third derivative. 
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the average value of F(p) in the rectangle rlR . The derivatives are computed as 

 

rrlx SRe AApF  ))((1 ,         (7) 
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where   is a small parameter (in computations we put 2/)1(  r ). Averaging used in (6-

9) helps to suppresses the noise.  

 

The computation of the derivatives along any other direction can be made by rotating the 

rectangle that combines 
rS  and rlR or 

rS , 1

rlR , and 2

rlR  around the centre of the pixel p on the 

angle  . In particular, the gradient at the pixel p is computed as a vector e along which the 

first derivative takes the highest value, that is 

 

}))((max))((:{)( 1

)2,0(

1 pFpFepFgrad ee 
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
,               (10) 

 

where e  is a vector that is rotated relative to xe  on the angle  . 

 

Note that different scales can be taken into account by varying the parameter l (the width of 

the rectangles rlR , 1

rlR , and 2

rlR ). In our computations we vary l in some range and check that 

for each value of l conditions (1-3) are fulfilled. Only in this case the pixel p is declared to be 

a contour point. 

 

3. An example of contour extraction 

 

The results of contour extraction crucially depend on the set of functions F(p) that are used in 

computations. For coloured images usually HSI (hue-saturation-intensity) colour space is 

used because in these parameters colour information is separated from intensity, which is 

important for having stable results for different illuminations. Since our task was to find an 

object of a particular colour, it was reasonable to use a priory information about these colours 

in selecting feature space.  

 

According to our task four colours of the balls are of interest, that is red, green, blue, and 

yellow. In addition, the light-yellow colour of the table is useful since it plays the role of the 

background for the balls. Each of these colours is coded in RGB space as a vector c = (r, g, 

b). The components of this vector were computed by averaging RGB values in a small region 

chosen inside of each ball and inside of the square on the table. Thus we have got 5 vectors 

)5,...,1( iCi  which have been used as templates to compare with the colours of pixels in the 

image. 
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Let jc  be the colour of the jth pixel in the image. We measure the distance between iC  and 

jc  by the angle  
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cos .                (11) 

 

The vector U = (u, u, u) (in computations u = 20) is added to the last formula to avoid small 

values in the denominator if jc  is small. The advantage of this way of measuring the 

distance between colours is that this measure does not significantly depend on illumination.  

 

By using ijd  five functions ijji dpF )(  (i = 1,…,5) were formed. The results of their 

processing according to formulas (1-10) are presented in Figure 3. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 3. Contour extraction by using the templates for green (a), red (b), yellow (c), blue (d), and light-yellow 

(e). The final contour is shown in (f). 
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Frames (a)-(e) of Figure 3 show the results of contour extraction by using different templates. 

The last frame (f) shows the final result of contour extraction which is obtained by 

superposing all contour points of the frames (a)-(e). Figure 4 shows the fragment of the image 

that contains the balls (Figure 4a) and the contour points in this fragment (Figure 4b). 

 

 
a 

 
B 

 
Figure 4. A fragment of the original image (a) and its contour points (b). 

 

It is seen that the contours are noisy and many noisy fragments are present in the image. This 

is a typical result when contours are computed by using local filters. Therefore additional 

processing is needed to improve the results of contour extraction and to select a given object. 

 

4. An oscillatory neural network for object selection 

 

In this section we describe an oscillatory neural network that selects an object from the visual 

scene and focuses attention on this object. The selection is made in terms of the TCH, that is 

a selected object is coded by the activity of a synchronous assembly A of oscillators while 

oscillators coding other objects and the background work incoherently relative to A. Focusing 

attention on the object implies that A works coherently with a central oscillator and this 

coherence is used to identify the oscillators from A. As input information, the raw contours 

are provided to the network and also a small square S is given to mark an object that should 

be selected. The square S is located inside the boundaries of the selected object and is used as 

an initial attractor of attention. Starting from S, attention then spreads to the whole object. 

The contour points are used to restrict the spread of attention outside the borders of the 

object. 

 

Since all computational procedures in the network are formulated in terms of 

synchronization /  desynchronization, it is reasonable to use phase oscillators as the elements 

of the network [Kuramoto, 1984; Kazanovich and Borisyuk, 1999; Borisyuk and Kazanovich, 

2003]. The activity of such an oscillator is described by a single variable, the phase of 

oscillations, and the interaction of these oscillators is described in terms of phase-locking. In 

our model we use synchronization that is induced by local connections. This type of 

synchronization has been studied in a number of papers [Sakaguchi et al., 1987; Daido, 1988; 

Strogatzt and Mirollo, 1988]. The main conclusion of the studies is that the value of the 

interaction coefficient should increase in order to synchronize a network of increasing size in 

2D space. In other words, large interaction coefficient are needed to synchronize large 

networks of phase oscillators. 

 

The network consists of two layers 1L  and 2L  of size LMN   (thus N is the number of 

oscillators in a layer). Local connections in each layer are represented by the connections 

with 8 nearest neighbours (the number of connections can be less than 8 for oscillators on the 
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external boundary of the layer). There are bottom-up connections of a local type between the 

layers, that is each oscillator in 
2L  receives the inputs from a square in 

1L  of size QQ  (in 

computations Q = 7). All local connections and bottom-up connections are of a 

synchronizing type. There is also a central oscillator C that interacts with oscillators of 
1L . It 

receives synchronizing inputs from oscillators in S. It also sends desynchronising signals to 

all oscillators in 
1L except those in S. The synchronising input to S allows focusing attention 

on S. Desynchronizing signals from C to 
1L  are used to desynchronize the oscillators that are 

in and out of the attention focus, respectively.  

 

The oscillators of 
1L  that correspond to contour points are supposed to be silent, that is they 

do not participate in network dynamics. Thus, in 
1L  object boundaries are impenetrable for 

the spread of synchronization. There are no restrictions on the spread of synchronization in 

2L , therefore oscillators in 
2L  are involved in some type of synchronization according to the 

interaction with their neighbours in 
2L  and 

1L .  

 

The natural frequencies of oscillators in 
1L  are constant. They are randomly distributed in 

some interval ),( maxmin   for all oscillators except those in S. The natural frequencies of 

oscillators in S are distributed in the range ),( maxmin ss    for some 0s . A shift to 

higher frequencies for oscillators in the focus of attention is introduced to reflect 

experimental data that demonstrate higher activity of neurons that represent attended objects 

(Motter, 1993; Roelfsema et al., 1998; Kanwisher & Wojciulik, 2000). The initial values of 

natural frequencies of oscillators in 
2L  are distributed in ),( maxmin  , but in contrast to 

1L  the 

natural frequencies of oscillators in 
2L  adapt to their current values.  

 

Consider an oscillator P in 
2L . Let G be the neighbourhood of P in 

1L . If all oscillators in G 

belong to the same object, their work will be coherent, therefore P will be phase-locked by 

these oscillators and will work in-phase with them. If oscillators in G belong to different 

objects (this happens when P corresponds to a contour point or locates near the boundary 

separating different objects), they will compete for the synchronization with P. The larger is a 

synchronous assembly of oscillators in G, the greater is the chance that it will win the 

competition and that P will work coherently with this assembly. Also, local interactions in 
2L  

influence on the result of the competition smoothing the boundaries of segmented regions in 

2L . 

 

Adaptation of the natural frequency is also applied to the central oscillator C. Since the only 

synchronizing signals comes to C from the oscillators in S, after some short transitionally 

process C will work in-phase with these oscillators.  

 

Equations for network dynamics have the following form. 
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Equations (12-14) determine the dynamics of oscillator phases, equations (15-16) determine 

the dynamics of natural frequencies. The following notation is used in (12-16): 0  is the 

phase of the central oscillator C; 21, ii   are the phases of oscillators in layers 
1L  and 

2L , 

respectively; 0  is the natural frequency of C; 21, ii   are the natural frequencies of 

oscillators in the layers 
1L  and 

2L , respectively;   denote the number of elements in the 

corresponding set; jwwtwtww 54321 ,),(),.(,  are positive interaction parameters (
41,ww  are 

constants, )(),.( 32 twtw  depend on time, jw5  exponentially decays with the distance between 

the pixels i and j). The derivatives in the left part of (12-14) describe the current values of 

oscillator frequencies. According to (15-16), the natural frequencies of C and of the 

oscillators in 
2L  are adapted to the current frequencies of these oscillators with rates   and 

 , respectively. 

 

All interactions in the network are implemented by the function )sin(x  except the interaction 

between C and S which is determined by the function )(xg  whose extremums are located 

near zero (Figure 5). Such interaction function accelerates computations and makes phase 

differences between C and oscillators in S smaller. 

 

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

g
(x

)

 
 
Figure 5. Graph of the function g (blue lines). Axes are shown by red lines. 

 

The processes of synchronization / desynchronization in the network are controlled by the 

interplay between the variables ).(2 tw  and )(3 tw . The desynchronizing signals should not 
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prevent synchronization in the focus of attention. For this purpose, ).(2 tw  is made linearly 

decreasing to zero with time. In contrast, the values of )(3 tw  are made increasing as 2t  with 

time until the maximum value max3w  is reached. Making interaction in 
1L  gradually stronger 

with time allows fast spread of synchronization on the whole object that should be selected in 

the focus of attention. 

 

5. An example of object selection 

 

We illustrate the model operation using the picture presented in Figure 4b. This image is of 

size 140100 . We restricted the processing to the fragment of Figure 1 (note that this 

fragment contains all target balls) because it reduces computation time but does not make 

computations easier in any other respect. 

 

Initial phases of all oscillators were distributed randomly in the range (0, 0.2). Initial natural 

frequencies of all oscillators in layers 
1L  and 

2L  were distributed in the range (4, 5) which 

corresponds to the gamma frequency range 40 Hz – 50- Hz if the time unit is defined as 

0.1/ 2  sec. The initial natural frequency of the central oscillator was 6. 

 

Figure 6 shows the process of selection and segmentation of the green ball in the time interval 

from 1 to 8. Upper row of frames shows evolution of phases in layer 
1L , lower row of frames 

shows evolution of phases in layer 
2L . In each frame the colour of a pixel reflects the phase 

difference between the corresponding oscillator in one of the layers and the central oscillator. 

Phase differences are scaled in the range (0, 256) so that darker pixels correspond to the 

lower phase difference. 

 

The process of synchronization starts from the square S that is clearly seen at the moment 

t = 1. Gradually the synchronization is spreads to the whole object that should be selected in 

the focus of attention. In parallel, the phases of other oscillators in the network tend to be 

different from the phase of the central oscillator (and hence different from the phases of 

oscillators in the focus of attention). The noise that is present in layer 
1L is suppressed in layer 

2L  and all contour points are distributed between the selected object and other objects in the 

image. It can be seen that the final boundary of the selected object smoothes the defects in the 

original contour. This is obtained due to the local interaction between oscillators in 
2L . 

 

The process of selection and segmentation of other target objects (red, yellow, and blue balls) 

is shown in Figures 7-9. 

 

Note that the process of segmentation of a target object takes 8-10 time units which 

corresponds to 130-160 msec which is in agreement with experimental findings on times 

needed for attention focusing.  

 

6. Discussion 

 

A two stage approach to selection of an object from the visual scene and its segmentation 

from other objects and the background has been suggested. The first stage is devoted to 

contour extraction and is described in terms of an artificial vision algorithm. At the second 

stage selection of an object marked by a small square and its segmentation are realized by an 

oscillatory neural network. Segmentation and focusing attention on a particular object are 
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fulfilled in terms of the temporal correlation hypothesis (TCH). Oscillators representing an 

objects work coherently and in addition oscillators representing an object in the focus of 

attention work coherently with the central oscillator. 
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Figure 6. Selection and segmentation of the green ball. Each pixel in frames shows the difference between the 

phase of the central oscillator and the phase of an oscillator in layer L1 (top frames) and L2 (bottom frames). 

Phase differences )2,0(   are scaled in the range (0, 256). Zero phase difference corresponds to black colour.  

 

In developing the first stage we mostly followed a traditional approach to contour extraction. 

Gabor filters, filters of DoG type, and derivatives along the gradient direction for different 

scales have been widely used for this purpose both in artificial vision and neural network 

models (Lindenberg, 1998; Broussard et al., 1999; Sumengen and Manjunath, 2005; Petkov 

and Subramanian, 2007; Huang et al., 2008). The originality of our approach is in special 

combination of these methods and orientation on predefined colours of searched objects. 

Though the first stage is represented as an artificial vision algorithm, its neural 

implementation is possible. The operations used by the algorithm such as filtering and 

determination of the contrast of some optical characteristics are known from the experimental 

studies of the brain. Similar algorithms have been realised in neural networks (Broussard et 

al., 1999; Ursino and La Cara, 2004b; Petkov and Subramanian, 2007; Huang et al., 2008), 

but in most cases additional contextual modulation has been added to improve the contours 

and to fill the gaps in them.  
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Figure 7. Selection and segmentation of the red ball. 

 

A combination of artificial vision algorithms and an oscillatory neural network may look 

inappropriate for modelling the visual system, but in fact it may be closer to the reality than 

attempts to describe the work of this system by a single mechanism. Simple principles based 

on image filtering and rate coding seems to be most efficient on the earlier stages of 

processing while oscillatory mechanisms may participate in such cognitive functions as 

feature binding and attention. Our aim was to find how these different principles may interact 

in the solution of the problems of selection and segmentation. Our results show that 

oscillatory neural networks can be most useful in improving the raw information obtained 

during contour extraction.  

 

The TCH assumes that synchronization that binds oscillations representing a visual object 

must be stopped at the boundaries of this object. There are two ways of realising this demand. 

The first one is implemented in the model LEGION (locally excitatory globally inhibitory 

oscillatory network) (Chen et al., 2000; Chen and Wang, 2002). LEGION is a single layer 

network built of Van der Pol type oscillators controlled by a central inhibitory unit. The 

process of synchronization in LEGION starts from oscillators that are called leaders and that 

are definitely located inside of meaningful objects. Then the synchronization is spread to the 

boundaries of objects and is stopped there due to a proper modification of local connection 

weights and input signals. Unfortunately, the principles of LEGION operation (especially the 

algorithm of connection weights modification) are rather complex and poorly justified from a 

biological point of view. LEGION can simultaneously process only a relatively low number 
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of objects, and errors in binding object features may appear (sometimes different objects are 

bound together by the process of synchronization). 
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Figure 8. Selection and segmentation of the yellow ball. 

 

Another approach was implemented in the papers (Ursino et al., 2003; Ursino et al., 2004a). 

The model developed in these papers is a two layer neural network. The first layer is build of 

traditional by-rate-coding neurons that fulfill contour extraction by image filtering. This layer 

operates similarly to the first stage of image processing in our model though more simple 

algorithms of contour extraction are used by Ursino and co-authors and the processing is 

restricted to grey-scale images.  

 

The second layer of the model is nearly identical to LEGION. The difference is that the 

model works under constant values of connection strengths and the spread of synchronization 

is stopped at the boundaries that have been computed by the first layer. The processing 

implemented by the second layer is similar to the one that is fulfilled by the first layer of our 

model. The difference is that there is a second layer in our model that can correct the errors of 

contour extraction and inhibit noise. Moreover in our model there is a possibility to select a 

particular object in the focus of attention while in the model of Ursino and co-authors all 

objects that are present in the image are selected in some random sequence. Errors in binding 

are also possible in the model of Ursino and co-authors, while in our model such errors have 

not been observed, a single object is always selected in the focus of attention. 
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Figure 9. Selection and segmentation of the blue ball. 

 

In our model, selection of an object is made by initially marking a small part (a square) of 

this object and including this part in the focus of attention. This type of marking can be 

attributed to spatial attention. Another possibility would be to initially concentrate attention 

on a set of features identifying a particular object. This would represent object-based 

attention. For example, colour can be used for this purpose. Average colour of a small 

segment of the object (e.g. a square) should be determined by using an image that contains 

this object. If a new image is presented, the pixels of this image that have this colour should 
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be initially taken in the focus of attention. More elaborate procedure would be to keep in 

memory not the average colour of a segment but the distribution of colours in the segment. 

Then in a new image the focus of attention should be initially concentrated on a segment with 

a similar distribution of colours. After attention is directed to a segment of the image all other 

image processing will go in the same way as in the case of spatial attention. 

 

7. Conclusion 

 

The problem of object selection and segmentation is important both for neurobiological 

research and robotics. From a biological point of view this problem is closely related to the 

problems of binding and attention, therefore computer models of these phenomena can help 

in understanding psychological experiments on visual search [Treisman and Sato, 1990]. On 

the other hand, reliable brain based devices for object selection are needed in robotics as a 

preliminary step to pattern recognition, visual scene understanding, and object manipulation.  

 

Two kinds of models have been constructed to solve the problem of selection and 

segmentation. Some models are based on traditional approaches of computer vision or neural 

networks, others try to use the principles of synchronization provided by oscillatory neural 

networks. We suggest a compromise solution that combines traditional and oscillatory 

mechanisms of visual information processing.  

 

Our paper as well as many other papers show that conventional approaches to contour 

extraction are efficient enough, and there is no need to attract oscillatory neural networks at 

this stage of processing. We restricted the computational procedures used at this stage to 

rather simple algorithms that take into account only local characteristics of the image. Better 

results could be obtained if some logical operations were added, but we tried to avoid any 

complications that would go beyond the known operations in the primary visual cortex. We 

have shown that synchronization principle is efficient in improving the results of contour 

extraction and binding the features of a searched object according to the temporal 

synchronization hypothesis. More simulations are needed to confirm our results on other 

types of images. Also automatic selection of the initial area for attention focusing should be 

added to the model. Note that not only stationary scenes but scenes with moving objects are 

suitable for processing by our model. In particular, object tracking can be easily added to the 

functionality of the model. The principles of our neural network functioning are universal 

enough to expect that it can be a helpful instrument in the solution of the problems of object 

selection and segmentation.  

 

The main application area in which such an object selection algorithm might bring significant 

benefits if that of cognitive robotics and human-robot interaction. For example, ongoing 

research with humanoid robotic platform iCub (Metta et al., 2008) is centred on the 

integration of various cognitive capabilities. Some studies are focussing on the integration of 

vision, action and linguistic capabilities (Cangelosi et al., 2008), whilst others specifically 

address the selective attention of objects in response to the activation of sensorimotor 

properties of the objects (Tucker and Ellis, 2001). The proposed object selection algorithm 

provides a neurally-plausible modelling framework for the extension and integration of vision 

processing dynamics with other cognitive mechanisms. Future extension will specifically aim 

at the top-down and bottom-up contribution of sensorimotor representations in object 

selection.  
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