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Imitation facilitates transmitting culture practices and ideas from generation to generation, 
enabling humans, animals, and now robots, to learn skills others have already mastered. By 
avoiding the lengthy period of trial-and-error to accomplish new tasks, imitation is thus a 
very efficient learning method, and also a very intuitive way to program robots by teaching. 
 
The mechanisms of imitation and social learning are not well-understood, and the 
connections to social interaction, communication, development, and learning are deep, as 
recent research from various disciplines has started to uncover. Comparison of imitation in 
animals and artifacts reveals that easy tasks for machines can be hard tasks for animals and 
vice-versa. However, computational complexity issues do not explain, by themselves, the 
existence or not of imitation behaviours in animals, and the integration of higher level 
cognitive capabilities like agent’s goals, intentions and emotions, may play a fundamental 
role in explaining these differences. 
 
This interdisciplinary workshop will bring together researchers from neuroscience, brain 
imaging, animal psychology, computer science and robotics to examine the latest advances to 
imitation, aiming to further advance our understanding of the underlying mechanisms. We 
hope that the workshop will contribute to the advance in research in imitation and a better 
integration between the several scientific disciplines. 
 
The symposium will consist of invited talks, regular presentations and short presentations. It 
is our privilege to have three distinguished invited speakers: Marcel Brass from the Ghent 
University, Belgium, speaking on the neuronal mechanisms of imitation and Nicola 
McGuigan from the Heriot-Watt University, Scotland speaking on imitation in children. 
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Imitation and self/other distinction 
 

Marcel Brass 
Department of Experimental Psychology, Ghent University, Ghent, Belgium 
 
 
There is converging evidence from different fields of cognitive neuroscience 
suggesting that the observation of an action leads to a direct activation of an internal 
motor representation in the observer. It has been argued that these shared 
representations form the basis for imitation, action understanding and mentalizing. 
However, if there is a shared representational system of perception and action, the 
question arises how we are able to distinguish between intentionally formed motor 
representations and externally triggered motor plans. I will first outline empirical 
evidence and theoretical accounts supporting the idea of shared representations. Then 
I will review neurological data as well as data from social psychology and cognitive 
neuroscience suggesting that self/other distinction is a crucial requirement of a shared 
representational system. Finally, I will present recent findings showing that the 
mechanisms involved in the control of shared representations share neural resources 
with social cognitive abilities such as action understanding and mentalizing. Taken 
together, these data point to the fundamental role of self/other distinction in social 
cognition. 



 
 

Imitation of causally-opaque versus causally-transparent tool use by 3- and 5-
year-old children. 

 
Nicola McGuigan¹, Andrew Whiten², Emma Flynn², and Victoria Horner²  
¹ School of Life Sciences, John Muir Building, Heriot Watt University, Edinburgh,    
  EH4 4AS.  
² School of Psychology, University of St Andrews, St Andrews, Fife, KY16 9JP. 
 
We explored whether the tendency to imitate or emulate is influenced by the 
availability of causal information, or the amount of information available in a display. 
Three and five-year-old children were shown how to obtain a reward from either a 
clear or an opaque puzzle-box by a live or video model. Each demonstration involved 
two different types of actions. The first stage involved causally irrelevant actions and 
the second stage involved causally relevant actions. When presented with the clear 
box it could clearly be seen that the actions were irrelevant as the causal information 
was available. In contrast this information was not available with the opaque box, 
potentially making discrimination between irrelevant and relevant actions difficult. 
We predicted that the 3-year-olds would imitate with both boxes, whereas the greater 
cognitive sophistication and causal understanding of the 5-year-olds would allow 
them to switch between imitation and emulation depending on the availability of 
causal information. However, the results showed that both 3-and 5-year-old children 
imitated the irrelevant actions regardless of the availability of causal information 
following a live demonstration. In contrast the 3-year-olds employed a more 
emulative approach when the information available in the display was degraded via a 
video demonstration containing the puzzle box and the actions of the model only. The 
results indicated that the 5-year-olds were unaffected by the degraded information and 
continued to employ an imitative approach. We suggest that imitation is such an 
adaptive human strategy that it is often employed at the expense of efficiency. 
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From exploration to imitation: using learnt internal
models to imitate others

Anthony Dearden and Yiannis Demiris1

Abstract. We present an architecture that enables asocial and social
learning mechanisms to be combined in a unified framework on a
robot. The robot learns two kinds of internal models by interacting
with the environment with no a priori knowledge of its own motor
system: internal object models are learnt about how its motor system
and other objects appear in its sensor data; internal control models
are learnt by babbling and represent how the robot controls objects.
These asocially-learnt models of the robot’s motor system are used to
understand the actions of a human demonstrator on objects that they
can both interact with. Knowledge acquired through self-exploration
is therefore used as a bootstrapping mechanism to understand others
and benefit from their knowledge.

1 Introduction

A robot, like humans and other animals, can learn new skills and
knowledge both asocially, by interacting with its environment, and
socially, by observing the actions of other agents [23, 20]. Interac-
tion enables a robot to learn basic low-level models about its own
motor system - for example, the appearance of its motor system and
how it is controlled [1]. There is, however, a limit to what a robot
can learn efficiently just from its own actions. To learn higher-level
models, involving sequences of actions or the position of interesting
objects for example, the role of other agents in the robot’s environ-
ment becomes important. Social learning mechanisms such as imi-
tation have been shown to be a powerful way to transfer knowledge
from one agent to another [5, 22]. In robotics this has the particu-
lar advantage of relieving the user of the necessity of programming
hard-coded knowledge, and instead allowing them to teach actions or
movements by demonstration.

Many existing asocial and social models of learning in robotics are
based, to varying degrees, on psychological or neuroscientific models
of learning in animals, and in particular humans, e.g. [24, 18, 4].
The benefit of turning to the biological sciences for inspiration in
robotic learning architectures is clear. Human infants are capable of
effortlessly combining learning from both their own interactions, and
the actions of a caregiver. Both asocial and social learning methods
have previously been studied separately in robotics. In this paper, we
present an architecture that enables these learning mechanisms to be
combined in a unified framework. The underlying components of this
architecture are internal models, internal structures or processes that
replicate the behaviour of the robot’s environment [11]. In this work
we describe how the robot can learn two specific kinds of internal
models: Internal Object Models (IOMs), which model the state of

1 Department of Electrical and Electronic Engineering
BioART group, Imperial College London
E-mail: {anthony.dearden99, y.demiris}@imperial.ac.uk

Figure 1. Overview of the learning software.

objects such as the robot’s or a demonstrator’s motor system, and
Internal Control Models (ICMs), which model how the state of these
objects can be controlled by the robot.

Drawing inspiration from motor babbling in infants [13], a sys-
tem is presented that enables a robot to autonomously learn internal
models with no a priori knowledge of its motor system or the exter-
nal environment. Using the HAMMER architecture [5], the models
that the robot learns of its own motor system are used to understand
and imitate the actions of a demonstrator. Although learning is pos-
sible from observing movements, for example gestures, that do not
involve interacting with objects, we are particularly interested in ob-
ject manipulation.

Figure 1 shows an overview of the software components control-
ling the robot. Although the results are divided between the sections
in this paper, each component runs simultaneously on the robot. Fig-
ure 2 shows the experimental setup. The robot used was an Active-
media Peoplebot, a mobile robot with a pan-tilt camera and a gripper.



Figure 2. The experimental setup.

2 Discovering internal object models from visual
data

Before a robot can learn how to control its environment, it needs to
be able to model its environment. The robot’s environment here is
considered to consist of:

1. Its own motor system;
2. External, independent objects that its motor system can interact

with;
3. The motor system of other agents.

IOMs are used by the robot to track and represent the state of these
objects. There are clearly more properties that could be modelled,
such as the position of walls, but these are not needed by a robot to
imitate actions applied to objects.

In this work we are interested in vision-based robots - vision of-
fers the richest information about the scene, despite the complexi-
ties involved in processing. A visual tracking system such as colour
histogram-based tracking or even a full 3D tracking system could be
used to find and track objects. The robot is much more autonomous,
however, if it can discover objects for itself. Instead of being told
about the appearance of objects, it would be able to learn about their
appearance from the low-level vision data it receives. In [6, 14], vi-
sual knowledge acquired through experimentation and segmentation
of motion history images is used at the image processing level to find
interesting regions, which can be classified as objects. The focus in
this work, however, is not currently on how new objects could be
discovered and classified through interaction, but how they can be
controlled and and used for imitation.

Algorithm 1 runs online to learn IOMs, with low-level input from
the movement of pixel-level features in the scene tracked using the
KLT optical flow algorithm [12]. Instead of calculating the optical
flow for every point in the image, which would be inefficient and in-
accurate, only corner features are tracked; these points are the easiest
to track robustly. New points are automatically tracked and dropped
as the robot’s camera moves or new objects enter the scene.

Algorithm 1 Learning IOMs from optical flow data
• The input is a list of tracked optical flow points. Each point, p, is

defined by its position and velocity in 2D space, {x,y,dx,dy}.
• The output is a list of objects. Each object is defined as the mean

and covariance of its state, O = {X,Y,DX,DY}.
• If objects have previously been detected:

– Given the previous state of the object, O[t-1], estimate its cur-
rent state, O[t]. This prediction can be done using basic dy-
namic information, or if they have already been learnt, using a
forward prediction from the internal models given the previous
motor commands.

– For each optical flow point, on each existing object, O[t], calcu-
late the probability this point is part of that object - P(p | O[t]).

– If P(p | O[t]) is greater than a threshold probability, pthresh,
assign it to object O.

• Whilst there are unassigned points:

– Create a new object Onew using one unexplained point as a
‘seed’.

– Add other points for which P(p | Onew) is greater than the
threshold probability, pthresh.

– Update the mean and covariance of the object’s state.

– Repeat until all points are modelled, or no more points can be
successfully modelled.

• Update the mean and covariance of each object’s state with the
new sensor data.

Algorithm 1 details how the IOMs are created and tracked by re-
cursively clustering tracked points together. Unlike other clustering
algorithms, such as K-means, the number of clusters does not need to
be specified beforehand - this is important, because the robot should
be capable of adapting to different numbers of objects. Instead, a
probabilistic threshold of the variation in optical flow determines
when points are added to or removed from IOMs - a value of 0.7
was found to work well.

The shape of objects can be estimated by fitting a convex hull to
the clustered points, and by using the mean and the covariance of
all optical flow points clustered to an object. The elements of the
state vector of an IOM is defined by its position, size and shape. It is
not just objects that can be tracked by this algorithm; the pan and tilt
movement of the camera is tracked by clustering according to tracked
points’ velocities.

Clearly, objects cannot be detected unless they move. If the objects
are part of the robot’s own motor system, then it can discover them
as it issues motor commands. If they are objects the robot could only
interact with indirectly (such as the object in figure 3), then the robot
has to either nudge into it, or be shown to it by a human teacher by
shaking or waving the object.

Figure 4 shows the tracking of objects in an experiment. The
robot’s grippers are detected as soon as it starts to explore its motor
system. The human hand and the object is detected when the human
teacher moves. Figure 5 shows how the robot can also detect non-
motor system objects by disturbing them with its own motor system.



Figure 3. Moving image regions are clustered together; these regions are
the robot’s IOMs - internal models of where objects are in the scene. In this
example, the grippers were moved by the robot, and the biscuit box object
was shaken by a human demonstrator to make the robot aware of it. The

thick black lines are the convex hull, and the thin ellipse shows represents
the mean and covariance of the optical flow points’ positions.

Figure 4. The movement of the IOMs in an experiment, as the grippers
open and close and a human hand pushes a box of biscuits.

2.1 Classifying IOMs
A robot cannot imitate until it knows:

1. What it should imitate with;
2. Who to imitate;
3. What objects the imitation should involve;

This is equivalent to classifying objects in the environment accord-
ing to how they can be controlled. The three kinds of IOMs are:
self IOMs, objects that are part of the robot’s own motor system and
can be directly controlled; demonstrator IOMs, objects that are part
of the demonstrator’s motor system and cannot be controlled; and
shared IOMs, objects that both the demonstrator and the robot can
control indirectly. The imitation task considered here is for the robot
to replicate, using its own motor system, the actions that the demon-
strator takes on a shared object.

Figure 5. The robot can discover objects by moving them with its own
motor system. The top images show frames from the robot ‘babbling’ in the
environment. The bottom frames show the IOMs the robot has discovered

before and after the movement.

The robot can learn to distinguish self IOMs from the other IOMs
using the ICMs it has learnt for how to control IOMs. If a robot
can directly control the state of an IOM, then it can classify it as
its own motor system. Differentiating between active, demonstrator
IOMs and passive, shared IOMs is more difficult because the robot
can control neither. To solve this problem, the order in which ob-
jects are discovered is used. Shared IOMs do not move of their own
accord, and therefore must be discovered by either being moved by
the demonstrator or the robot. Therefore if an object is discovered
close (less than 10 pixels) to the position of an existing object, it is
classified as a shared IOM.

3 Internal control models

ICMs are used by a robot to model and learn how its motor command
changes the state of IOMs. They are used as forward models to pre-
dict the consequences of its motor actions, or as inverse models to
estimate the motor commands that will lead to a desired object state
[1]. Coupling inverse and forward models gives a robot the ability
to perform internal simulations of actions before physically execut-
ing them; through the Simulation Theory approach of the HAMMER
architecture, these internal simulations can be used for action recog-
nition and imitation [8, 17, 4].

A learnt ICM will not be able to completely accurately model a
robot’s motor system - errors will occur because of incorrect models,
insufficient or noisy training data or the necessarily simplified inter-
nal representations of the model. The system that is being modelled
may itself be stochastic. To overcome this uncertainty, it makes sense
for an ICM to include information regarding not just its prediction,
but how accurate it expects that prediction to be. This inaccuracy can
be modelled by representing the internal model as a a joint probabil-
ity distribution across the motor commands and and the state of ele-
ments of the robot’s environment. The uncertainty in the model can
be estimated from the variance of this distribution. Giving the robot
information about the uncertainty of its internal models enables it to
estimate how accurate, and therefore how useful, its internal models’
predictions are - if multiple models are learnt, their predictive ability
can be compared using the variance of their predictions. Section 5



shows how the robot can also use the variance in prediction to guide
its exploration.

The basic elements of ICMs are the robot’s motor commands and
the state of the objects it has discovered - which are either part of its
motor system or other objects. ICMs represent the causal structure

Random variable Description
M1:N [t− d] Motor commands for N degrees of

motor freedom, with different possible
delays, d

Sx[t], Sy [t],
Sdx[t], Sdy [t] ...

The state of each object - its position
and velocity. For more complex

objects, more statistical information
can be calculated from its convex hull

Sx[t− 1], Sy [t− 1],
Sdx[t− 1], Sdy [t− 1] ...

The state of each object at the previous
time step

P1[t], P2[t] .... Proprioception information from other
sensors, such as the touch sensors on

the robot’s grippers

Table 1. The variables the robot can use for its internal model. The robot
has to learn Bayesian network structures and parameters using these

variables as nodes on the network.

of how these elements interact as a Bayesian network [19]. Bayesian
networks are used in [7] to model how infants develop and test causal
relationships. Here, we have taken this idea and applied it to the mo-
tor system of the robot. Figure 8 in section 4 shows an example of the
Bayesian network structures that the robot learns. The motor com-
mands and state of the IOMs are the random variables (nodes) in the
Bayesian network, and the causal relationships between them are rep-
resented with arcs. The Bayesian network represents a learnt proba-
bility distribution across N possible motor commands, M1:N [t− d],
the current states and previous states of the each object Sx[t], Sy[t],
Sdx[t], Sdy[t], and the state of the proprioception feedback from the
robot (e.g. gripper touch sensors). The variable d represents the delay
between a motor command being issued and robot’s state changing;
in real robotic systems it cannot be assumed that the effect of a mo-
tor command will occur after just one time-step, so this is a param-
eter that the robot must model and learn. Table 1 shows the possible
components of each internal model’s Bayesian network. A benefit
of using Bayesian networks to represent internal models is that their
causal structure is understandable by a human. They can therefore be
used to verify the correctness of what the robot is learning.

3.1 Learning through exploration

Practically any environment a robot works in will change, or have
properties which cannot be modelled beforehand. Even if the envi-
ronment is assumed to be completely predictable, endowing the robot
with this knowledge may be beyond the abilities or desires of its pro-
grammer. A truly autonomous robot, therefore, needs to be able to
learn and adapt its own internal models of its external environment.
Unlike most machine learning situations, a robot has active control
over the commands it sends to its as yet unknown motor system; this
situation, where a learner has the ability to gather its own training
data, is referred to as active learning [9]. Having the ability to inter-
act with the system you are trying to model has the advantage that
the data can be selected either to speed up the learning process, or to
optimise the learnt model to be most useful for a particular task. The
simplest way for a robot to learn about its environment through in-
teraction is to issue random motor commands. This ‘motor babbling’

was used to learn internal models for a robot’s grippers in [1]. A more
sophisticated technique is to use an estimate of the ICM’s prediction
variance as function of motor command, C (m, t). The actual mo-
tor command issued is the one expected to minimise this error. This
technique was used to learn the control of a pan-tilt unit on both a
real robot [2] and a camera in a football game simulation [3].

The decisions a robot makes about how to interact with the envi-
ronment become more complex as more degrees of freedom (DOF)
of the motor system or more exploration strategies are introduced.
The robot has to decide what DOF or objects to learn about, not
just what motor commands to send to its motor system. Instantly
exploring all DOF at same time would take exponentially longer as
the number of exploration possibilities increases. It would also lead
to many more internal models having to be learnt simultaneously,
which is computationally expensive. A developmental approach can
be used to control how a robot explores its environment; more specif-
ically, the robot needs to be able to decide on two things:

• When should the current exploration strategy be stopped?
• What should the next exploration strategy be?

We want the robot to realise when its current exploration strategy
is not increasing the quality of the models it is learning. This infor-
mation is available from the model learning system as the rate of
change of the most accurate model’s prediction variance, C (m, t)−
C (m, t− 1). When this approaches zero, the robot knows the cur-
rent exploration strategy is not improving the quality of the model.
This is similar to using a ‘meta-model’ to estimate a predicting
model’s error to guide exploration [18].

The second question relates to what the robot should do next. The
robot’s goal is to learn models that explain how objects in its environ-
ment move. In the absence of any human intervention, the only cause
of this can come from the robot’s own interventions. In this situation,
the robot can keep on exploring new degrees of freedom. Currently
the degrees of freedom a robot explores are released in order of their
distance from the vision system (camera movement, gripper move-
ment then robot wheel movement).

3.2 Online learning of multiple internal models
ICMs consist of a structure, which represents how particular mo-
tor commands affect particular states of objects, and the parameters
of the particular probability distribution being used for the model.
Learning the parameters of a particular model is an online learn-
ing problem, with motor commands being the input data and IOMs’
states being the output data. In the results here two types of distribu-
tions were used to represent the conditional probability distributions
of the Bayesian network. For discrete motor commands such as the
gripper controls, Gaussian distributions were used. The mean and the
variance of the distribution are estimated recursively as:

µ [t] =
t

t + 1
µ [t− 1] +

1

t + 1
S [t]

C [t] =
t

t + 1
C [t− 1] +

1

t + 1
(S [t]− µ [t])2

For continuous motor commands such as the robot’s pan-tilt unit
control the conditional probability distributions can be represented
using the non-parametric LWR algorithm [15]. The results of previ-
ous trials are stored in memory and used to predict the consequence
of future trials by performing linear regression on the set of data in



Algorithm 2 Learning multiple ICMs
• For the current motor command(s) being explored, multiple inter-

nal models are formed for the motor system. Table 1 shows the
search space for possible model structures for a given motor com-
mand.

• At each timestep, the state of objects, s1...sn, in the scene is esti-
mated by the vision system using algorithm 1.

• Each model predicts what it expects the states of the objects and
interactions to be given the previous motor command. This is
given as a Gaussian distribution: P (S1...Sn | M [t− d] = m) ∼
N (µ, C)

• The likelihood of each model’s prediction is calculated:
P (S1...Sn = s1...sn | M [t− d] = m). This gives a metric for
how well each candidate model is performing.

– If processing or memory resources are limited, models with
consistently low scores can be removed, as they are unable to
predict accurately.

– Objects which are moving in an unpredictable way, such as hu-
mans or objects they are interacting with, will have low likeli-
hoods for all model predictions. This can be used by the robot
to find objects which are not part of its motor system, which it
may want to interact with.

• If the variance of the most accurate model’s prediction converges,
i.e. C (m, t) − C (m, t− 1) ≈ 0, then the robot’s exploration of
this motor command is not improving the accuracy of model. This
is the cue to try a new exploration strategy.

memory, which is weighted according to its distance from the query
point. Various other distribution types exist that can be learnt online
but these methods were chosen principally for their quick conver-
gence properties and ease of implementation [16].

The learnt structure of the Bayesian network represents which mo-
tor commands control which objects. The task of the robot is to
search through the space of structures connecting every possible ran-
dom variable to find the one that maximises the likelihood of the
sensor data given the evidence, which here is the state of the objects
given the sensor data. In this situation, learning the structure is sim-
plified by the fact that the most recently observed change can be most
likely explained by the most recent motor command issued. Further-
more, motor commands are always the parent node of the Bayesian
network, as none of the other variables being modelled can influence
it.

The online internal model learning system works by simultane-
ously training multiple possible internal model structures, and is de-
scribed in algorithm 2. One difference between the models learnt
here and those learnt by similar systems such as mixture of experts
[10], is that there is no need for a responsibility estimator module to
decide when each individual internal model should be used. Instead,
as each model learns to estimate what the variance of its prediction
is, C (m, t) , the ‘responsible’ model is chosen as the one with the
smallest variance for a given prediction.

As multiple ICMs are trained, their prediction variance converges.
In the experiments performed here, using models for estimating dif-
ferent delays in the motor-sensor system, the model which predicts
most accurately is for the delay d=5 timesteps, equivalent to 0.33
seconds. This is reasonable given the latencies of the motor system
and the lags which are present in the vision capture system. Figure 6
shows how this model’s prediction varies as it is being learnt . The

Figure 6. The robot learns online the mean and variance (shown with the
error bars) of its velocity as it ’babbles’ forwards and backwards. This is the
prediction from the most accurate model, for which d=5. The large spikes in

the actual data are because of dropped frames from the camera; the robot
models this as noise.

error bars on the graph show the variance in the prediction, C (m, t).
Figure 7 compares two model structures being learnt for the wheel
velocity motor command, which moves the robot forwards or back-
wards. Interestingly, the model it learns relates to how the motor
command affects the position of objects in its environment: mov-
ing forward makes objects in front of it move closer. Figure 8 shows
the structures of the internal models which the robot learns to be the
most accurate for predicting the effects of its gripper and its wheel
velocity motor commands.

This learning system is similar to the HAMMER architecture [5],
used by the robot to perform imitation with learnt models in section
4, as it involves multiple competing internal models. The difference
when learning is that the command fed to the motor system is not
related to the models’ predictions. Instead the predicted variance,
C (m, t), and its rate of change, C (m, t) − C (m, t− 1), is used
by the active learning system to control how the robot interacts with
the environment.

4 Imitating interactions using learnt internal
models

The previous sections introduced the two types of internal models a
robot learns from exploration: models of the objects in its environ-
ment, IOMs, and models of how to control them, ICMs. The HAM-
MER architecture presented here allows the robot to use these mod-
els to learn how to manipulate objects by observing the actions a
demonstrator takes; we assume here that the robot has already learnt
to classify IOMs, as discussed in section 3, so it knows the object to
imitate (the demonstrator), the object to act with, and the object the
action is performed on.

ICMs can be used directly as inverse models to imitate movements
[1], but their usefulness is limited; they only model low-level motor
commands and the sensory consequences over short time periods.
The robot is unable to learn long term models from exploration be-
cause the motor commands it has available to explore with are all
low-level commands: we are not assuming the existence of higher-
level pre-programmed ‘motor primitives’ that control complex move-
ments over multiple degrees of freedom.



Figure 9. The imitation architecture, using internal models learnt through exploration.

Despite being of limited use on their own, asocially learnt inter-
nal models provide the building blocks of the imitation architecture,
shown in figure 9 . A generative approach to imitation is used: the in-
ternal models of the robot’s motor system are used to understand the
observed movements of a demonstrator by generating motor com-
mands that will produce the closest match to this movement. The
most important part of the system is the forward models, which pre-
dict how a motor command will change the state of objects.

These forward models are created from the learnt ICMs, and en-
able the robot to simulate numerous different motor commands. In
the current set of experiments, the total number of commands is suf-
ficiently small that each possible motor command can be simulated.
In general, with limited computational resources and more degrees
of freedom, this will not be the case. Future work will use the ICMs
as inverse models to provide a smaller subset of relevant motor com-
mands to simulate.

Internal models are learnt relative to the robots own visual system,
so it has no way of directly understanding the actions it perceives
others taking. Indeed, the robot’s own motor system may not be ca-
pable of imitating the complex gestures and actions of a human motor
system because of the different morphology. To overcome this ‘cor-
respondence problem’, the observed action is represented, not using
the states of the objects, but by the difference between the states of
IOMs. This enables the interaction between the demonstrator and the
shared object to be modelled in the same coordinate system as the in-
teraction between the robot and the shared object.

The information about object interactions is a continuous stream
of data. To perform the imitation at a more abstract level the sequence
is split into sub-goals using peaks in the spatio-temporal curvature of
the interaction distance between objects, as shown in figure 10. This
technique is used in [21] to perform gesture recognition of humans
by splitting the action into a sequence of movements. It is used here
to find a sequence of interactions between objects; each element in
the sequence is a sub-goal for the robot to imitate. By breaking a con-

tinuous stream of interaction data up into a set of key points in the
interaction, the represented action and imitation is now independent
of the specific timings involved in the movement - for most actions,
it is the sequence of states in the movements that are important, not
the time between the movements. Splitting a demonstration into a se-
quence also means it can easily be recognised if demonstrated again.
Figure 11 shows screen-shots of the first three sub-goals extracted
from an object interaction.

The confidence function’s role is to assign a value to each possible
motor command according to how close the robot estimates it will
move it to the current sub-goal state. The confidence of each motor
command, m, is calculated as:

confidence(m) = exp

(
−

(
abs

(
Ŝself,m − Ŝshared,m

)
−Gn

)2
)

where Gn is desired interaction distance of the current sub-goal,

and abs
(
Ŝself,m − Ŝshared,m

)
is the predicted distance between

the self IOM state and the shared IOM state. Confidences are higher
for motor commands that make the robot’s predicted motor system
interaction with an object closest to the desired interaction. The con-
fidences displayed in the graphs are normalised to sum to 1 at each
time step for easy visualisation. To imitate a demonstrated sequence,
the robot uses the motor command with the highest confidence.

The imitation process can be carried out entirely in simulation and
visualised to the demonstrator. Figure 12 shows the simulated con-
sequences of the robot imitating the first two sub goals of a demon-
strated sequence. The simulation enables the intentions of the robot
to be communicated to the demonstrator before executing them. The
demonstrator can use this information to stop the robot performing
an incorrect imitation, and potentially find out what is incorrect in
the robot’s knowledge. Future work will involve looking at how the
demonstrator can become a more active element in the robot’s de-
velopment by adapting his actions according to visualisations of the



Figure 7. The predictions of two internal model structures for estimating
the effect of the velocity motor command as the robot ‘babbles’ forwards

and backwards. The top one can be seen to be the most accurate because it
has the lowest estimated prediction variance, shown with the error bars. The

structure of this model is shown in figure 8.

Figure 8. The most useful Bayesian network structures learnt for the
gripper motor control (left) and the wheel velocity motor command (right).

Both show that the motor commands affect the position of objects in the
scene by changing their velocity. It has also learnt that the grippers’ touch

sensor can be used to predict how the grippers move.

robot’s current knowledge. Figure 13 shows the confidence for mul-
tiple motor commands in simulation for the first two sub-goals: the
robot moves forward, opens its gripper to touch the object, and then
closes its gripper to move away.

The same architecture is used to make the real robot imitate an in-
teraction with an object. Unlike the simulation, the state of the robot

Figure 10. Extracting key points to imitate from an interaction sequence,
shown in black circles. These points are extracted from peaks in the

spatio-temporal curvature of the distance between the robot’s motor system
and the object it wishes to interact with.

Figure 11. The first three sub-goals being imitated, extracted using the
spatio-temporal curvature. Even though this action is occurring as the robot
learns to control its gripper system, it is able to recognise it as an interesting
action to imitate because neither the human hand nor the pack of biscuits can

be accurately explained by its internal models.

and the objects are not updated using the simulation, but with feed-
back from its vision system. Figure 14 shows the confidence of each
motor command as the robot imitates the demonstrated interaction.
Figure 15 shows screen-shots from an imitation.

In both the simulation and on the robot the observed interaction
is successfully imitated. There are some interesting differences be-
tween the real system and the system simulated with the internal
models. The real robot finishes the interaction in less time than the
simulation. This is due to drift in the simulation, as errors in the in-
ternal models accumulate over time. When the gripper is fully open
on the real robot, the open gripper command receives a lower con-
fidence. As figure 8 shows, the ICMs had learnt during babbling
that the gripper proprioception sensor data affected how the grip-
pers move - when the gripper is fully open, the open gripper motor



Figure 12. The simulated visualisation of the IOMs as the robot tries to
touch the biscuits (left) and then moves away (right). The ellipses represent
the means and covariances of the predicted objects’ position, and the arrows
show the direction of movement. Note that all aspects of this simulation, the
appearance of the objects and their control with the motor system, are learnt
from exploration. This is why the biscuits do not collide with the gripper; the

robot has not learnt that objects can move when touched by other objects.

Figure 13. The progress of confidences of each learnt internal model in
simulation as the robot tries to touch the object of interest. After this, the first
goal state has been reached so the robot moves its grippers away to approach

the next sub-goal.

command will not have any effect and will therefore not be useful in
achieving the goal of moving the gripper closer to the object. This in-
formation is not available, however, in the simulation as the internal
models do not currently learn when the proprioception information
changes, just how to use it. The confidence values of the open grip-
per and move forward motor commands in the simulated imitation
oscillate. This is because the simulation, unlike the robot, does not
currently allow multiple motor commands to be issued simultane-
ously, so the two most appropriate motor commands end up being
executed alternately.

5 Discussion
The purpose of both exploration and imitation presented in the ex-
periments here is to enable a robot’s knowledge and motor control
ability to develop. So far, the process we have described is one-
directional: the robot learns basic internal models and uses these to
copy interactions on objects that both it and a human demonstra-
tor can control. We are currently looking into the next stages of this
teacher-imitator relationship, whereby imitation is not the final goal
of the robot, but another process in its developmental repertoire that

Figure 14. The progress of confidences of each motor command on the
actual robot as the robot tries to imitate an interaction with the object.

Figure 15. Frames 0, 50, 120 and 150 from the same imitation experiment
as as figure 14.

is used to help it to learn.
Further results and experiments are currently being performed for

more degrees of freedom in the robot’s motor system, such as using
its pan-tilt unit. With no a priori knowledge, the information avail-
able about the interactions is limited by the properties of objects the
vision system can represent. Currently this is just the position and
size of objects. This is why the only interaction the robot is currently
capable of is object ‘nudging’. Future work will involve investigating
how the robot can attempt different interactions with the same objects
so as to learn more detailed ways of interacting. This involves mod-
elling more complex representations of objects and their interactions.
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Learning models of camera control for imitation in
football matches

Anthony Dearden and Yiannis Demiris1 and Oliver Grau2

Abstract. In this paper, we present ongoing work towards a system
capable of learning from and imitating the movement of a trained
cameraman and his director covering a football match. Useful fea-
tures such as the pitch and the movement of players in the scene are
detected using various computer vision techniques. In simulation, a
robotic camera trains its own internal model for how it can affect
these features. The movement of a real cameraman in an actual foot-
ball game can be imitated by using this internal model.

1 Introduction

Imitation is a useful way to indirectly transfer knowledge from one
agent to another by simply demonstrating the action to the imitator.
In this paper, we investigate a particular scenario where this transfer
of knowledge can be used to teach robotic cameras how to move in
a football match. This scenario has useful applications in both sim-
ulation and real-world scenarios. In football computer games such
as Pro Evolution Soccer, the movement of the camera during play
and automated highlights is generated using pre-programmed con-
trol. The movement would be much more natural if it was imitating
the movement of actual cameras during a football match. This would
also save the programmer the effort of having to create the control
algorithms. In actual football matches, up to 20 cameras can be used
to provide coverage for a match, each requiring a human operator.
Using robotic cameras, automated human-like camera control would
give the broadcaster the ability to cover more matches or use more
cameras viewpoints. Imitating not just camera movement, but also
how the camera shots are selected by a director would enable the
entire coverage process to be automated.

It would be advantageous if a robotic camera could be rapidly
placed in a viewpoint, learn the effects that it has on a current lo-
cation and then move accordingly based on the state of the game. To
test the feasibility of this approach we implement a learning system
on a football simulator, which learns to imitate the camera move-
ments of a trained cameraman, by inverting the learnt effects that its
own actions have on the visual field. We test the system on real data,
provided by BBC Research, to demonstrate successful learning of the
first step of the final system. Current work focuses on understanding
the actions of groups of players, so the robotic camera can learn a
model of the movement of human cameraman in terms of how the
players are moving.

1 Department of Electrical and Electronic Engineering
BioART group, Imperial College London
E-mail: {anthony.dearden99, y.demiris}@imperial.ac.uk

2 BBC Research,
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2 Extracting feature information from real and
simulated football games

Before a robotic camera can understand the scene it is in, or is try-
ing to imitate, it is first necessary to extract features from a scene
which give the robot information about its own state and the state
of other important features like the players. This section describes
the image processing steps necessary to extract information about
the movement of the camera and the position of players in the game.
The same algorithms are applied to both the real and the simulated
football match. The real data is taken from the feed from the cen-
tral ‘spotter’ camera during the Everton vs Manchester City game in
November 2005. The simulation was created using OpenGL to ren-
der a basic football game with players and line markings. The list of
features which can be extracted from video sequences are shown in
table 1.

Table 1. List of features that can be extracted from football video data and
the information it provides.

Feature Information provided
Pitch region information Position of camera relative to pitch, change

of camera shot by director
Skin region information Close-up shots, crowd shots
Optical flow information Approximate movement of camera

Player tracking High-level state of game (e.g. who has
possession)

2.1 Finding the pitch and player regions in a video
Figure 1 gives an overview of the computer vision process used to
extract player regions. The basic idea behind the process is to subtract
the distinctive green colour of the pitch to leave regions which are
likely to be players. This idea has been used on numerous previous
occasions e.g. [16].

The colour of the pitch is represented as a one- or two-dimensional
histogram in HSV colour space. This histogram is back-projected
onto each image and then, with a threshold applied, a binary pitch
mask can be obtained. To estimate the entire pitch region, the pixels
on the binary image are grouped into regions. By calculating the con-
vex hull of the largest regions, the area in the image which the pitch
covers can be calculated. Knowing the pitch regions in the image
enables the tracking to be simplified by removing clutter from the
crowd regions. The shape and position of the pitch region can also
give information about the location on the pitch on which the camera
is focused. As the colour of the pitch may drift over the duration of
the match the histogram can be recursively updated by calculating
the histogram of the pitch region excluding player regions.



Figure 1. Overview of the region extraction process

Once the pitch region has been detected, player regions can be
located by finding regions within the pitch region that do not cor-
respond to the pitch colour. The regions can be filtered accord-
ing to their area in the image, being separated into player regions
and ‘other’ regions. These ‘other’ regions include noise and regions
which are markings on the pitch.

The same technique for extracting the pitch regions can be used
to detect regions of skin colour - this is a useful feature for detect-
ing when a particular camera is doing a close-up shot on one of the
players.

2.2 Tracking players
Many of the cameras being used to provide coverage for a football
match have the sole purpose of tracking the action occurring in the
game. Important information about the state of the game can be found
from the position and movement of the players on each team; this is
obviously an extremely useful feature for any robotic camera wishing
to perform imitation.

Tracking footballers in video is made difficult by occlusions; other
players or even the referee can obscure the information about a
tracked player, as shown in figure 2; this is especially common dur-

Figure 2. When players occlude each other, maintaining tracking can be
difficult as the player region data (right) is ambiguous

ing tackles, set-pieces and action in front of the goal. Overcoming the
problem of occlusions can be done by fusing data from multiple cam-
era sources, with the idea that the ambiguity will not be present from
all angles [10, 9]. However, this adds to the complexity of the system;
the goal here is to have a tracking system that can work directly from
the image from a single moving camera tracking the action. Several

techniques have been used previously to disambiguate player regions
from a single camera source [7]. The first, also used here, is to apply
morphological operators to erode close regions, hoping that they will
split apart. Another method is to track the players using a graph rep-
resentation, whereby the spatial relationship of players before a col-
lision is stored so tracking can be continued when there is no longer
an occlusion.

To track players, here we use a particle filter. Particle filters have
become extremely popular in recent years as a method for Bayesian
tracking without the restrictive assumptions of linearity and Gaussian
distributions of a Kalman filter [17, 1]. One aspect of particle filters
which makes them especially useful in this situation is their ability to
simultaneously maintain multiple hypotheses of the state of a tracked
object. More details of the algorithm implementation and results can
be found in [5].

Figure 3 shows sample frames from the sequences, together with
the tracked positions of the two players. The particle filter is able
to maintain tracking of both players, despite the occlusion occurring.
As expected, when the occluding players separate again, the particles
spread into multiple groups because of the increased uncertainty.

2.3 Estimating camera movement in a video

A useful source of information about the position of the camera in
the scene comes from how it moves. To extract this information from
a video sequence we use the KLT optical flow algorithm to track the
movement of pixel-level features in the scene [12]. The pitch and
player regions extracted above can be used to limit the points tracked
to ones on the pitch; players will usually move independently of the
camera. As the real camera moves across the scene, the low-level
features leave the field of view, and new, untracked regions enter the
scene. The algorithm continuously scans for new features to track
and adds them to the list of points being tracked so that there is a
continuous stream of tracked point features available. covering the
entire image. The information from multiple points can also be com-
bined by taking the average velocity of all points to give an overall
metric of the camera’s movement.

3 Imitating camera movement

Internal models are structures or processes that replicate the be-
haviour of an external process [11]. They have been hypothesised to



Figure 3. Frames from the tracking of two players. The last frame of player one is empty because the player has left the field of view. The black arrow in the
particle represents the estimated velocity of the player. The players being tracked have been manually highlighted in the top images in black for player 1 and

grey for player 2

exist in the the human central nervous system, for example to over-
come the time delay of feedback from proprioception [18]. Giving a
robot the ability to perform an internal simulation of external process
enables it to simulate the effects of its actions internally before physi-
cally executing them. They enable a robot to predict the sensory con-
sequences of its motor actions as forward models, or to estimate the
motor commands that will lead to a desired state as inverse models
[3]. They can be used for imitation by using a simulation theory ap-
proach [8, 13]. By using the internal models of its own motor system,
a robot can understand and therefore imitate the actions it observes a
demonstrator taking [6].

An inverse model could be programmed in using hard-coded soft-
ware to track features on the pitch and thus estimate the position of
the camera. The tracking problem in football is quite constrained,
and unlike camera movement in other situations, there are reference
points in the form of the pitch markings available that could be used.
This approach is taken in [15]. A more generic solution would be to
allow the robot to learn the internal model for itself through explo-
ration. This would make the system applicable to other situations,
and no effort is required by the programmer to come up with an al-
gorithm for the inverse model.

In this work, the robot’s actions are its pan, tilt and zoom com-
mands; the camera is assumed to be stationary in the scene; a valid
assumption for most cameras used in a football match. The sensory
information it receives is provided by the computer vision features
described in section 2, and listed in table 1. In this initial work we will
just be focusing on using the optical flow information. The robotic
camera needs to learn internal models which represent the effects its
motor commands have on the optical flow data it receives back.

The internal models are represented either with radial basis func-
tions or using the non parametric K-Nearest Neighbour (KNN) algo-
rithm [2]. Radial basis functions had the benefit of being naturally
smooth function approximators, whereas the KNN algorithm trains
much faster3, and allows the learnt forward model to be easily in-

3 training speed on a simulated camera is less of an issue than on an actual
robot, where training time is limited

verted and used as an inverse model to predict the motor command
that can be used to recreate a particular movement. The KNN al-
gorithm was implemented by storing the set of previous motor com-
mands, the pan and tilt values, and the corresponding feature vectors,
the optical flow velocity vector of image. To use a set as a forward
model is a case of finding the K motor commands nearest to the one
to be predicted for, each having a distance, d from the desired com-
mand. The corresponding K features for each of these commands can
then be averaged to provide the predicted feature outputs. The aver-
age was weighted using a Gaussian kernel according to the distance,
d. To use the KNN technique for an inverse model requires perform-
ing the process in reverse.

To train the internal model, the robot needs to execute multiple
motor commands to produce a corresponding set of sensor data. In
previous work [4], exploration of the motor-space with a camera was
performed optimally so as to minimise the error in the internal model.
As the only results currently available are on a simulated camera, the
time taken for each camera to learn the internal model is less critical.
Furthermore, only 2 degrees of motor freedom were involved. There-
fore random motor commands were used to provide the training data.

The robotic camera uses the internal model it has learnt to imitate
the movement of a trained camera man, and the optical flow features
from the movement of the real camera man are given to the inverse
model of the robotic camera. This will then output the motor com-
mands the model expects will most likely recreate this movement in
the robotic camera. The overview of this process is shown in figure 4.
Selected screenshots for the simulated robotic camera imitating a real
camera man are shown in figure 5. The left images are taken from the
movement of the professional cameraman, and the right images show
the simulated robotic camera’s attempt to imitate the movement. Us-
ing only the optical flow features for imitation has the benefit of the
robotic camera producing smooth, human like movement. Work is
currently ongoing to make use of other features to ensure that abso-
lute position information is used; as can be seen by the last frame,
the imitating camera has drifted significantly from the camera it is
imitating.



Figure 5. Frames 0, 100, 200 and 300 from the real football match and the imitating camera in simulation. The movement of the robotic camera is quite
smooth and ’human-like’. However, as the movement is imitated using dynamic information, the absolute error in the robotic camera’s position begins to

accumulate.



Figure 4. The imitation process using the learnt inverse model.

4 Discussion

The imitation the system performs so far is a mapping of one camera
movement onto another. For imitation to be more general, the inter-
nal models need to be learnt at a level of abstraction at which they
are applicable to any particular football match. It is intended that the
robotic camera would be capable of tracking the action in a football
match based on the actions taken by a professional cameraman with
respect to the current state of the game. Much of the work on ex-
tracting information on the state of the game has been completed;
the position of players on the pitch provides the most useful infor-
mation for this. Work is currently ongoing to augment the structure
of the inverse model so that camera movement is learnt as a function
of player movement, I.E, given how players are currently moving, a
robotic camera can move in the same way a human would move in
the same situation.

Beyond the level of the movement of an individual camera, there is
also the issue of how a human director switches between and sends
requests to each camera. We are working to produce a system that
can model and imitate this. The feature data that can currently be ex-
tracted provides useful information about the actions of the director.
Figure 6, for example, shows how one of the features, the amount of

Figure 6. How the size of the pitch detected on screen varies over time.
Rapid changes in this value can be used to detect when the director has

switched between cameras

pitch visible in the broadcast footage, varies over time. By detecting
rapid changes in this value, it is easy to split the final footage into
individual camera shots. A promising method for modelling these

scene changes at a higher level is the use of dynamic Bayesian net-
works, such as hidden Markov models [14]. The switching between
cameras given the state of the game can be modelled as sequence of
hidden discrete states. The transition model for these states - i.e. how
a human director switches between shots can be learnt using the low
level features described in this work as the training data.
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Imitating the Groove: Making Drum Machines more
Human

Axel Tidemann1 and Yiannis Demiris 2

Abstract. Current music production software allows rapid pro-
gramming of drum patterns, but programmed patterns often lack the
groove that a human drummer will provide, both in terms of being
rhythmically too rigid and having no variation for longer periods
of time. We have implemented an artificial software drummer that
learns drum patterns by extracting user specific variations played by
a human drummer. The artificial drummer then builds up a library of
patterns it can use in different musical contexts. The artificial drum-
mer models the groove and the variations of the human drummer,
enhancing the realism of the produced patterns.

1 Introduction
Our motivation for creating an artificial drummer was to combine the
low-cost approach of programming drum parts through Digital Au-
dio Workstations (DAWs, such as Pro Tools3, Logic4, Cubase5, Dig-
ital Performer6) with the groove that a human drummer will provide.
When producing music, recording the drums is a time-consuming
and expensive process. The drums must be set up in a room with suit-
able acoustics and high quality microphones in order to produce good
sounding drums. Subsequently, the drummer must play the actual
part that is to be recorded. Most drummers do not play an entire song
without any flaws, so the actual recording is also time-consuming.
The current DAWs allow for cut-and-paste editing of the recorded
audio, so a perfect take of a song is not required to produce a good
result. This has drastically reduced the time required to record mu-
sic in general, not only drums. But still the cost of recording drums is
high, so for producers it is often more desirable to program the drums
in the DAW. This approach is very low-cost, but it is often difficult to
get a result similar to that of a real drummer. Programmed patterns
have perfect timing and the velocity (i.e. how hard a note is played)
of the beats is the same. A human drummer will always have small
variations in both timing and velocity of each beat, which is often
described as the feel or groove of the drummer. In addition, a human
drummer will vary what he/she plays, such as adding an extra snare
drum7 beat or a fill when playing a certain pattern.

Programmed patterns can be altered to mimic these variations, but
this requires the producer to manually change the velocity and timing

1 SOS Group, IDI, Norwegian University of Science and Technology. Email:
tidemann@idi.ntnu.no

2 BioART, ISN Group, Department of Electrical and Electronic Engineering,
Imperial College London. Email: y.demiris@imperial.ac.uk

3 http://www.digidesign.com
4 http://www.apple.com/logicpro/
5 http://www.steinberg.net/
6 http://www.motu.com/
7 A drumkit typically consists of a kick drum (which produces the low-

frequency “thud” sound), a snare drum (a more high-pitched crackling
sound) and a hihat (a high-frequent “tick” sound), see figure 3.

of each beat, in addition to adding or removing beats to create varia-
tions. This can be very time-consuming, and requires musical knowl-
edge of how to produce variations that will be perceived as those of
a human drummer. Current DAWs have the ability to alter the beats
by adding random noise, which might provide a more human-like
feel to the drum tracks since the added noise will be perceived as hu-
man flaws. However, there is no guarantee that the result will sound
more human-like, since the DAW itself has no understanding of what
makes a drum pattern sound like it was played by a human. The re-
search goal of this paper is to make an artificial drummer that is able
to play patterns with feel and variation. This is realized by making
the artificial drummer learn drum patterns from human drummers.
The artificial drummer will model the variations that provide the feel
of the drum pattern, which it can use to imitate the drumming style
of the human drummer.

2 Background

The music software industry has created more complex samplers and
synthesizers over the years as computers have become an important
tool for musicians. To recreate the sound of a drumkit, a lot of ef-
fort has gone into recording huge libraries with gigabytes of sam-
ples (e.g. FXpansion BFD8, Toontrack dfh9, Reason Drum Kits10,
Native Instruments Battery11). The samples are then layered to sim-
ulate the dynamics experienced when playing real drums, i.e. that the
pitch changes when playing soft or hard. Typically, when playing the
snare drum in one of the aforementioned libraries, it will consist of a
multitude of samples to achieve a more life-like response to playing
dynamics.

These libraries are very sophisticated and sampled with meticu-
lous precision, but they still need to be programmed. Even though
these libraries come with software interfaces that are easy to pro-
gram (most of them even come with rhythm pattern templates), there
is still no substitution for a real drummer: the libraries themselves
are merely tools for reproducing drum sounds, and the software in-
terfaces have no intelligent way of generating human-like drum pat-
terns. The templates will often be too rigorous and lifeless, some-
thing patterns programmed by the user also often suffer from (unless
the user manually changes every note in the patterns generated, a
very time-consuming process).

If the groove of a drummer could be modeled, a studio producer
would have access to an artificial drummer that would be more life-
like than what is currently available. The artificial drummer would

8 http://www.fxpansion.com/index.php?page=30
9 http://www.toontrack.com/superior.shtml
10 http://www.propellerheads.se/products/refills/rdk/index.cfm?fuseaction=mainframe
11 http://www.native-instruments.com/index.php?id=battery us



be able to imitate a certain style of playing, specific to the drummer
it has learned from. For producers, this would lower the cost of hav-
ing life-like drums, and the producer could have the drummer of his
choice to perform with the drummer’s unique style. A professional
drummer will have the opportunity to teach the artificial drummer
his own unique style of playing, which he/she could later use in the
studio or sell as a software plug-in.

We will now present a brief overview of research done in mod-
eling the expressive performance of musicians. Saunders et al. [17]
use string kernels to identify the playing style of pianists. The playing
style is identified by looking at changes in beat-level tempo and beat-
level loudness. However, imitating the style of the pianists was not at-
tempted. Tobudic and Widmer also consider variations in tempo and
dynamics as the two most important parameters of expressiveness.
To learn the playing style of a pianist, they use first-order logic to de-
scribe how the pianist would play a certain classical piece, and then a
clustering algorithm to group similar phrases together [19, 18]. They
use the models to play back music in the style of given pianists, but
some errors arise during playback. Tobudic and Widmer admit that
these errors are due to the modeling approach (in fact, in [19] they
claim it is “not feasible” to model the playing style of a pianist with
the current data and training methods; the modeling approach was
deemed too crude by the authors to be used as sufficiently accurate
training data). Pachet’s Continuator uses Markov models to create
a system that allows real-time interactions with musicians [3, 5, 2],
however his focus is more on replicating the tonal signature of a mu-
sician; the Markov model represents the probabilities that a certain
note will follow another. A musician plays a phrase (i.e. a melody
line), and the Continuator will then play another phrase which is a
continuation of the phrase played by the musician (hence its name).
Mantaras and Arcos use case-based-reasoning to generate expressive
music performance by imitating certain expressive styles, such as
joyful or sad [16, 15, 13, 12].

As far as the authors know, modeling the style of drummers is a
novel approach to create an artificial drummer. The Haile drummer
of Weinberg [23, 22] has some similarities, but there are some major
points that separate it from our approach: first of all, it is a percus-
sionist. Haile is a robot that plays a Native American Pow-wow drum,
it uses only one arm and is far from being full-fledged drummer. In
addition, it does not learn its patterns from human input, it has a
database of rhythm patterns that are constructed by the designers of
the system. Haile does imitate and modify patterns when interacting
with human players, but it does not learn these patterns.

3 Architecture
We call our architecture “Software for Hierarchical Extraction and
Imitation of drum patterns in a Learning Agent” (SHEILA). The fol-
lowing section will explain this architecture in more detail.

3.1 Input
Drum patterns are given as input to SHEILA. Ideally, the drum pat-
terns would be extracted from audio files, however in this paper
we have used MIDI12 files as input to SHEILA. MIDI is a sym-
bolic representation of musical information, and since it incorporates
both timing and velocity information for each note played, it is very
well suited for this application. SHEILA processes the MIDI file and
learns the style of the human drummer.

12 Musical Instrument Digital Interface, a standard developed in the 1980s to
enable communication between electronic music equipment.

Another advantage with representing the drum patterns using
MIDI is that it is a tempo-less representation. Once SHEILA has
learnt a pattern, it can be played back at a different tempo then when
it was demonstrated, which gives the producer even greater flexibil-
ity.

3.2 Modeling
The system operates at two levels by modeling small and large scale
variations, which will now be explained.

3.2.1 Small-scale variations

The small-scale variations arises as follows: when a drummer plays
a specific pattern, he/she will play each beat of the pattern slightly
different each time. The differences will occur in both timing and
velocity. By calculating the mean and standard deviation of both the
velocity and timing of each beat over similar patterns, the small-scale
variations can be modeled using the Gaussian distribution. We inves-
tigated whether the Gaussian distribution was an appropriate model
for the data by playing quarter-notes for about 8 minutes at 136 beats
per minute (BPM), yielding 1109 samples. The histogram of the on-
set time and the velocity can be seen in figures 1 and 2 respectively,
showing that the normal distribution is an appropriate model of the
data.
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Figure 1. The histogram of the onset time after playing quarter notes for 8
minutes. The bars show distribution of the timing of the beats relative to the

metronome.
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Figure 2. The histogram of the velocity after playing quarter notes for 8
minutes. Note that the histogram is not as nicely shaped as that of the onset
time. This is most likely due to the velocity sensitivity in the pads that were
used for gathering MIDI data, something that does not affect the onset time

for each beat. The pads of the Roland SPD-S (see section 4 for description of
the equipment) used in the experiment are rather small, and hitting towards

the edge of the pad will affect the recorded velocity, even though the
drummer might have hit the pad equally hard each time. Still, the histogram

clearly shows the Gaussian bell-shaped curve for the samples gathered.



3.2.2 Large-scale variations

Variations of the pattern itself, i.e. adding or removing beats are con-
sidered to be large-scale variations. Variations of a pattern is then
stored along with the pattern it is a variation of, and based on a cal-
culated probability, SHEILA will play back a variation of a certain
pattern instead of the pattern itself. Exactly how this is done is elab-
orated on in the next section.

3.3 Training

To train SHEILA, the drum track of a song is given as in-
put. In pop and rock music it is very common to divide a song
into parts, such as a verse, chorus and a bridge. The song used
in the experiments (see section 4) has the following structure:
verse/chorus/verse/chorus/bridge, which is a common structure in
pop and rock music. The point is that the drummer plays different
patterns for the verse, chorus and bridge. We will now explain how
SHEILA learns both large-scale variations of patterns and the small-
scale variations of each pattern.

3.3.1 Learning large-scale variations

The occurrence of each of the patterns in the song is calculated (one
pattern is then defined to be one measure, i.e. 4 quarter notes long).
The patterns that are most frequently played are then considered to
be core patterns. For instance, in a certain song the first core pattern
C1 occurs at measure 1. If the next core pattern C2 appears at the
8th measure, the patterns that differ from C1 between measure 1 and
8 are considered to be large-scale variations of C1, named C1Vx,
where x is increasing with the number of variations of C1. The ratio
of variations of the core pattern (rv) is calculated. This ratio will
indicate how often a core pattern is to be varied when SHEILA will
imitate the core pattern.

3.3.2 Learning small-scale variations

For each of the patterns (i.e. both core patterns and their variations),
the mean (µ) and standard deviation (σ) of both the onset time and
velocity is calculated, representing the small-scale variations. This
is calculated the following way: the similar patterns are grouped to-
gether, and for each beat in the pattern, the mean and standard devi-
ation for both velocity and onset time is calculated across the similar
patterns. In order to calculate the mean and standard deviation of
the onset time, a copy of all the patterns is quantized. Quantization
means shifting each beat to the closest “correct” beat. If a beat was
supposed to be on the “1”, and it was slightly before or after, it is
shifted to be exactly on the “1”. The difference between the quan-
tized pattern and the actual pattern is used to calculate the mean and
standard deviation of the onset time for each beat. Each pattern (be it
core or variation) will then have the normal distribution parameters
assigned to each beat. An “ideal” (i.e. quantized and with no velocity
information) version of this pattern is then stored in the SHEILA li-
brary, along with the mean and standard deviation of both onset time
and velocity for each beat. A simplified outline of this procedure can
be seen in algorithm 1. When imitating this pattern, the assigned pa-
rameters of the normal distribution will then be used to shift the beat
forwards and backwards in time and to calculate the velocity. This
will be explained further section 3.4.

3.3.3 Creating a library of the patterns

After processing the MIDI file, SHEILA will have built up a library
of core patterns and their variations, see figure 3. SHEILA also stores
which core patterns make up a song. This is simply an aid for the user
of SHEILA; if the user knows the song the drum pattern was learned
from, he will instantly know what kind of style the pattern was played
in. In addition, SHEILA stores the name of the drummer playing this
pattern. This is because it is very likely that different drummers will
play the same pattern. SHEILA will model how each of them played
the same pattern, and the name of the drummer can be presented to
the user of SHEILA to further aid the user in indicating what kind of
style the imitated drum patterns will be in.
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CORE 
PATTERN

VARIATIONVARIATIONVARIATIONCORE 
PATTERN

VARIATIONVARIATIONVARIATIONCore pattern
VARIATIONVARIATIONVariation

song 1 song 2

Core pattern VARIATIONVARIATIONVariation

Played by Drummer A
snare

hihat

kick

cymbal

Figure 3. The learning process. Drum patterns are input to SHEILA,
which analyzes the patterns and stores them in a library.

Algorithm 1 Training
1: count occurrence of each pattern in song
2: core patterns = most frequently played patterns
3: collect core patterns and their variations in groups
4: for all groups do
5: calculate µ, σ of onset time and velocity for each beat across

patterns (i.e. small-scale variations)
6: store core pattern and variations (i.e. large-scale variations)

along with µ, σ of each beat in SHEILA
7: end for

3.4 Imitation
This section describes how SHEILA can be used to imitate a given
drum pattern in the style of a specific drummer.

3.4.1 Selection of playing style

If a producer wants SHEILA to play a certain pattern, he can write it
down in a sequencer, export the pattern as a MIDI file and give it to
SHEILA. If the pattern is recognized in the SHEILA library, it can
then imitate the pattern in the style of the drummer that served as a
teacher for the pattern. Indeed, if SHEILA recognized several drum-
mers that played the same pattern, the producer will have the choice
of selecting between the different drummers. The name of the song
is also stored along with the drum patterns, allowing the producer to
quickly have an idea of what the resulting pattern would sound like
(presuming the producer knows the song). A good example is the
pattern shown in figure 6. For many drummers, this is the first pat-
tern learnt, and it is widely used in pop and rock music. If SHEILA
had learnt the styles of all the major drummers in recorded music his-
tory, it would give the producer the choice of generating this pattern
as played by Ringo Starr on “Help!” (the drummer of The Beatles,



i.e. sloppy timing and simple variations) or Lars Ulrich on “Sad But
True” (the drummer of Metallica, i.e. a rather “heavy” groove that is
slightly behind the time, with typical heavy metal variations), among
others. This is shown to the left in figure 4.

SHEILA
recognize

SHEILA
imitate

Desired 
pattern

List of drummers 
who have played 

the desired pattern

Play pattern in the 
style of drummer X

for Y measures

Imitated
drum patterns

Figure 4. Two steps that allows SHEILA to imitate a certain drummer. To
the left the producer decides he wants SHEILA to play a specific pattern. He

inputs this pattern in the MIDI format to SHEILA, which recognizes the
pattern. Often several drummers will have played this pattern, and the output

is a list of the drummers who can play this pattern and in which song it
appeared. To the right shows the producer deciding which drummer should
be imitated when generating the patterns, and he inputs this along with how
many measures the pattern should be played for. SHEILA then imitates the
style of the drummer specified, and outputs the imitated drum patterns back

to the producer, ready to be used in the DAW of his choice.

3.4.2 Generation of patterns

Once the producer has decided which of the drummers in the
SHEILA library he wants to use, he tells SHEILA to play the de-
sired pattern in the style of drummer X for Y measures. At each
measure, SHEILA decides whether to play the core pattern or one
of the variations of the core pattern. The ratio of variations of a core
pattern serves as the probability that a variation of the core pattern is
played instead of the core pattern. The next step is to generate the ac-
tual beats that make up a pattern. When a pattern is to be generated,
the onset time and velocity of each beat are calculated by generating
random numbers from a Gaussian distribution, using the mean and
standard deviation stored for each beat as parameters. This will yield
slightly different patterns each time they are generated, but they will
still sound similar, since the generation of patterns will come from a
model of how the human drummer would play it. See algorithm 2 for
a simplified description. The generated drum patterns are written to a
MIDI file, which can later be imported into a DAW with high quality
drum samples.

Algorithm 2 Imitation
1: present pattern p to be imitated to SHEILA
2: if p is known then
3: make user select which drummer should be used for imitation

of p, and for how many bars
4: for the desired number of bars do
5: if random number < rv then
6: generate variation of p using the stored µ, σ
7: else
8: generate p using the stored µ, σ
9: end if

10: end for
11: end if
12: return generated patterns

3.5 Implementation
The SHEILA system was implemented in MatLab, using the MIDI
Toolbox [10] to deal with MIDI file input/output. Propellerheads
Reason 3.0 was used for recording MIDI signals and for generating
sound from MIDI files, as explained in the following section.

4 Experimental setup
To acquire drum patterns, we used a Roland SPD-S which is a ve-
locity sensitive drum pad that sends MIDI signals. Attached to the
SPD-S was a Roland KD-8 kick drum trigger, along with a Pearl
Eliminator kick drum pedal. A Roland FD-8 was used as a high hat
controller. An Edirol UM-2EX MIDI-USB interface was used to con-
nect the SPD-S to an Apple iMac, which ran Propellerheads Reason
3.0 as a sequencer, recording the MIDI signals. Reason was loaded
with the Reason Drum Kits sample library to generate sound from
the MIDI signals. The drummer would listen to his own playing us-
ing AKG K240 headphones connected to the iMac. The setup can be
seen in figure 5.

Three drummers were told to play the same song, i.e. the same
patterns for the verse, chorus and bridge, yielding three core patterns.
If the verse is C1, the chorus C2 and the bridge C3, then the structure
of the song looks like this: verse (i.e. C1) 8 measures, chorus (i.e.
C2) 8 measures, verse 8 measures, chorus 8 measures and finally
the bridge (i.e. C3) the last 8 measures. The drummer played along
with a metronome to ensure that the tempo was kept constant. Each
drummer would play in the tempo that felt most natural, so the tempo
was varied around 100 beats per minute. After playing, the MIDI file
was given as input to SHEILA. The pattern for the verse is shown in
figure 7.

5 Results
This section is divided in three; the first two show how SHEILA
models the drummers and how these models can be used to imi-
tate the playing style of different drummers. The last section demon-
strate listeners’ ability to recognize which human drummer served as
a teacher for the imitated patterns.

5.1 Modeling
Since all drummers played the same pattern, it is possible to see how
SHEILA models each drummer differently. Figures 9-11 show the
mean and standard deviation of the velocity for each beat when play-
ing the pattern shown in figure 7 for drummers A, B and C respec-
tively. Note that the scale along the Y axis is [0 − 127], which is
the range of the MIDI signal. The figures also show the mean and
standard deviation of the onset time of each beat. The velocity bar is
plotted on the mean onset time, which is why the velocity bars are
not exactly on the beat. The standard deviation of the onset time is
shown as the horizontal lines plotted at the base of each velocity bar
(see figure 8 for a zoomed in plot with descriptive arrows that will
help understand the plots). This is most clearly visible for drummer
A (figure 9). Figures 12-14 more clearly show the mean and stan-
dard deviation of the onset time. The differences from 0 is how much
the drummer is ahead or lagging behind the metronome. Between
each quarter note beat (i.e. 1, 2, 3, 4) there are 100 ticks, divided in
the range [0− 0.99]. Since the data gathered is in the MIDI format, a
tick is not a unit of time until the tempo has been decided. We present
the results in ticks instead of another unit such as milliseconds, since



Figure 5. Playing drum patterns on the Roland SPD-S.
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Figure 6. A simple and common drum pattern in pop and rock music.
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Figure 7. One of the patterns played by all the drummers in the
experiments.
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Figure 8. A zoomed in version of the third plot in figure 9. The arrows
show how the mean and standard deviation of both the velocity and onset

time is plotted. Note that the bar showing the mean onset time is not plotted
on the figures, this is shown simply as the displacement from the nearest 8th

note value (1 in this figure). These displacements are most easily seen in
figure 9, for drummer B and C the displacements are smaller and are more

easily observable on the onset time plots.

the ticks will accurately show the relative difference between each
drummer, regardless of tempo. Drummer B has a mean onset time
of -0.034 for the first kick drum beat (figure 13). This may not seem
like a big difference, but these small variations are easy to pick up
on when listening to a drum pattern. In fact, they are a crucial ele-
ment to the groove of the pattern. MP3 files are available13 that better
illustrate these differences.

The figures clearly show how each drummer has his unique style.
This is most easily seen on the hihat beats, as the accentuation is very
different from drummer to drummer. Drummer B has a classic rock
style of playing the pattern, with heavy accentuation on the quarter
note beats (1, 2, 3, 4) and lighter notes on the off-beats (i.e. the and
between the quarter notes), see figure 10. Figure 13 shows that he is
constantly slightly ahead of time, which adds more aggressiveness to
the playing style, and is also very common in rock music. Drummer
A (figure 9) has a more even feel and is the drummer that varies most
in timing (figure 12). This allows for a more relaxed feel, but will
most likely sound rather sloppy when played at a high tempo.

Drummer C has the onset time mean closest to zero of all the
drummers, see figure 14. Since he is both slightly ahead and behind
the metronome it does not sound as tight as drummer B, which is
constantly ahead of the beat. Instead, it has a more laidback feel that
sounds more natural when played back at lower tempos.

It must be noted that describing the qualities of each of the drum-
mers is inherently vague, but the graphs show that SHEILA success-
fully models the different styles of the drummers. Again we refer to
the available MP3 samples.

5.2 Imitating

The models acquired for each drummer can now be used to imitate
them. The imitation will be of both the small-scale variations (i.e.
small changes in velocity and onset time in a pattern) and large-scale
variations (varying the core pattern). To see how the large-scale vari-
ations are introduced, a simple experiment was done. After SHEILA
had modeled each drummer playing the same song, SHEILA was
used to imitate each drummer playing the same song all over again.
Recall from section 4 that the structure of the song was playing
verse/chorus/verse/chorus/bridge, each for 8 measures, and that the
verse, chorus and bridge corresponded to C1, C2 and C3 respec-
tively. To imitate the same song, SHEILA was then told to play the
same song structure (i.e. C1 for 8 measures, C2 for 8 measures, C1

for 8 measures and so on). How the song was originally played along
with the large-scale variations introduced when imitating the style
for each drummer is shown in table 2.

Figures 15-17 show how the pattern in figure 7 was played back
differently in terms of small-scale variations for each of the drum-
mers. The figures show only one measure, over several measures
these would be slightly different. They can be compared to figures
9-11, which show the mean and standard deviation of the velocity
and onset time. Likewise, the onset time from the imitated pattern is
shown in figures 18-20.

5.3 Evaluation by listeners

In order to examine how well SHEILA imitates the playing style
of the three different drummers, we got 18 participants to compare
the output of SHEILA to that of the original drummers. In order to
make it harder to tell the drummers apart, the listeners heard 8 bars

13 http://www.idi.ntnu.no/∼tidemann/sheila/



of each drummer played at 120BPM, yielding 15 second samples of
drumming. The same drumkit sample library was used to create iden-
tically sounding drumkits. The drummers originally recorded their
drumming at different tempos (e.g. the tempo that felt most natural
to them). Since the drumming was recorded in the MIDI format, it
could be sped up without any distorted audio artifacts.

SHEILA then generated another 8 bars in the style of each drum-
mer, played back at 120BPM. This included large-scale variations
that were not present in the 15 second samples that the listeners
would use to judge the imitation by. The evaluation was done as fol-
lows: the participants listened to the samples of the original drum-
mers, and then the imitated patterns produced by SHEILA, which
were presented in random order. The participants were free to listen
to the samples in any order and as many times as they liked. The lis-
teners completed the experiment by classifying each of the imitated
drum patterns as being that of drummer A, B or C.

Table 1 shows that the listeners correctly classified which drum-
mer served as a teacher for the imitated drum parts most of the time;
the lowest classification rate being that of drummer C which was
83.3%.

Drummer A B C
Classification 94.4% 88.9% 83.3%

Table 1. How often the imitated SHEILA output was correctly classified as
being imitated from the corresponding human drummer.

6 Discussion and conclusion
We have implemented an artificial drummer that learns drum pat-
terns from human drummers. In addition to simply learning the drum
patterns themselves, the system models how a drummer would play
a certain pattern, both in terms of small-scale variations in timing
and velocity, and large-scale variations in terms of varying patterns.
This has been demonstrated by letting three different drummers play
the same song, and then showing how SHEILA models the differ-
ent style of each drummer. Subsequently, we showed how SHEILA
will play back the same song in a different way (in terms of large-
scale variations), and also how the imitated pattern themselves are
slightly different in terms of small-scale variations, but still in the
style of the imitated drummer. By human evaluation, we have shown
that the imitated drum patterns are often perceived as being similar
to the originals. The work presented in this paper has demonstrated
the core principle for using learning by imitation: namely to simply
show the computer what you want it to do, and them make it imitate
you.

Note that SHEILA need not be trained only on songs. For instance,
to model how a certain drummer would play the pattern shown in
figure 7, the drummer could play the pattern for a certain amount of
measures, adding the large-scale variations the drummer would feel
natural to play with this pattern. This would be a useful approach in
terms of building up huge libraries of patterns and variations of these
patterns, but this lacks the aspect of how the drummer played in order
to fit the musical context. The advantage of training SHEILA based
on patterns in a song is that the producer using SHEILA to generate
drum patterns will instantly know which feel was on that track, and
there would not be variations that will appear out of context.

The MIDI files used in this experiment was made by amateur
drummers, since hiring professional drummers would be too expen-
sive. The MIDI representation has the advantage of being tempo-less,
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Figure 9. Velocity and onset time plot, drummer A. The hihat velocity is
not varied to a great extent, but with more variance in the onset time gives
the playing style a relaxed feel. Recall that the Y scale is [0− 127], which
corresponds to the MIDI resolution. The X scale corresponds to the beats in

the measure.
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Figure 10. Velocity and onset time plot, drummer B. The hard
accentuation on the downbeat is common for rock drummers.
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Figure 11. Velocity and onset time plot, drummer C. A more odd variation
of velocity for the hihat, which creates a rather laidback feel.
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Figure 12. Onset time plot, drummer A. A rather big variance makes the
groove feel less rigorous and more free and open, but this will most likely

not sound very fluent when played back at high tempos. Recall that the onset
time is measured in ticks between quarter notes, with range [0− 0.99].
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Figure 13. Onset time plot, drummer B. Constantly slightly ahead of the
beat, which gives the groove a more aggressive feel.

1 and 2 and 3 and 4 and
−0.18

0

0.14

O
ns

et
 ti

m
e 

in
 ti

ck
s

Time in beats, hihat

1 and 2 and 3 and 4 and
−0.18

0

0.14

O
ns

et
 ti

m
e 

in
 ti

ck
s

Time in beats, snare drum

1 and 2 and 3 and 4 and
−0.18

0

0.14

O
ns

et
 ti

m
e 

in
 ti

ck
s

Time in beats, kick drum

Figure 14. Onset time plot, drummer C. All the onset times are very close
to the metronome, but the variations in being both before and after the beat

makes this groove sound less tight than that of drummer B.
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Figure 15. Imitated velocity and onset time plot, drummer A. Compare to
figure 9 to see that the pattern deviates slightly from the mean and standard

deviation.

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, hihat

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, snare drum

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, kick drum

Figure 16. Imitated velocity plot, drummer B. The same “rock” feel is
kept during the imitation (as can be seen in figure 10). Note how the hihat

beat on the 3 is slightly behind the beat. This can be heard as a small flaw in
the playing style, but will also add life to the resulting drum track.
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Figure 17. Imitated velocity plot, drummer C. The particular accentuated
hihat beat on the 3 is present, albeit not so dominating (see figure 11 for

reference). Timing is both ahead and behind the beat, as modeled.
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Figure 18. Imitated onset plot, drummer A. The plot complements figure
15, showing the timing with the different onset times which tend to be both

ahead and behind the metronome beat.
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Figure 19. Imitated onset plot, drummer B. The beats are most of the time
ahead of the metronome. The hihat beat on the 3 can more clearly be seen to

be slightly behind the beat (as is also observable in figure 16).
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Figure 20. Imitated onset plot, drummer C. The mean was close to zero
(as can be seen in figure 14); this plot clearly shows how the onset time of

the beats varies both ahead and behind the beat over time.

but it can also yield drum patterns that would sound bad if played
back at a tempo that is very different from when it was recorded. An-
other advantage of the MIDI representation is that it focuses solely
on the playing style of the drummer. A drummer will often have a
certain sound associated with him. This quality which is hard define
formally is due to many factors; e.g. the brand of drums he/she is
playing on, the producer, the genre of music, when it was recorded
(i.e. drums recorded in the 80s sounds different from those in the
70s), to name a few. This further aids to develop the signature of the
drummer, i.e. not just the patterns played but also the sonic qualities
of the drumming. However, the results of this paper shows that hu-
man listeners are able to tell different drummers apart based only on
the playing style of the drummer.

Table 2. How each drummer played the song in terms of core patterns and
variations of core patterns. How each drummer originally played the song is

shown to the left of each column dedicated to one drummer. How the
imitated song differs from how it was originally played is shown in white

text on a black background.
Drummer A Drummer B Drummer C

Original Imitated Original Imitated Original Imitated
C1 C1 C1 C1 C1 C1V2
C1 C1 C1 C1 C1 C1
C1 C1 C1 C1 C1 C1
C1 C1V2 C1V1 C1V2 C1 C1
C1 C1 C1 C1 C1 C1
C1 C1V1 C1 C1 C1V1 C1

C1V1 C1V2 C1 C1 C1 C1
C1 C1 C1 C1V2 C1 C1
C2 C2 C2 C2 C2 C2
C2 C2 C2V1 C2 C2V1 C2
C2 C2V1 C2 C2 C2 C2V1
C2 C2 C2 C2V1 C2 C2

C2V1 C2 C2 C2V4 C2V2 C2V3
C2 C2V1 C2V1 C2 C2V3 C2V3
C2 C2V1 C2 C2 C2V4 C2
C2 C2 C2V2 C2 C2V5 C2V3
C1 C1 C1 C1 C1 C1
C1 C1 C1 C1 C1V2 C1

C1V2 C1 C1 C1 C1V3 C1
C1 C1V1 C1V2 C1 C1 C1
C1 C1 C1 C1 C1 C1V3
C1 C1 C1 C1V1 C1 C1
C1 C1 C1 C1 C1V4 C1

C1V3 C1V3 C1V3 C1 C1 C1
C2 C2 C2 C2V4 C2 C2
C2 C2 C2 C2V1 C2 C2

C2V2 C2V2 C2 C2V1 C2 C2
C2 C2 C2 C2V4 C2 C2V6

C2V3 C2 C2V3 C2V3 C2V6 C2
C2 C2V1 C2 C2 C2 C2V4

C2V2 C2 C2 C2 C2V7 C2V3
C2V4 C2 C2V4 C2V1 C2V8 C2

C3 C3 C3 C3V1 C3 C3
C3 C3 C3 C3 C3 C3
C3 C3 C3 C3 C3 C3
C3 C3 C3 C3 C3 C3
C3 C3 C3V1 C3 C3 C3
C3 C3 C3 C3 C3 C3

C3V1 C3 C3 C3V1 C3 C3
C3 C3V1 C3 C3 C3V1 C3

7 Future work
One drawback of the system as it is currently implemented, is that it
does not take musical context into account when modeling the differ-
ent large-scale variations in a song. Very often, a drummer will make



a large-scale variation in order to highlight dynamic parts in the song
or in response to other instruments’ melodies. This is often referred
to as breaks or fills, and can be described as being big deviations from
the core pattern, e.g. playing on the toms or doing a drum roll. Cur-
rently, breaks are modeled as mere variations of a core pattern, and
can be played at any point during a song. A break will typically occur
only at certain places, such as the measure leading up to the chorus or
to highlight a specific section of the melody. These variations should
be modeled on the basis of musical context, which would aid the
modeling of the other patterns as well. The current implementation
of SHEILA only looks at the pattern themselves, augmenting it with
musical knowledge could allow for modeling why a drummer would
play in a specific manner in response to the melody and the dynam-
ics of a song, i.e. understanding how the drummer is being creative,
as attempted by Widmer [24] and Pachet [4]. In addition, if the sys-
tem could handle sound input instead of MIDI files, it would give
easy access to vast amounts of training data. Such a system might be
implemented according to Masataka and Satoru’s approach to find
melody lines in pop songs, also extracting the drum pattern [11] or
using one of the systems described in [9].

In addition, we are interested in modeling the physical movements
of the drummer as well. Drummers play differently, not just in terms
of different patterns and styles, but also in the way they move their
entire body when playing. By the use of motion tracking, we aim to
be able to model the physical movements of the drummer playing,
which would enable SHEILA to imitate the physical playing style of
a specific drummer as well. This ability could be used in a more di-
rect multi-modal interaction setting with other musicians, and opens
up another interesting field of research, namely understanding how
musicians interact when playing together [21]. Work in this direc-
tion would employ the concept of using multiple forward and inverse
models [14] to control the robot as it learns to imitate, as done by
Demiris [6, 7]. The idea of having a library of patterns was inspired
from this multiple paired models approach, however the current im-
plementation does not use forward or inverse models.

The ability to model the style of different drummers depends on
the assumption that the drums were recorded using a metronome to
keep the tempo constant. However, this is often an unnatural way
of playing for drummers, as the tempo becomes too rigid and is not
allowed to drift in tune with the dynamics of the song. Future imple-
mentations should enable SHEILA to imitate without the assump-
tion that the drums were recorded with a metronome, such as the
approach of Cemgil et al., who uses the Bayesian framework to quan-
tize onset times without assuming the performance was recorded us-
ing a metronome [1]. Toivainen has implemented a system that al-
lows tracking the tempo in real-time by using adaptive oscillators
[20], Desain and Honing use a connectionist approach to real-time
tracking of the tempo [8]. The latter approach would be necessary if
the artificial drummer would be used in a live setting, as the tempo
tends to drift more than when recording in a studio.

There are a lot of interesting directions for future research, and we
believe that this paper is an important first step towards building an
artificial drummer.
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[16] Ramon López de Mántaras and Josep Lluı́s Arcos, ‘AI and music
from composition to expressive performance’, AI Mag., 23(3), 43–57,
(2002).

[17] Craig Saunders, David R. Hardoon, John Shawe-Taylor, and Gerhard
Widmer, ‘Using string kernels to identify famous performers from their
playing style.’, in ECML, eds., Jean-François Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, volume 3201 of Lecture
Notes in Computer Science, pp. 384–395. Springer, (2004).

[18] A. Tobudic and G. Widmer, ‘Relational IBL in music with a new struc-
tural similarity measure’, volume 2835, pp. 365–382, (2003).

[19] Asmir Tobudic and Gerhard Widmer, ‘Learning to play like the great pi-
anists.’, in IJCAI, eds., Leslie Pack Kaelbling and Alessandro Saffiotti,
pp. 871–876. Professional Book Center, (2005).

[20] Petri Toivainen, ‘An interactive MIDI accompanist’, Computer Music
Journal, 22(4), 63–75, (Winter 1998).

[21] Gil Weinberg, ‘Interconnected musical networks: Toward a theoretical
framework’, Computer Music Journal, 29(2), 23–39, (2005).

[22] Gil Weinberg and Scott Driscoll, ‘Robot-human interaction with an
anthropomorphic percussionist’, in CHI 2006 Proceedings, pp. 1229–
1232, (April 2006).

[23] Gil Weinberg, Scott Driscoll, and Mitchell Perry, ‘Musical interactions
with a perceptual robotic percussionist’, in Proceedings of IEEE Inter-
national Workshop on Robot and Human Interactive Communication,
(2005).

[24] Gerhard Widmer, ‘Studying a creative act with computers: Music per-
formance studies with automated discovery methods’, Musicae Scien-
tiae, IX(1), 11–30, (2005).



A unified framework for imitation-like behaviors
Francisco S. Melo and Manuel Lopes and José Santos-Victor and Maria Isabel Ribeiro1

Abstract. In this paper, we combine the formal methods from re-
inforcement learning with the paradigm of imitation learning. The
extension of the reinforcement learning framework to integrate the
information provided by an expert (demonstrator) has the important
advantage of allowing a clear decrease of the time necessary to learn
certain robotic tasks. Hence, learning by imitation can be interpreted
as a mechanism for fast skill transfer. Another contribution of this
paper consists in showing that our formalism is able to model dif-
ferent types of imitation-learning that are described in the biological
literature. It thus unifies in the same abstract model what used to be
addressed as separate behavioral patterns. We illustrate the applica-
tion of these methods in simulation and with a real robot.

1 INTRODUCTION

In the early days of behavioral sciences, several processes used by
animals to acquire new skills were often dismissed as “mere imita-
tion”. As the knowledge of animal behavior, psychology and neuro-
physiology evolved, imitation has been promoted and is now consid-
ered a sophisticated cognitive capability that few species are capa-
ble of [1]. This change in the interpretation was accompanied by the
discovery of several phenomena resulting in imitation-like behavior,
i.e., in a repetition of an observed pattern of behavior.

In social learning, a learner uses information provided by anex-
pert to improve its own learning. For example, if the learner is able
to observe the actions taken by a second subject, it can bias its ex-
ploration of the environment, improve its model of the world or even
mimic parts of the other agent’s behavior. This process, generally
dubbed asimitation, makes cultural transfer of knowledge fast and
reliable—acquired knowledge enables fast learning. Cultural spread-
ing becomes thus possible by aLamarckianprinciple, where animals
learn how to act by imitating others and having the same manner-
isms as their peers. Through imitation, new discoveries are learnt by
each individual very efficiently, simply by observation and behavior
matching.

“Real” imitation occurs when a new action is added to the agent’s
repertoire after having seen a demonstration. It is not enough to re-
peat an action after having seen it. In fact, this phenomenon can of-
ten be explained by reinforcement learning (or learning by trial-and-
error). Although some social skill is usually developed when learning
by trial-and-error, there is no real imitation (wherenewskills are ac-
quired by simple observation). The concept ofimitation is far from
clear and led biologists to define several mechanisms to explain dif-
ferent types ofimitation-likebehaviors.

In this paper, we analyze several such imitation-like behaviors. We
show how each can be modeled using a common formalism. This
formalism borrows the fundamental concepts and methods from the
reinforcement learning framework [2]. By considering different ways

1 Institute for Systems and Robotics,Instituto Superior Técnico, Lisboa,
Portugal.E-mail: {fmelo, macl, jasv, mir}@isr.ist.utl.pt

by which an expert can provide information to the learner, we feature
different types of learning from observation and formalize each of the
aforementioned behaviors in a reinforcement learning (RL) context.

We recall that RL addresses the problem of a decision-maker faced
with a sequential decision problem and using evaluative feedback
as a performance measure. The evaluative feedback provided to the
decision-maker consists of areinforcement signalthat quantitatively
evaluates the immediate performance of the decision-maker. To op-
timally complete the assigned task, the decision-maker mustlearn
by trial-and-error: only sufficient exploration of its environment and
actions ensure that the task is properly learnt. Therefore, in the stan-
dard RL formalism, the reinforcement signal is a fundamental el-
ement that completely describes the task to be learnt. If the agent
knows how the reinforcement is assigned, it should be able to learn
the task by trial-and-error (given enough time) and the information
from an expert can, at most, speed up the learning process.

In real imitation as considered above, the learner should be able to
acquire a new skill/learn a new task from the observations. However,
and unlike the situation described in the previous paragraph, it gen-
erally should not be able to do thiswithout the information provided
by the expert. Considering everything stated so far, we could argue
that, from a RL perspective, this corresponds to thelearning of the
reinforcement function.

Imitation has been proposed as a method to program the com-
plex robotic systems existing today [3, 4, 5]. Programming highly-
complex robots is a hard taskper se; if a robot is capable of learn-
ing by observation and imitation, the task of programming it would
be greatly simplified. To the extent of our knowledge, no system-
atic computational model has been proposed to formally describe
imitation-like behaviors. The formalism proposed in this paper aims
at fulfilling such gap. So far, the mainstream of the research in imi-
tation aimed at individually clarifying/modeling several fundamental
mechanisms individually: body correspondence [6, 7], imitation met-
rics [8], view-point correspondence [9] and task representation [10].

In this paper, we propose a formalism to address learning from ob-
servations. In this formalism, several types of information provided
by an expert are integrated in a RL framework in different ways. We
consider different assumptions on the information provided and on
the way this information is integrated in the learning process, and
show that this results in different imitation-like behaviors. It is our
belief that the formal approach in this paper contributes to disam-
biguate several important concepts and clarify several issues arising
in the literature on learning by imitation.

The paper is organized as follows. Section 2 reviews the main con-
cepts in imitation learning. We describe several models of imitation
in biological and artificial systems, as well as some computational
problems arising in the context of imitation. Section 3 describes the
framework of RL and introduces the fundamental notation. We pro-



ceed in Section 4 by analyzing several methods to use expert infor-
mation to speed learning. We show these methods to fall within spe-
cific classes of imitation-like behavior. To do this we describe how
imitation and reinforcement can be combined and describe two sim-
ple methods to achieve this. We illustrate some of the methods in the
paper in Section 5 and conclude the paper in Section 6.

2 IMITATION LEARNING

Several different mechanisms can result in a imitation-like behavior.
One agent may perform an action after having seen it, but the mech-
anisms leading to it may be very different. Even when asking some-
one to imitate a hand movement, the results may vary substantially
depending on the individual in question [11, 12]. From the study of
imitation in animals, several mechanisms were proposed to describe
an “imitative behavior”, [1, 13, 4, 3]:

1. Stimulus Enhancementdescribes the general tendency to re-
spond more vigorously toward those parts of the environment
within which a conspecific is seen to interact. Seeing what are
the important parts of the environment and which objects might
be useful can speed up learning;

2. Contextual Learning describes the situation when an action is
not learned, but the perception of a new object property can pro-
duce the desire to act upon it. If, for example, an animal sees some-
one throwing a coconut, it will learn the possibility of throwing it.
In the context of our work, contextual imitation would amount to
learning to employ an action, already known, in different circum-
stances.

3. Response facilitationis described in [1] as “a kind of social ef-
fect that selectively enhances responses: watching a conspecific
performing an act, often resulting in a reward, increases the prob-
ability of an animal doing the same.” Large flocks of birds fly
in perfect synchronization. They are not imitating each other, but
simply doing the same to protect themselves against predators.

4. Emulation can also lead to a behavioral match. Observing an ac-
tion and the corresponding result might bring a desire to obtain
the same goal. Learning that a coconut can be smashed to reach
the inside will give the desire to eat the inside and thus producing
the same behavior.

Although the mechanisms just described produce imitative behav-
ior, they do not exactly correspond to imitation learning, in the sense
that no “new actions” are learned from scratch or added to the exis-
tent repertoire. On the other hand, there is a second set of processes
leading to imitative behavior where learning of new actions does ac-
tually occur. This is calledproduction learning[13] and, as it is the
most-powerful way of imitation, the “true-imitation” [3].

Byrne distinguishes two cases of production learning, namely
action-levelandprogram-level learning [13]:

• Action-level learning is defined as: “The indiscriminate copying
of the actions of the teacher without mapping them onto more
abstract motor representation.” [3]. This is a perfect copy of the
motions, if the kinematics of the systems are the same, even the
joint level trajectories are the same.

• Program-level learning defined for the cases where not only the
superficial motion is copied but when a broader description of the
sequences, goals and the hierarchical structure of the behavior is
inferred by the learner [14].

From the examples above we can see that many situations dubbed
as imitation do not involve any actual learning, but only simultane-
ous/similar action. Response facilitation is just the equal answer that

similar agents give when they are at the same state. Emulation and
contextual learning can be explained as an improvement of the world
model. The result of some action, or its relevant use in a given situa-
tion is added to the possible actions. In stimulus enhancement some
task learning occurs, but the action is learned by trial-and-error, the
demonstration only providing partial knowledge. In imitation, we ex-
pect the agent to learn how to complete the task or even the task itself.

2.1 Some implementation issues

Imitation cannot be reduced to supervised learning, where the agent
is given the input and correct output. In imitation, the agent is given
a set of observations of the environment and corresponding adequate
actions. It must thentranslatethis informationin terms of its own
body. This is the first difficulty in imitation: the observation is made
from a different point-of-view. The different actions performed then
must berecognizedandmapped to the agent’s different capabilities.
Finally, the agent mustinfer the important parts of the demonstra-
tion. In imitation, all these problems must be carefully addressed,
this being the reason why imitation is considered a complex cogni-
tive task. We now discuss each of these three steps in detail.

Due to the problem of “seeing the world from another’s view-
point”, the observed actions must be translated into the referen-
tial frame of the learner due to the different perceptual viewpoints,
i.e., the learner must perform a “mental rotation” to place the demon-
strator’s body (allo-image) in correspondence with the learner’s own
body (ego-image) [15, 9, 16].

Furthermore, when considering the problem of learning by imita-
tion there is somecorrespondenceassumed between the body of the
demonstrator and that of the imitator. Thecorrespondence problem
is precisely defined as the mapping between the actions, states and
effects of the demonstrator and those of the imitator. It is particularly
relevant if the actions are performed by a specific body and should be
replicated by a different body. Even when considering similar bodies,
contextual knowledge or training may imply that the demonstrator
and the imitator cannot use one same object in the same ways. And if
this is not the case, there are always small differences in kinematics,
size, dynamics or context that require the correspondence problem to
be solved. This problem can be addressed using different methodolo-
gies. Examples include algebraic approaches [17], trajectory balance
correction [18] and matching the effects of the actions [7].

Finally, it is necessary toevaluatethe performance of the imitator.
In other words, an agent needs a metric that, in a sense, allows it to
determine if the imitation was successful or not. And, as expected,
different metrics can will lead to different results. Theseimitation
metricsevaluate how well the imitator was able to grasp underlying
goal of the demonstrated task. These metrics can be selected using an
algebraic formulation [8], by optimizing the learnt trajectories [19]
or by considering the visual process involved [9].

Figure 1 combines the previous elements in an illustrative archi-
tecture that summarizes the relation between these elements of imi-
tation learning [5]. In this paper we do not address the fundamental
problems of view-point transformations or recognition. Instead, we
assume that the learner receives the processed output of the blocks
computing the VPT and performing the recognition, and focus in the
problem of learning.

As will soon become apparent, we provide a unified framework
to address imitation learning and reinforcement learning. We show
that, in this setting, there is an imitation metric that arises naturally
from the formulation of the problem of imitation. Furthermore, we
describe several situations where such metric does not arise naturally
from the problem formulation. We identify in each such situation
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Figure 1. Architecture for the imitator.

a particular instance ofimitation-like behavior, where the learning
agent “appears” to imitate the demonstrator but where no actual imi-
tation takes place.

3 REINFORCEMENT LEARNING

The general purpose of RL is to find a “good” mapping that assigns
“perceptions” to “actions”. Simply put, this mapping determines how
a decision-maker reacts in each situation it encounters, and is com-
monly known as apolicy. The use of evaluative feedback, by means
of a reinforcement signal, allows the decision-maker to gradually
grasp theunderlying purposeof the task it must complete while op-
timizing the way of completing it.

In this section we describeMarkov decision processes, the stan-
dard framework used to address RL problems. We also review some
solution methods that we later employ in the context of imitation.

3.1 Markov decision processes

Let {Xt} denote a controlled Markov chain, where The parametert

is the discrete time, andXt takes values in a finite setX , known as
thestate-space.

The distribution of each r.v.Xt+1 is conditionally dependent on
the past historyFt of the process according to the probabilities

P [Xt+1 = y | Ft] = P [Xt+1 = y | Xt = x, At = a] =

= Pa(x, y).

We note that the transition kernelP depends at each time instantt

on a parameterAt, which takes values in a finite setA. This param-
eter provides a decision-maker with a mechanism to “control” the
trajectories of the chain by influencing the corresponding transition
probabilities. We generally refer to the sequence{At} as thecontrol
process; we refer toAt as theaction at time instantt and toA as the
action-set.

Every time a transition from a statex ∈ X to a statey ∈ X occurs
under a particular actiona ∈ A, the decision-maker is granted a
numericalreinforcementr(x, a, y). This reinforcement provides the
evaluative feedback that the decision-maker must use to learn the
desired task. The decision-maker must determine the control process
{At} maximizing theexpected total discounted reward, as given by
the functional

J({At} , x) = E

[

∞
∑

t=0

γ
t
Rt | X0 = x

]

,

where we denoted byRt the reinforcement received at timet, given
by r(Xt, At, Xt+1). Throughout the paper, we admit that the re-
wards are bounded,i.e., , |r(x, a, y)| ≤ R for some constantR.
Also, and to simplify the discussion, we admitr to be constant on
the second and third parameters. The parameter0 < γ < 1 is a
discount factor.

A Markov decision process(MDP) is a tuple(X,A, P, r, γ),
whereX is the state-space,A is the action-space,P represents the
transition probabilities for the controlled chain andr is the reinforce-
ment function.

3.2 Dynamic programming and stochastic
approximation

We define apolicy as being a state-dependent decision-rule, and de-
note it as a mappingδt : X × A −→ [0, 1] assigning a probability
δt(x, a) to each state action pair(x, a) ∈ X ×A. The valueδt(x, a)
represents the probability ofAt = a whenXt = x. A policy δ in-
dependent oft is dubbed asstationary, and asdeterministicif for
eachx ∈ X there is ana ∈ A such thatδt(x, a) = 1. In the latter
case, we abusively denote byδt(x) the action determined byδt when
Xt = x.

Thevalue functionassociated with a policyδt is defined as a map-
pingV δt : X −→ R defined for each statex ∈ X as

V
δt(x) = J({At} , x),

where the control process{At} is generated from{Xt} according to
δt. Given an MDP(X,A, P, r, γ), there is at least one deterministic,
stationary policyδ∗ such that

V
δ∗(x) ≥ V

δt(x),

for any policyδt and any statex ∈ X . This policy can, in turn, be
obtained fromV δ∗ as

δ
∗(x) = arg max

a∈A

[

r(x) + γ
∑

y∈X

Pa(x, y)V δ∗(y)
]

.

Any such policy isoptimaland the corresponding value functionV δ∗

is simply denoted byV ∗. Clearly,V ∗ verifies the recursive relation

V
∗(x) = max

a∈A

[

r(x) + γ
∑

y∈X

Pa(x, y)V ∗(y)
]

,

known as theBellman optimality equation. Notice thatV ∗(x) is the
expected total discounted reward along a trajectory of the Markov
chain starting at statex obtained by following the optimal policyδ∗.

FromV ∗ we define a functionQ∗ : X ×A −→ R as

Q
∗(x, a) = r(x) + γ

∑

y∈X

Pa(x, y)V ∗(y).

The valueQ∗(x, a) is the expected total discounted reward along a
trajectory of the chain verifyingX0 = x andA0 = a, obtained by
following the optimal policy fort ≥ 1.

Summarizing, we have the following relations

V
∗(x) = max

a∈A
Q

∗(x, a); (1a)

Q
∗(x, a) = r(x) + γ

∑

y∈X

Pa(x, y)max
b∈A

Q
∗(y, b); (1b)

δ
∗(x) = arg max

a∈A

Q
∗(x, a). (1c)



Now given any functionsv : X −→ R andq : X ×A −→ R, we
consider the operators

(Tv)(x) = max
a∈A

[

r(x) + γ
∑

y∈X

Pa(x, y)v(y)
]

and

(Hq)(x, a) = r(x) + γ
∑

y∈X

Pa(x, y)max
b∈A

q(y, b).

It is straightforward to see thatV ∗ andQ∗ are fixed points of the
operatorsT and H. Each of these operators is a contraction in a
corresponding norm and thus a simple fixed-point iteration can be
used to determineV ∗ andQ∗.

The use of eitherT or H to determineV ∗ or Q∗ by fixed-point
iteration is a process known asvalue iteration. It is a dynamic pro-
gramming approach that is often used to determine the functionV ∗

andQ∗ from which the optimal policyδ∗ can be computed.
When this is not the case,i.e., whenP andr are unknown, many

methods have been proposed that asymptotically converge to the de-
sired functions [20, 2]. In this paper, we use use one of the most
studied methods in the RL literature: theQ-learning algorithm [21].
This method uses sample trajectories of the Markov process,{xt},
control process,{at} and corresponding rewards{rt} to estimate
the functionQ∗. These estimates are updated according to theQ-
learning update

Qt+1(xt, at) = (1 − αt(xt, at))Qt(xt, at)+

+ αt(xt, at)
[

rt + γ max
b∈A

Qt(xt+1, b)
]

.
(2)

This algorithm will converge to Q∗ w.p.1 as long as
∑

t αt(x, a) = ∞ and
∑

t α2
t (x, a) < ∞ for every(x, a) ∈ X×A.

This requires in particular that every state-action pair be infinitely of-
ten (there is sufficient exploration of the environment and the agent’s
actions).

4 LEARNING PARADIGMS USING EXPERT
INFORMATION

In the previous sections we described two learning paradigms: learn-
ing by imitation and learning by reinforcement. In this section we
move towards a combined learning framework, thelearning by ob-
servation and reinforcement(LOR) framework. To this purpose, we
consider a learning agent that must learn how to perform a sequen-
tial task using some prior knowledge and information provided by an
expert.

The formalism considered herein borrows the fundamental ideas
from the reinforcement learning framework described in the previous
section, thus providing a unified framework to address both classes of
learning processes. The fundamental assumptions usually considered
in the reinforcement learning framework are:

• The task to be learnt can be described as a mapping from the set of
states of the environment to the set of possible actions (apolicy);

• The environment isstationary.

The first assumption simply states that in the same state of the en-
vironment the agent should always perform the same action. We re-
mark that this assumption bears yet another important implication.
If, as stated, the task to be accomplished can be fully described using
a policy, then there is a reward function such that thepolicy to be
learnt is the optimal policy with respect to this reward function, in
the sense described in Section 3.

The second assumption above simply means that the policy used to
fulfill the task should not change with time (the environment always
responds to the agent’s actions in the same way).

In what follows, we will consider two fundamental situations:

(i) The imitator knows the task to be learnt, but does not know
how to perform this task;

(ii) The imitator does not know the task to be learnt.

From everything stated so far, it should be clear that, in terms of
our formalism, the situation in (i) simply means that there is a previ-
ously defined reward function, known by the agent (since the reward
function defines the task). Notice that if the agent is aware of this
function, it can learn to perform the task by trial-and-error, given
sufficient time. Clearly, the situation in (ii) means thatthere is no re-
ward function defined a priori. This, of course, implies that the agent
will not be able to learn any task without any further information.2

We analyze how different types of information provided by an ex-
pert can be integrated in learning the desired task. As will soon be-
come apparent, models for the imitation-like behaviors described in
Section 2 arise naturally in the LOR framework. We also show that,
in the more complex scenario of an unknown task, it is possible to
provide a natural interpretation for the used algorithm in terms of
imitation metrics. The first case do not correspond totrue-imitation
behavior as the system already knows the task, only in the second
case we can talk abouttrue-imitation, in the end of this section we
discussion this.

We consider each of the two situations (i) and (ii) in Subsec-
tions 4.1 and 4.2, respectively.

4.1 Known task

We consider that the interaction of the learning agent and the envi-
ronment can be described as a controlled Markov chain, as in Sec-
tion 3. This means that, at each timet, the state of the environment
will move from a stateXt = x to a stateXt+1 = y depending on
the actionAt of the agent and according to the transition probabili-
tiesPa(x, y). We suppose that an expert provides the learning agent
with some information on how the task can be completed. We refer to
such information generally as ademonstrationand analyze how can
this information be used in the learning process. We consider four
distinct cases:

(i) The demonstration consists of a sequence of states,

H = {x1, . . . , xN} ,

obtained by following the optimal policy;
(ii) The demonstration consists of a sequence of state-actions pairs,

H = {(x1, a1), . . . , (xN , aN )} ,

“hinting” on which should be the optimal actionai at each state
xi visited;

(iii) The demonstration consists of a sequence of transition triplets,

H = {(x1, a1, y1), . . . , (xN , aN , yN )} ,

providing the imitator with information on the behavior of the
environment;

2 We could argue that the situation in (ii) means that the agentdoes not know
the reward function, but that the latter is defined. We do not adopt such po-
sition for the simple reason that, if a reward functionis defined, the agent
can still learn by trial-and-error and, therefore, there is no significative dif-
ference from (i).



(iv) The demonstration consists of a sequence of transition-reward
tuples,

H = {(x1, a1, r1, y1), . . . , (xN , aN , rN , yN )} ,

providing the imitator with information on the behavior of the
environment and on how the task should be completed.

First of all, we remark that, since we assume knowledge ofr, (iii)
and (iv) are redundant. Nevertheless, we will consider how to address
the two situations distinctly, noting that in (iv) allows to address sit-
uations in whichr is unknown.

We must further detail the idea behind each of the previous classes
of demonstrations. The first situation, (i), addresses situations in
which the learning agentcan not observe/recognize the actions of
the demonstratorbut only their effect in the environment. This infor-
mation will show the agent how the state of the environment should
evolve when the optimal policy is implemented. A sequence as de-
scribed in (ii) illustrateshow the task can be completed. Each pair
(xi, ai) is related through some deterministic policyδ that is “close”
to optimal. Sequences as those described in (iii) and (iv) illustratethe
dynamics of the environmentin terms of transitions and transitions-
rewards, respectively. Unlike the sequences described in (ii), it is not
assumed thatxi andai in each tuple(xi, ai, yi) or (xi, ai, ri, yi) are
related by some policy.3

Another important aspect is that, at this stage, we are not con-
cerned with the particular way by which the sequencesH in (ii)
through (iv) are obtained. Consider for example the situation in (ii).
It may occur that the demonstrator illustrates how the task is com-
pleted by demonstrating the action to be chosen in an arbitrary set of
states{x1, . . . , xN}. Or, it may happen that the sequence of states
{x1, . . . , xN} is actually a sample path of the process obtained with
the control sequence{a1, . . . , aN−1}.

We also remark that, in all 3 cases listed above, we assume that
the imitator is able to perceive the information in the sequencesH
unambiguously. We could admitpartial observability, meaning that
the imitator was able to observe the states, actions and/or rewards
in the sequencesH only up to some degree of accuracy. This would
imply that the imitator would have toestimatewhat the actual state,
action and/or reward would have been. This, of course, would be
the actual case in practical situations. Nevertheless, consideration of
partial observability adds no useful insight to our formalization of
the imitation problem and significantly complicates the presentation.

The four methods presented below all provide an initial estimate
Q0 for Q∗ that integrates the information provided by the demonstra-
tion. We will see that this informed initialization brings a significant
improvement in the learning performance of the agent.

Method 4.1.1: Sequence of states

Consider a sequence of states

H = {x0, . . . , xN} ,

obtained according to the optimal policy. As stated, this first sce-
nario comprises situations where the learning agent is not able to ob-
serve/recognize the actions performed by the expert. Nevertheless,
the sequence of statesH provides the learning agent with an idea on
how the environment evolves “under” the optimal policy.

3 We make this distinction as each of the sequences described in (i) through
(iv) provides the imitator with different information, to be used in different
ways. This is not limiting in any way, as discussed below.

Therefore, if the transition model is known, the agent can compute

Q0(x, a) = r(x) + γ
∑

y∈X

Pa(x, y)V ∗(y),

whereV ∗ is computed asV ∗ = (I − γP
∗)−1r. The matrixI de-

notes the identity and the transition matrixP
∗ represents the transi-

tion model for the optimal policy, estimated fromH as

P
∗(x, y) =

N(x, y)
∑

z∈X
N(x, z)

,

whereN(x, y) denotes the number of times that a transition fromx

to y occurred inH. This method is similar to that proposed in [22].

Method 4.1.2: Sequence of state-action pairs

Consider a sequence of state-action pairs

H = {(x1, a1), . . . , (xN , aN )} .

Each demonstrated pair(xi, ai) provides significant information on
theoptimal policyat xi. And even if the policy partially defined by
δ(xi) = ai is not optimal, it is expectable that it is “close” to optimal.
It is therefore reasonable that the imitatorusesδ as an initial policy
to perform the task. And, as it acquires further experience on the task,
it should be able to improve from this initial policy, if there is room
for such improvement. To incorporate this information in the initial
estimate forQ∗, we setQ0(xi, ai) = 1 for i = 1, . . . , N and0
otherwise.

Method 4.1.3: Sequence of transition triplets

We now consider a sequence of transition triplets

H = {(x1, a1, y1), . . . , (xN , aN , yN )} .

As mentioned above, this sequence provides the imitator within-
formation on the behavior of the environment. Clearly this is only
useful if the transition probabilities are not knowna priori. If this is
the case, the information provided by the demonstrator can be used
to improve the model of the environment by setting

P̂a(x, y) =
N(x, a, y)

∑

z∈X
N(x, a, z)

,

where N(x, a, y) denotes the number of times that the triplet
(x, a, y) was observed inH. This estimated transition modelP̂ with
the functionr can be used to perform value iteration and obtain an
initial estimateQ0 for the learning algorithm.

Method 4.1.4: Sequence of transition-reward tuples

Finally, we consider a sequence of transition-reward tuples

H = {(x1, a1, r1, y1), . . . , (xN , aN , rN , yN )} .

This sequence provides the imitator with information on the behavior
of the environment and onthe task. This means that the tuples inH
can be used to performN iterations ofQ-learning using (2). The
resultingQ-function provides the initial estimateQ0 for the learning
algorithm.



4.2 Unknown task

In this subsection, we use the exact same formulation considered in
Subsection 4.1 above, but suppose thatno reward mechanism is de-
fined. This means that the imitator is no longer able to learn the task
by trial-and-error if no demonstration is available.

However, if a demonstrator provides the imitator with some infor-
mation on how the task can be completed, the imitator canbuild its
own reward function and use it to learn how to perform the task. We
also refer to such information generally as ademonstration.

Unlike in the previous situation, we only consider two scenarios:
We consider four distinct cases.

(i) The demonstration consists of a sequence of states,

H = {x1, . . . , xN} .

(ii) The demonstration consists of a sequence of transition triplets,

H = {(x1, a1, y1), . . . , (xN , aN , yN )} ,

providing the imitator with information on the behavior of the
environment.

Notice that, since there is no reward function defined, it is not pos-
sible to consider the situation where transition-reward tuples are ob-
served. Also, and unlike Subsection 4.1, we now assume that the
transition triplets inH considered in (ii) are obtainedusing the pol-
icy to be learnt. Therefore, (ii) includes both (ii) and (iii) from the
previous subsection.

Method 4.2.1: Sequence of states

Consider a sequence of states

H = {x0, . . . , xN} ,

obtained according to the optimal policy. As in Subsection 4.1, this
scenario comprises situations where the learning agent is not able to
observe/recognize the actions performed by the expert.

We interpret the sequence of states inH as providing the learner
with informationon the goalof the task. In particular, we consider
that H represents apossible trajectory to a goal state. Therefore,
the learner will memorize the last state visited,xN , as the goal state
and build a simple reinforcement function defining the task “reach
the goal state as fast as possible”. An example of one such reward
function is

r(x) =

{

+10 if x = xN ;

−1 otherwise.

The agent can now apply any preferred method to determine the
optimal policy. For example, it can use value iteration ifP is known,
or Q-learning otherwise. The learner will thus learn a policy that will
partially replicate the demonstration observed.

Method 4.2.2: Sequence of transition triplets

We now consider a sequence of transition triplets

H = {(x1, a1, y1), . . . , (xN , aN , yN )}

obtained using the “optimal policy”. As in Subsection 4.1, this se-
quence can be used to improve the model of the environment. This
model of the environment can, in turn, be used to determine the
reward function that best translates the policy partially defined by
δ(xi) = ai, i = 1, . . . , N . The approach considered here differs

from that used in Method 4.2.1 in that the reward function is no
longer built by considering only one final state. Instead, the learn-
ing agent will use thewhole demonstrationand apply inverse rein-
forcement learning to build the reward function [23]. We will show
that this procedure is fundamentally different from the previous ones,
and corresponds to “real imitation” in the sense of Section 2.

4.3 Classification of the learning paradigms

So far in this section we formalized several different methods by
which an agent can use the information provided by an expert in
learning how to accomplish a task. However, as discussed in Sec-
tion 2, there are several learning paradigms that do exhibit imitative
behavior but which cannot be truly classified as “imitation”. And, as
we show in the continuation, most of the methods described above
actually fall in one of the following categories:

• Stimulus enhancement;
• Contextual learning;
• Response facilitation;
• Emulation.

We start with the Method 4.1.1. In this method, the learning agent
seeks to replicate theeffectof the actions of the demonstrator. This
will actually lead to an initial replication of the demonstrator’s policy,
but the process by which this behavioral match is attained isemula-
tion.

In Method 4.1.2, the imitator uses the demonstration tobias its
learning strategy. Therefore, this method is actually astimulus en-
hancementmechanism: the imitator observes some actions that can
be useful for the task and uses this information to speed learning.

In Method 4.1.3, the imitator uses the demonstration toimprove
its model of the world. This means that the imitator gains further
knowledge on what the consequences of some of its actions may be.
We can classify this as a subtle form ofcontextual learning.

A similar thing occurs in Method 4.1.4. In this method, however,
the imitator further observesthe rewardsobtained by the imitator. It
realizes not only the consequences of some actions but also onhow
these actions contribute to complete the task. This use of the reward
information allows us to realize that Method 3 combines contextual
learning withresponse facilitation.

Notice that, in all these methods, the agent already knows the task
to be learnt. This means that, with enough time, the agent could
learn the task without any help from a demonstrator. Furthermore,
independently of the policy used in the demonstration, the agent
will eventually learn the correct policy, completely disregarding the
demonstration if necessary. This means that the demonstration only
provides a means for the agent to speed up its own learning process.
Therefore, it is not surprising that all these situations do not corre-
spond to “true-imitation” behaviors.

Moving to the the methods in Subsection 4.2, we start by noticing
that, in Method 4.2.1 the agent seeks to replicate the finaleffectof the
actions of the demonstrator. In fact, in this method, the agent focuses
all its learning inreplicating the effectobserved in the demonstration
(in terms of final state), displaying a flagrant example ofemulation.

On the other hand, Method 4.2.2 seeks toextrapolate the task
behind the actions of the demonstrator. From this information, the
agent builds a reward function that will eventually lead to a repli-
cation of the demonstrator’s policy. However, the actual method for
computing this reward function (and, thus, realizing the task to be
learnt) provides important insights into the problem of imitation, that
we discuss next.



4.4 Inverse reinforcement learning and imitation
metrics

As argued in Section 2, “true” imitation will occur if a broad de-
scription of the action sequences, goals and hierarchical structure of
the desired behavior is inferred by the learner. As we have seen, in
the RL formalism, the goals and structure of the desired behavior
are “encoded” in the reward function. Therefore, learning the reward
function and using it to determine the optimal policy would fit the
above description of true imitation.

Notice that we consider Method 4.2.1 to be emulation because two
completely different sequences ending in a common final state will
lead the learning agent to infer the exact same reward function. This
means that, as stated in the previous subsection, this method seeks to
replicate the effect of the actions of the demonstrator rather than to
extrapolate the task behind the actions of the demonstrator.

On the other hand, Method 4.2.2 does seek to extrapolate this in-
formation from the demonstration. To better realize how this method
operates, we provide a brief description of its working [23].

Given the model of the environment (namely the transition prob-
abilities in P), the inverse reinforcement learning method used
(dubbedBayesian inverse reinforcement learning—BIRL) searches
the space of possible reward functions. To this purpose, the method
considers a fine discretization of the referred space of reward func-
tions. Then, given any initial reward function, the method evaluates
the optimalQ-function,Q∗, for this reward function and evaluates
the likelihood of the demonstrated policy being optimalgiven Q∗.
This likelihood also takes into consideration a numerical parameter
describing theconfidence on the optimality of the demonstrated pol-
icy. The method will thus output the most likely reward given the
demonstrated policy (obtained fromH) and the confidence parame-
ter.

We emphasize several important aspects of this approach. First of
all, this method considers the demonstrationas a whole, instead of
focusing on particular aspects. Therefore, the reward thus determined
will more accurately the task “behind” the demonstration. On the
other hand, the likelihood function used to compare different reward
functions as well as the confidence parameter naturally provide an
imitation metric for the problem. The inclusion of the confidence
parameter is an important aspect that allows the agent to realize how
strict it should follow the provided demonstration. A low confidence
parameter will result in a learnt policy significatively more different
from the demonstrated policy than a high confidence parameter.

Also notice that considering imitation metrics makes no sense in
the other methods. In the methods in Subsection 4.1 the demonstra-
tion is only used to speed the learning. The agent is not trying to
replicate the demonstration but to optimize its policy with respect
to the pre-defined rewards. In Method 4.2.1, on the other hand, the
agent is simply trying to reach the final state observed in the demon-
stration. Once again, is not trying to replicate the demonstration but
to optimize the policy leading it to this goal state.

The reward function thus constructed will provide adequate eval-
uative feedback on the task and the imitator can use this evaluative
feedback to optimize its own policy. We emphasize that, without the
demonstration, the imitatorhas no knowledge on the task. The re-
ward function built from the demonstration is, therefore,new knowl-
edgethat describes the task at hand and allows the imitator to learn
how to perform it in an optimal fashion.

4.5 Discussion

With the methods above we conclude the presentation of the LOR
framework. Within this framework, we model an agent’s environ-
ment as a controlled Markov chain{Xt}. The demonstration pro-
vided by an expert is, in turn, described as a sequenceH which
can take various forms, depending on the information provided. The
formalism considered herein borrows fundamental ideas from rein-
forcement learning and provides a unified framework to address both
classes of learning processes.

We notice that the MDP model considered in this paper is the sim-
plest model used in reinforcement learning. We are interested in es-
tablishing a unified framework to address both learning by imitation
and reinforcement and thus focus on this simpler model for the sake
of clarity. In Section 6 we briefly comment on how the fundamen-
tal framework considered herein can be extended to accommodate
richer RL models (such as POMDPs).

As argued in Section 2, imitation cannot be reduced to supervised
learning and, therefore, the framework presented here should not be
seen as simple a combination of supervised learning and reinforce-
ment learning.4 Instead, it should be seen as a formalism to describe
learning processes in which imitation and reinforcement learning can
be properly modeled.

It is possible to find other works in the literature that combine
learning by imitation and reinforcement. In [22], imitation arisesim-
plicitly in non-interactive multiagent scenarios. In it, a learning agent
uses the trajectories observed from other agents to speed the learn-
ing of its individual task (which is generally independent of that of
the others). In yet another example, [25], a learning method is pro-
posed that learns a reinforcement function and dynamic model from
the demonstration of an expert (human executer). This is then com-
bined with a model-free, task-level direct learner to compensate for
modeling errors.

Our work is fundamentally different from those considered above
in that our aim is to understand how can the problem of imitation be
modeled and how can imitative-like behaviors be distinguished with
a formal perspective. Nevertheless, several methods described in our
paper can be seen as simplified versions of the methods described in
those papers.

Also, as argued in Section 2, we considered that in order for
the learning mechanism to be properly classified asimitation, it
should be able torealizethe task from the demonstration. However,
it should be flexible enough to feature two possible behaviors: to
replicate the exact behavior of the demonstrator or, instead, toper-
ceivethe purpose of the task and, eventually, optimize beyond what-
ever it observed. As discussed in the previous subsection, the use of
Method 4.2.2 verifies all these requisites. On the other hand, each
of the remaining methods exhibits one of the above features, not all.
This is the reason why we classified them as imitation-like.

Finally, we remark that the classical inverse reinforcement learn-
ing algorithms [26, 27] also determine a reward function given a pol-
icy. The difference from these methods to the one used here is that
BIRL allows the policy to be onlypartially specifiedandsuboptimal.
This is an important advantage in the problems considered herein.

5 EXPERIMENTS

We conducted several simple experiments to evaluate the perfor-
mance of proposed methods against that of simple trial-and-error.
We evaluated each of the methods described in Section 4.

4 Such approach is adopted, for example, in [24], where a supervisor is com-
bined with an actor-critic learning architecture.



The task considered is a simple recycling game, where a robot
must separate the objects in front of him according to its shape
(Fig. 2). In front of the robot are two slots (Left and Right) where
3 types of objects can be placed: Large Ball, Small Ball and Box.
The boxes should be dropped in the corresponding container and the
small balls should be kicked out of the table. The large balls should
be touched upon. Every time a large ball is touched, all objects are
removed from the table.

Kick the balls

out of the table

Drop the boxes

in the pile

Touch the large

ball

Robot

Figure 2. Simple recycling game.

The robot has, therefore, 6 possible actions: Touch Left (TL),
Touch Right (TR), Kick Left (KL), Kick Right (KR), Grasp Left
(GL) and Grasp Right (GR). We notice that, if the robot kicks a ball
on the right while an object is lying on the left, the ball will remain
in the same spot. The robot receives a reward of+10 every time the
table is empty and−1 every other time.

The correct policy for this game is to touch the large ball, if there
is any, or get rid of the object on the left and then of the object on
the right (there are some situations where the order is not important).
Every time the table is emptied, the game is restarted.

We tested the performance of the 4 Methods in Subsection 4.1
when the optimal policy is demonstrated and a suboptimal policy is
demonstrated. We compared the performance of an agent using the
information provided by the demonstration with that of an agent that
has no previous information on the task. In all situations we allowed
both agents to learn for 200 time steps using anε-greedy policy with
decayingε.

Table 1 provides the percentage of time (out of the 200 time steps)
that the agents are able to reach the goal state (empty table). For the
sake of comparison, we also provide the performance of a “pure”
reinforcement learner.

Table 1. Results obtained with Methods 4.1.1 through 4.1.4 using optimal
and suboptimal demonstrations.

Optimal Suboptimal

Pure RL 34.6 % 32.4 %

Method 4.1.1 41.5 % 40.5 %

Method 4.1.2 41.5 % 37.5 %

Method 4.1.3 41.5 % 39.0 %

Method 4.1.4 42.0 % 41.0 %

From Table 1 it is evident that the performance of the learning
algorithm is improved when considering a demonstration, since the
agents were able to reach the goal state (and thus complete the task)
more often. To have a clearer understanding of how this translates in
terms of the learning process, we present in Figures 3 through 6 the
total reward obtained during learning.

Figure 3. Total reward obtained with Method 4.1.1 over the time-frame of
200 steps and corresponding exploration probabilities when the

demonstrator follows an optimal policy.

Figure 4. Total reward obtained with Method 4.1.2 over the time-frame of
200 steps and corresponding exploration probabilities when the

demonstrator follows an optimal policy.

Figure 5. Total reward obtained with Method 4.1.3 over the time-frame of
200 steps and corresponding exploration probabilities when the

demonstrator follows an optimal policy.

Figure 6. Total reward obtained with Method 4.1.4 over the time-frame of
200 steps and corresponding exploration probabilities when the

demonstrator follows an optimal policy.

In the plots, the slope of the performance curve indicates how good
is the learnt policy. It is clear that, in all methods, the provided in-
formation gives the learning agent a significative advantage: in the
beginning of the learning process, the “greedy” action for the agents
that were provided a demonstration is much more informed than that
of the pure RL learner. This means that the demonstration provides
the learner with aknowledge boostby improving the estimative of
the optimalQ-function and thus speeding up the learning.

Notice that, in all these methods, the demonstration provides only
informed initial estimates forQ∗, thus improving the initial perfor-
mance of the agent. However, since this initial estimate is then prop-
erly adjusted by the learning algorithm, the sub-optimality of the
demonstrated policy does not affect the performance of the learner.

In a second set of experiments we tested Method 4.2.1 from Sub-
section 4.2. To evaluate the performance of the method, we explicitly
observed the learnt policy when the demonstrated policy is optimal
and when it is not. The results are summarized in Table 2. We de-
noted by0 the empty slot, byB the large ball, byc the cube and by
b the small ball.

Notice that both learnt strategies are optimal. This is due to the fact



Table 2. Learnt policies with Method 4.2.1 using optimal and suboptimal
demonstrations.

Optimal Suboptimal

(0, 0) TL TL
(0, B) TR TR
(0, c) GR GR
(0, b) KR KR
(B, 0) TL TL
(B, B) TR TL
(B, c) TL TL
(B, b) TL TL
(c, 0) GL GL
(c, B) TR TR
(c, c) GR GR
(c, b) GL GL
(b, 0) KL KL
(b, B) TR TR
(b, c) GR KL
(b, b) KL KL

that, in considering the same final state, the reward function obtained
by Method 4.2.1 is the same independently of the actual policy used
to demonstrate. And, in this particular case, it matches exactly the
reward function considered in the previous examples, thus giving rise
to the same policy.

Finally, we tested Method 4.2.2 from Subsection 4.2. As in the
previous experiment, we evaluate the performance of the method by
explicitly observing the learnt policy when the demonstrated policy
is optimal and when it is not. The results are summarized in Ta-
ble 3. In the third column we also present the results obtained with
Method 4.2.2 using an optimal policy, but where the model is also
estimated from the demonstration. The table elements in bold denote
“suboptimal” actions.

Table 3. Learnt policies with Method 4.2.2 using optimal and suboptimal
demonstrations.

Optimal Suboptimal No Model

(0, 0) TL TL TL
(0, B) TR TL TL
(0, c) GR TR GR
(0, b) KR KR KR
(B, 0) TL KL TL
(B, B) TR GL TL
(B, c) TL TR TL
(B, b) TL TR TR
(c, 0) GL TL GL
(c, B) TR GL TL
(c, c) GR GR TR
(c, b) GL KR KL
(b, 0) KL KL TR
(b, B) TR KL KL
(b, c) GR TL TL
(b, b) KL TR TR

We emphasize the policy obtained with Method 4.2.2 when the
demonstrated policy is suboptimal (and the agent has little confi-
dence on the observed policy). Recall that this method determines
a likely reward function for which demonstrated policy, we expect
the performance of this method to be affected by the sub-optimality
of the demonstrated policy. Notice that the policy learnt from a sub-
optimal demonstration is even worse than that learnt in the absence
of a model with an optimal demonstration (third column of Table 3).

To conclude this section, we present the images obtained by ex-
perimenting Method 4.2.1 in a real robot. The robot is capable of
recognizing the actions Grasp, Touch and Kick as well as the ob-

jects on the table (to details refer to [7]). Figure 7 presents the robot
following the task it learned after having observed it.

Figure 7. Robot following the learned task.

6 CONCLUSIONS

In this paper, we proposed an unified formalism to address imitation
learning and RL problems. Using this formalism, we analyzed sev-
eral imitation-like learning mechanisms, such as stimulus enhance-
ment, response facilitation, contextual learning and Emulation. These
mechanisms can lead to imitative behavior without being imitation in
the stricter sense of the concept. In this formalism, which we refer as
the learning by observation and reward(LOR), these behaviors can
be summarized as:

• Stimulus enhancement: biases exploration toward the observed
partial policy;

• Contextual learning: uses the observed transitions to improve the
model of the world;

• Response facilitation: uses the observed rewards to accelerate
learning;

• Emulation: selects a final state, defines a reward and learns using
standard RL methods.

As one of our major contributions was to unify all of these mech-
anisms in the same framework. We demonstrated that this modula-
tion is possible and the resulting behavior of the learner matches the
descriptions of the behavior in animals. We saw that when learning
from others there are many sources of information and each of them
can be exploited individual or in combination.

The results presented clearly established one of the known advan-
tages of imitation learning: the imitation learner acquired the optimal
policy for the problem faster than a learner following a standard trial-
and-error learning strategy. We emphasize that, in most cases above,
the agent would be able to learn the task on its own—the learner did
not extract the solution from the demonstration. Instead, the demon-
stration providedtips to help solve the task that the learner used to
discover how to complete the task more efficiently.

It is interesting to note that, as these mechanisms do not rely com-
pletely on the details of the demonstration, they can also learn the
optimal policy even when the demonstration was sub-optimal. The
learner can thus look at someone performing a task and then under-
stand the goal of the task and outperform the teacher.

We also emphasize the difference between imitation-like methods
and “pure” imitation methods. In a pure imitation system, the found
solution should not exist in the learner repertoire; or it should not be
possible to know the task if were not for the demonstration. In our
model we assumed that, without the demonstration, the agent does



not know the task (there is no reward mechanism). In imitation-like
methods, the learner can always learn the task on its own.

In our proposed LOR framework it is not easy to distinguish be-
tween action-level and program-level learning, since the important
steps of the demonstration are abstract concepts that can be imple-
mented in several ways. We intended to address this problem with
further detail by defining an hierarchical learner where we can define
actions at several “resolutions”.

Also, the demonstrations used throughout the paper do not illus-
trate the full richness of the expected behavior of the different meth-
ods, mainly due to the great simplicity of the task—the state and ac-
tion spaces are small and there is a unique optimal solution. Finally,
as already mentioned, we also intend to study the effects of partial
observability of state and action.
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When Training Engenders Failure to Imitate in 
Grey Parrots (Psittacus erithacus) 

 
Irene M. Pepperberg1 

 
Abstract. The initial study on avian behaviour [1] was not 
designed to examine imitation, but nevertheless provided 
information concerning issues involving imitation. Four Grey 
parrots (Psittacus erithacus) were tested on their ability to obtain 
an item suspended from a string such that multiple, repeated, 
coordinated beak-foot actions were required for success (e.g., [2]). 
Those birds with little training to use referential English requests 
(e.g., “I want X”) succeeded, whereas birds who could vocally 
request the suspended item failed to obtain the object themselves 
and instead engaged in repeated requesting [1]. Interestingly, even 
after subsequent, multiple observations of the actions of a 
successful parrot, the unsuccessful birds persevered in vocal 
requests or ignored the task, possibly retreating into learned 
helplessness. Such data emphasize three points: First, the entire 
behavioural repertoire and history must be examined in studies that 
try to determine whether animals act intelligently and/or can 
imitate; second, parrots can attempt to direct humans to assist them 
in achieving their goals, and such behaviour—although clearly 
complex—might lead them to fail certain tasks designed to test 
intelligence; third, even for a species known for imitative 
behaviour (physical as well as vocal [3]), imitation may not be 
expressed if it must overcome previous training. 
 
1  INTRODUCTION 
Defining and evaluating intelligence is a dauntless task 
with respect to humans (e.g., [4]) and is even more so with 
respect to nonhumans [5]: To examine nonhuman abilities, 
should an experimenter administer what are basically 
human tasks to nonhumans, making minimal concessions 
and adaptations to, for example, take into account their 
tendencies to peck a lit button rather than a computer 
keyboard, or instead restructure the tasks to accommodate 
any significantly different species-specific traits, such as 
poor vision and excellent olfaction? No simple solution 
exists, but one possible route through these difficulties is to 
examine not the ability to solve a specific problem but 
rather the processes whereby problems of ecological or 
ethological interest are solved. Consequently, researchers 
have become enamored of two types of studies—those 
involving insight and imitation. The first is favored because 
success suggests that the subject has formed a sophisticated 
representation of the problem and attained a solution via 
mental rather than physical trial-and-error, implying such 
an advanced understanding of—and memory for—actions 
and outcomes that physical experimentation is unnecessary. 
The second has become popular because success suggests 
that the subject can view, conceptualize, and then recreate 
from his/her own perspective, novel and improbable actions 
that lead to successful solution of a novel problem [6], also 
implying advanced cognitive processing skills. (The 
question also arises as to whether emulation—the 
attainment of the demonstrated goal via any means (e.g., 
[7])—is more or less advanced than imitation, but that is a 

separate issue). Of course, unless the experimenter knows 
the complete history of the subject, success or failure on a 
task might not be an accurate evaluation of capacities for 
insight or imitation, but rather relate to prior experience 
that may have either potentiated or blocked the targeted 
behaviour. And therein lies the question to be addressed in 
processing the results of both the prior [1] and present 
studies.  

The initial experiment [1] was designed to examine 
whether Grey parrots (Psittacus erithacus) were capable of 
insightful behaviour; only later were the birds tested on 
their imitative competence. The task chosen, to obtain a 
special food treat suspended by a string, by reaching down, 
pulling up a loop of string onto the perch, stepping on the 
loop to secure it, and repeating the sequence several times 
(e.g., to demonstrate an understanding of intentional 
means-end behaviour; see review in [8]) has been 
previously used to assess “insight” in several avian species; 
simply reaching down for the food is not sufficient [2,9]. 
Not all birds succeed on this task [2,6,10; for more recent 
studies and reviews of older studies, see 11,12], suggesting 
that the necessary action pattern requires a higher-order 
cognitive ability that is prevalent neither among species nor 
within a given species. 

Clearly, the extent to which the task is solved 
individually via insight might be affected by prior physical 
manipulative experience [11], but could prior training affect 
the ability to derive a solution via imitation of an expert? I 
had previously found [1] that for Grey parrots the capacity 
(or possibly willingness) to use insight could be tempered 
by a nonphysical type of training: specifically, that of my 
birds having learned to demand access to various objects 
vocally. Precisely because some of my birds can routinely 
request items from a human, without the need to work to 
obtain it on their own, two of the four birds tested (those 
with this vocal ability) failed the test of insight, persisting 
in their vocal requests. Possibly, a bird that responds with 
repeated requests, although ostensibly failing at the given 
task, could be considered to have demonstrated instead an 
alternative higher-order intelligence, in that it knows how 
to manipulate another individual to access its wants. Might, 
however, this ability to manipulate others interfere not only 
with the use of insight but also with the use of imitation? 
Two birds in the prior study observed but did not imitate 
after viewing a single trial by a successful demonstrator; 
the present study was performed to determine if repeated 
viewings of a demonstrator might be required to initiate 
any observational learning of a physical act. 

I will review the initial study (reported in [1]), then 
describe subsequent trials to determine whether the parrots 
would engage in any behaviour related to observational 
learning of the string-pulling task. I compare my findings to 
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those using the same task for other avian species [11,12]. 
 
2  METHOD 

2.1 Subjects  
Four Grey parrots were the subjects of the insight part of 
the study [1] and three of the four were also involved in the 
imitation part of the study. Kyaaro, obtained from a breeder 
at 3 months old, was, when tested on insight in 1995, 4¾ 
years old and had had about four years of training on 
interspecies communication; much of his instruction had, 
however, involved unsuccessful video and audio exposure 
and his vocabulary was limited to a few object labels (i.e., 
parrots do not learn referential labels if training is via video 
or audiotapes [13,14,15]). He was removed from the 
laboratory in 2001, and did not participate in further 
experiments, such as the imitation study. At the time of 
most of the trials, in 2003, Alex was 27 years old and had 
been the subject of experiments on avian cognition and 
interspecies communication for 26 years [16]; his training 
involved human modeling [17] and his vocabulary included 
labels for over 50 different objects, seven colors, five 
shapes, numbers up to 6, three categories, and many 
functional phrases (e.g., “I want X”, “Wanna go Y”, “Come 
here”, “Go pick up X”, etc.). He had had one insight trial in 
1995. In 2003, Griffin was 8 years old; he had been 
obtained from a breeder when 7½ weeks old and had been 
the subject of studies similar to those involving Alex; his 
unsuccessful video training experiments, unlike those of 
Kyaaro, had been limited to only a few labels (e.g., [15]). 
His vocabulary, although not as extensive as Alex’s, 
therefore contained most of the same commands and 
functional phrases. He had also been the subject of a study 
on the simultaneous development of object and label 
combinations [18]. Arthur (aka Wart) was about 4½ years 
old in 2003; he had been obtained from his hand-feeder 
when he was about a year old, but most of his training had 
involved studies on animal-human computer interfaces 
[19], and his vocalizations were limited to just a few labels 
[14]; he could state “want some” when a trainer had 
something he desired, but could not specify an item for 
trainers to retrieve. Alex, Griffin, and Arthur participated in 
one imitation trial in 2003 and in additional imitation trials 
in 2006. 
 
2.2  Apparatus 
As reported in [1], birds were tested on parrot “T” stands.  
For Alex, Griffin, and Arthur, almonds (a favorite food) or 
pieces of blackboard chalk (a less favored item, but one 
with which they had interacted in the past) were suspended 
at the end of 60 cm long chains of plastic links hung from 
the end of a “T” stand; red or green oval links were ~ 2.5 
cm long and 1.2 cm wide, blue triangular links were ~ 2.5 
cm long and 2.5 cm at their widest. These chains would 
provide the birds with adequate purchase if they attempted 
to obtain the suspended items. For Kyaaro, a favorite bell 
was suspended at one end of the stand from a silken cord 
approximately 0.6 cm in thickness and about 60 cm in 
length; he could not chew through such cords and did not 
exhibit any fear of them but was afraid of the plastic chains 

we used for the other birds. 
 
2.3  Procedure 
Again as reported in [1], birds were initially examined 
individually on the test for insight. Each bird was placed on 
the “T” stand after a targeted item was suspended; trainers 
then pointed to the object. If a bird did not seem interested 
at first, it was told to “Pick up the nut/bell/chalk/treat”. (All 
our birds respond to such commands if there is a single 
choice on, e.g., a tray; given multiple choices, they take 
their favorite item [16].) Birds were given several minutes 
in which to attempt the procedure; if they did not succeed, 
make an attempt, or demonstrate interest within 5 min, the 
trial was ended. Each bird except Alex was given three 
trials in its first session; Alex had only one trial in 1995. 
Two weeks after the first 2003 trials, Arthur was given a 
simultaneous choice between a nut hung from one chain 
(red, oval links) and chalk from another (blue, triangular 
links). Two months later  (the delay was to avoid the 
possibility of training or massed-trial learning) Alex, 
Griffin, and Arthur were then given three more trials 
involving a single chain, with the less desirable item (a 
piece of chalk) suspended in the first two of the three trials, 
and a nut in the third. The intention was to see whether the 
type of reward affected their behaviour and if they could 
spontaneously solve the problem, not if they could learn to 
obtain their treat. 

Note that none of the birds had received any training on 
this task prior to testing. Any toys hanging in their cages 
were suspended on short metal chains (at most, 7.5 cm 
long) such that each toy was at approximately beak level 
when birds were perched; thus they would not have been 
able to practice the maneuver. Only Arthur had had a toy 
suspended from a perch by a long chain (~30 cm) prior to 
testing, and it was his demonstration of the targeted 
behaviour as soon as the toy had been suspended that 
prompted formal testing. 

After Alex and Griffin failed and Arthur succeeded on 
this test of insight (see RESULTS, full details are in [1]), 
the former two birds were allowed to watch Arthur once in 
2003 and six times (twice each day for three non-
consecutive days) in 2006. Each time, an almond was 
suspended from a plastic oval link chain at the end of 
Arthur’s “T” stand as during the insight trials. Alex and 
Griffin were placed on their own “T” stands, less than 1 m 
from Arthur’s stand (out of reach but in clear view), and 
then Arthur was placed on his stand and allowed to retrieve 
the nut. Alex’s and Griffin’s interest in the nut ensured that 
they observed Arthur’s actions. 
 

3  RESULTS 

3.1  Insight trials 
3.1.1 Kyaaro and Arthur 

On their first exposures [1], both Arthur and Kyaaro 
immediately performed the targeted action of pulling, 
stepping, and repeating the behaviour so as to obtain the 
desired treat; they repeated their actions correctly each time 
without any hesitation for a total of three trials. For both 



birds, the actions were not necessarily performed smoothly 
(occasionally they had to make more than one attempt at 
grasping the chain or cord that sometimes began to swing 
as the trial progressed), but they acted consistently and with 
perseverance. (See video S1 in [1] for one of Arthur’s 
trials.) Kyaaro had no more trials. 

On the choice trials ([1], between nut and chalk), 
Arthur first performed the series of manipulations to obtain 
and eat the nut (i.e., chose the chain with the nut first), then 
repeated the manipulations with the chain holding the 
chalk. He dropped the chalk immediately after obtaining it. 

On the final set of three trials [1], Arthur successfully 
performed the operations to obtain the chalk both times; he 
quickly discarded the chalk after extracting it from the 
chain. He also succeeded with the nut, which he dropped, 
seemingly by accident. 
 
3.1.2  Alex and Griffin 

On their first trials [1], neither Alex nor Griffin made any 
attempts at recovering the nuts. In Alex’s only trial in 1995 
and in his subsequent trials in 2003, he, like Griffin in 
2003, looked at the nuts, looked at the trainer, and said 
“Want nut”.  To the trainer’s command “Go pick up nut”, 
they both replied “Want nut”; this verbal interplay was 
repeated several times during each trial. (See video S2 in 
[1] for part of one of Alex’s trials.) In Alex’s case, the 
volume and intensity of the request increased in one trial 
with the trainer’s failure to comply. 

In their final three trials [1], Alex and Griffin both 
completely ignored the chalk and, interestingly, then also 
ignored the nut; that is, they made no requests for either 
object nor did they engage in any action required to obtain 
either object. 
 
3.2  Imitation trials 
After Alex’s and Griffin’s first failure in 2003, they 
observed one of Arthur’s successful trials, but their 
behaviour did not change; that is, they consistently 
requested the nut from the trainer and failed to make any 
attempts themselves [1]. The single-trial session was ended 
for both Alex and Griffin without their having succeeded.  

In 2006, both birds were again given opportunities to 
observe Arthur’s successful trials; they again failed to 
engage in any form of observational learning. On the first 
two trials (session one), they watched and requested the 
nuts vocally; on the next two trials (session two, held two 
days later), they watched but Alex did not make requests 
while Griffin continued to do so, and on the final two trials 
(session three, held about four weeks later), they again 
watched and both requested the nuts.  
 

4   DISCUSSION 
The results of these studies have implications for evaluating 
the effects of prior training on both insight and imitation. 
Detailed discussion of how training affects insightful 
behavior can be found in the original article [1], which I 
will review only briefly. I will concentrate instead on the 
effects of previous training on imitation and compare the 

results with data on other avian species.  
In terms of insight, the noteworthy result of the prior 

experiment [1] was that the two parrots with limited 
vocabularies immediately acted out the correct physical 
tasks to obtain their treats, whereas the parrots that had 
received considerably more effective training in referential 
English speech attempted instead to manipulate their 
trainer. These birds’ requesting behaviour appeared 
intentional: They were asking that trainers do something for 
them, in very specific, fairly stress-free circumstances and 
in a very direct manner [1]. They were not treating humans 
as a physical object to be used (e.g., as a stepping-stone to 
reach something desired; see [20]), but were engaging in 
deliberate communication as a problem-solving strategy, 
which is a fairly advanced stage of development, even for 
human infants (see [20,21]). These birds acted just as they 
do when they want other treats that are not within their 
reach (e.g., [16]), thereby cross-applying (transferring) 
behaviour patterns learned in one situation to another, 
which is also considered a hallmark of intelligent behaviour 
[22]. According to some researchers (e.g., [23]), the 
adaptive value of using a referential communication code to 
benefit oneself at the expense of others is viewed as an 
advanced, essentially human trait. 

Why Alex and Griffin did not continue to request the 
suspended nuts in their final trials in 2003 nor Alex in his 
middle imitation trials in 2006 was not clear. They possibly 
had learned in previous trials that no trainer would assist 
them and that requesting the nut was useless (a form of 
learned helplessness [24]); other reasons for their lack of 
action (including string-pulling) are discussed in detail in 
[1].  

Here, however, I wish to focus on the birds’ lack of 
physical imitative ability. Why were Griffin and Alex 
unable—or at least unwilling—to reproduce an observed 
behaviour to acquire a desired treat? Several issues are of 
note.  

First, my Grey parrots have shown, over the course of 
almost 30 years of study, a facility for accurately 
reproducing English speech. Moreover, these referential 
vocal abilities all derive from a social learning paradigm 
[16,17], thereby demonstrating the parrots’ competence for 
observational learning. Although they use a different vocal 
apparatus than humans to produce speech, in many cases 
their articulatory acts would indeed seem to qualify as 
imitation [1,25,26,27]; such data suggest that some form of 
imitation is within the purview of the Grey parrot.  

Second, a Grey parrot in different laboratory has been 
shown to reproduce human physical actions, such as 
waving a foot after seeing a human wave his hand [3]. 
Although the extent to which such behaviour patterns are 
novel and would fit Thorpe’s definition of imitation [6] is 
unclear, the capacity of the bird in question to integrate 
observed physical actions into its behavioural repertoire 
suggests that this ability is also within the purview of the 
Grey parrot. 

Third, in species such as goldfinches (Carduelis 
carduelis) and siskins (Carduelis spinus), not only do only 
a percentage of tested birds (23% of 52 the former, 62% of 
29 of the latter) solve the string-pulling problem, but only 
another small percentage (25% of the former species, 10% 



of the latter) who fail by themselves achieve any form of 
success after observing successful birds [11]. Too, those 
who achieve success via observation often did so by 
emulation—achieving the goal by a different method—
rather than by imitating the actions of the demonstrators 
[11]. Most of those birds that consistently failed, even after 
being exposed to a demonstrator, did not fail because of 
lack of observational experience [11]. Assuming that such 
behaviour can be extrapolated to parrots—a likely 
supposition given the work of Huber and his colleagues 
[12,28,29], which demonstrated considerable individual 
differences and various levels of imitation and emulation in 
keas—birds (including parrots) likely exhibit individual 
differences in their ability or motivation to reproduce 
observed actions. 

Given that Grey parrots have demonstrated competence 
in what appear to be related tasks of observational learning, 
I suggest that, whatever individual differences might exist 
between Alex, Griffin, and Arthur, that Alex’s and Griffin’s 
failure to reproduce Arthur’s actions in the string-pulling 
task was a consequence of their previous training that 
emphasized the vocal mode and a paradigm in which 
humans would diligently respond to their vocal requests. 
Such training may have reduced their motivation to act 
(physically) on their own. Granted, neither Alex nor Griffin 
had had significant experience in the kind of physical 
manipulations (e.g., pulling at branches or twigs to obtain 
food) that might not only engender string-pulling but might 
also potentiate imitation of related physical actions [11], 
but neither had Kyaaro nor Arthur had such experience, and 
all birds had been given numerous objects that they could 
chew or tear apart, pick up or toss with foot or beak. 
Interestingly, Alex and Griffin, in contrast to Kyaaro and 
Arthur, were given tasks in which covers needed to be 
removed to expose hidden objects (e.g., [30] and references 
therein); Griffin also had demonstrated some proficiency in 
combining objects [18]. Note, however, that all actions 
were done with their beaks. Possibly, as was suggested in 
[1], for Alex and Griffin, successful vocal training may 
have caused communication (or at least beak-related) areas 
in the brain to develop to the detriment of those used to 
control complex, sequential physical actions involving both 
limbs and beaks (Heinrich, pers. comm.). The string-
pulling task involves eye-foot-beak coordination and thus 
may have required brain areas in addition to those involved 
in solely beak-driven combinations such as stacking or 
removing cups and vocalizing. If true, this explanation does 
not detract from the complexity of the vocal behaviour, but 
rather provides a rationale for the Alex’s and Griffin’s 
vocal rather than physical actions. 

Another issue might be the dominance hierarchy of the 
birds in the laboratory—would Alex and Griffin be willing 
to reproduce the behaviour of an individual in a position 
clearly subordinate to theirs? Arthur is the youngest, most 
recent addition to the lab, and by default the lowest ranking 
bird. One might imagine that having humans demonstrate 
the targeted string-pulling behaviour pattern, as they do 
with vocal patterns, might be preferable, but that option 
(hand-over-hand, or even an attempted mouth-hand 
demonstration) would not allow the birds to see how they 
might perform the task and could even be viewed by the 

birds as an acquiescence to their demands, not as a 
demonstration. (One such human demonstration, performed 
just before the writing of this manuscript, engendered the 
not-unexpected request for the retrieved nut.) Arguably, 
Alex’s and Griffin’s demands that the trainers do the task 
might be taken as evidence that they consider themselves 
dominant to the humans in the laboratory; clearly, humans 
do spend as much time acceding to their demands as 
querying and thus making demands of them. Consistent 
with such a view is the possibility that Arthur, subordinate 
to the other birds, might also be seen as subordinate to 
humans because he cannot ask trainers to carry out his 
demands and, thus, was unworthy of imitating. 

I suspect that, in order to demonstrate that Alex and 
Griffin could engage in either insightful behaviour or a 
form of imitation that involves object manipulation, I 
would have to devise a task that would be intriguing and 
motivating enough to spontaneously override their prior 
training. For obvious reasons (continuing experiments on 
vocal learning and cognitive processing), extinguishing 
their previous training is not an option, and the parrots’ 
overt distress upon the exit of trainers [1] precludes at 
present carrying out the study (Bugnyar, pers. comm.) 
involving videotaping Alex and Griffin in the absence of 
human observers.  

 
5  CONCLUSION 

In sum, two parrots that had limited use of vocal 
requests exhibited behaviour similar to the insightful food 
retrieval displays of, for example, Heinrich’s ravens [2] and 
Funk’s kakarikis [9]; the two parrots who could make 
specific vocal requests did so instead, and continued to do 
so even after observing the successful retrieval by another 
parrot. Such data emphasize three points. First, that the 
entire behavioural repertoire and history must be examined 
in studies that try to determine whether animals act 
insightfully or are capable of imitation; second, that parrots 
can attempt to direct humans to assist them in obtaining 
their goals; and third, that such behaviour—although 
clearly complex—might lead them to fail certain tasks. 
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Imitative learning in monkeys
Ludwig Huber1, Bernhard Voelkl1 and Friederike Range1

Abstract1.  Imitative  learning  has  received high  levels  of
attention  due  to  its  supposed  role  in  the  development  of
culture, language and  self-identification and the  cognitive
demands  it  poses  on  the  individual.  Although  monkeys
possess mirror neurons, show neonatal imitation, recognize
when being imitated  and copy an expert’s  use  of a rule,
their capacity of action imitation has been doubted by most
imitation researchers so far. Here I will argue that imitation
in  the  original  definition  of  learning  to  do  an  act  from
seeing it  done must be distinguished  from other forms of
“copying”,  in  which  the  content  of  the  copy  is  not  the
behavior  of the  model but  the  result  of  the  demonstrated
action, its goal or the intention of the demonstrator. Then I
will  describe  several  experiments  with  captive  common
marmosets  (Callithrix  jacchus)  that  show  that  these
monkeys can use the same overall pattern of a technique to
open a food box, or the same body part as the model, or –
above all – can precisely copy the movement pattern of an
action that a skilful model has demonstrated. On the basis of
this  cumulative  evidence  of  imitation  in  non-human
primates I will question the frequently expressed notion that
imitation  is  a relatively recent  invention  in  the hominoid
lineage and will  discuss  its  implications  for the currently
available theories of the underlying neuronal mechanism. 

1 MONKEY SEE, MONKEY DO 
According to Byrne [1], imitation research has focused on
one of two distinct problems. The one favored by cognitive
neuroscientists  is  the  ‘correspondence’  problem,  asking
how is it possible for actions as seen to be matched with
actions as imitated? The other,  favored by ethologists and
comparative psychologists, is the ‘transfer of skill’ problem,
asking how is it possible for novel, complex behaviors to be
acquired  by  observation?  Despite  various  approaches  to,
and definitions of, imitation [2-5], most scholars agree that
when an individual replicates an action that it has observed
being  performed  by  another  individual  it  requires  a
matching system that allows conversion of observed actions
by others into actions executed by oneself. In other words,
visual  input  needs  to  be  transformed  into  corresponding
motor output. However, most currently available models of
imitation require that the observers had possessed a motor
representation  of  the  demonstrated  action  already  before
they observe it being performed by the model.  But how can
new skills be acquired if the essence of imitation lies in the
activation  or  facilitation  of  responses  already  in  the
repertoire of the observer? Imitative learning in the sense of
the acquisition of new skills by observation must therefore
be  distinguished  from  response  facilitation  [6],  priming,
stimulus  enhancement  and  other  forms  perception-motor
coupling, let alone many forms of social influences [7-10].
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A  common  conclusion  about  social  learning  among
primates was that  apes imitate in  various  forms [11],  but
that  monkeys,  despite  a  century’s  efforts,  had  not  been
shown  to  imitate  [7,  12-14].  Although  the  sweet  potato
washing of Japanese macaques on Koshima Islet is perhaps
the best  known and most frequently cited example of the
formation of traditions in nonhuman animals [15, 16], it has
been questioned whether social learning, let alone imitation,
is  really  involved  [17].  Furthermore,  Visalberghi  and
Fragaszy have made several attempts to  find out  whether
Capuchin monkeys learn by observation of a skilful model
how to use an object as a tool [13, 14]. However, all these
attempts failed.

Recently, the picture of the monkeys’ failure to imitate
has  been  seriously  doubted,  because  macaques  show
cognitive  imitation  by copying  an  expert’s  use  of  a  rule
[18],  recognize  when  they  are  being  imitated  [19]  and
imitate adult facial movements as neonates [20]. Also, the
discovery  that  rhesus  monkeys  have  “mirror  neurons”—
neurons that fire both when monkeys watch another animal
perform a goal-directed action and when they perform the
same  action  [21-23]  —suggests  they  possess  the  neural
framework for perception and action that is associated with
imitation. However, can monkeys also imitate by “learning
to  do  an  act  from seeing it  done”  [24],  restricted  to  the
acquiring behaviors novel to the individual’s repertoire (the
‘transfer of skill’ problem)?  It  has been suggested that  in
order  for  a  response  to  be  considered  acquired  through
imitation  it  must  be  novel  [25].  The  behavior  can  be
thought of as novel if the probability of the behavior is low
at the start of the experiment and an increase in the behavior
cannot be attributed to priming, motivational or attentional
effects [10, 26].

2 IMITATION IN COMMON
MARMOSETS

We have focused on one species of New World monkeys of
the  family  Callithrichidae,  the  common  marmoset
(Callithrix  jacchus).  Callitrichid  monkeys  are  small
monkeys  once  thought  to  have  retained  many  primitive
primate  characters  and  to  be  rather  unsophisticated  [27].
Therefore, marmosets and tamarins would not seem likely
candidates for studies of complex cognition. However, this
evaluation  has  changed  [for  a  review,  see  28],  and  it  is
currently accepted that  they have developed a number of
remarkably original  adaptations for  their  unusual  lifestyle
[29]. More than this, Callitrichids are likely to locate food
by using some sort of cognitive map [30], represent objects
and their movements in an abstract manner [31], and benefit
from social influences that aid in learning about new food
by motivational and perceptual factors [32]. Marmosets and
tamarins  are  remarkably sensitive  and responsive  to  cues
from other social  companions,  especially in  the third and
fourth  month  of  life  [33].  Their  high  level  of  tolerance
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during group foraging and also their sharing of food in both
passive and active manners [34, 35] may be related to their
cooperative breeding system [29]. All together, these social
features  may  be  responsible  for  their  high  degree  of
maintaining  spatial  and  behavioral  cohesion  with  their
social partners in comparison to Capuchin monkeys (Cebus
sp.).  They are  also  more neophobic  than  capuchins,  less
likely to  explore new places and,  therefore,  less likely to
explore new foods or to solve new manipulative problems
on their own [36].

These  behavioral  and  social  aspects  of  callithrichids
inspired a number of experimental studies focusing on the
ability  of  common  marmosets  to  learn  from conspecific
demonstrators  an  food-processing  technique  [37-39].  All
three  studies  used  variants  of  the  same  experimental
procedure (non-observer control): First, subjects (observers)
were allowed to observe a physically separated conspecific
(demonstrator) opening a novel apparatus – the “artificial
fruit” [40] – in order to retrieve food from it, and thereafter
these  subjects  themselves  were  given  the  opportunity  to
manipulate  the  apparatus  on  their  own.  The  subjects’
behavior was then compared with naïve animals that were
confronted with the apparatus without prior observation of
conspecifics (non-observers), and – in the Voelkl and Huber
study  [39]  –  also  with  observers  which  saw  another
demonstrator opening the apparatus in a different way (two-
action procedure).

In the first study of this kind, Bugnyar and Huber [37]
presented common marmosets a box with a pendulum door
that could be either pushed or pulled to gain access to food
inside  the  box.  Observers  were  allowed  to  watch  a
conspecific demonstrator pull open the door. The observers
showed less exploratory behavior than non-observers  and,
most importantly, two of them showed a strong tendency to
use the demonstrated opening technique in the initial phase
of the test. Only after some trials, in which they acquired
own experience of  opening  the pendulum door,  did  they
begin to perform the simpler solution of pushing, which was
preferred  by  the  non-observers.  The  authors  argued  that
pulling the door in order to get access to food was not a
simple  act  but  a  compound  action-pattern.  The  authors
distinguished  four  independent  elements  plus  one
dependent  element  in  the  pulling  performance  of  the
demonstrator:  (1) using the left hand,  (2) taking the  door
from the right gap, (3) pulling, (4) holding the door wide
open with one hand, and (5) taking the food. Two observer
marmosets  copied  all  of  these  actions  in  the  appropriate
order,  which  is  very  unlikely  to  be  due  to  chance,
considering  the  combined  probability  for  spontaneous
occurrence of these actions. 

In  an  attempt  to  provide  data  allowing  a  direct
comparison  between  species,  Caldwell  and  Whiten  [38]
used a marmoset-sized version of an artificial fruit that has
been  designed  for  studies  of  imitation  in  children  and
chimpanzees [41].  One demonstrator  (‘full’  demonstrator)
was trained to  open the apparatus  by removing a handle,
while the other demonstrator (‘partial’ demonstrator) simply
ate food from the lid of the apparatus.  Unfortunately, none
of the observers was successful in opening the apparatus –
probably due to the technical sophistication of the opening

mechanisms.  However,  the  authors  found  clear response
differences  consistent  with  the  different  demonstration
modes.   Those  animals  that  watched  the  ‘partial’
demonstrator  performing  predominantly  mouthing
behaviors  used  their  mouth  more frequently,  while  those
that watched the ‘full’ demonstrator showing predominantly
hand  manipulation used their  hands more frequently. The
authors described these findings as body part copying, but
they pointed out that  the behavior of the observers might
have been dependent on several other social learning effects
as well.  For instance, it  may be the case that reaching or
grasping  behaviors  are  in  some  way  contagious  (i.e.,
triggered by the  same response) in marmosets or  that  the
fact that the movement of the apparatus was clearly different
for  both  observer  groups  could  account  for  the  social
learning seen. 

Only  a  two-action  method,  which  involves  two
demonstrators  that  differ  in  their  body  movements  but
create the  same changes  in  the  environment,  controls  for
learning about the changes of state in the environment and
therefore  provides  the  most  convincing  evidence  yet  for
imitative learning in animals [10, 42, 43]. Voelkl and Huber
[39]  applied  this  methodology,  permitting two groups  of
marmosets  to  observe  a  demonstrator  using  one  of  two
alternative  techniques  to  remove  the  lids  of  baited  film
canisters and compared their initial test responses with one
another and with a third group of marmosets that were never
given  the  opportunity  to  observe  a  demonstrator.
Furthermore,  while  one technique  involved  hand-opening
common to marmosets, the other technique consisted of a
behavioral  ‘peculiarity’  (mouth-opening);  that  is,  mouth
opening  was  neither  common  in  the  animals  under
investigation  nor  necessary  for  lid  removal.  This
requirement  ensured  that  if  the  observers  performed  the
technique, then they were most probably influenced by what
they witnessed. 

In fact, both groups of observers preferred to open the
canisters  using  the  same  method  as  their  demonstrator.
Since  hand  and  mouth  demonstrators  brought  about
identical changes to the canister (opening and exposing the
food reward), the differential test behavior of the animals
suggests  that  they  indeed  learned  something  about  the
demonstrator’s  behavior,  rather  than  about  certain
properties of the canister. Furthermore, non-observers rarely
opened  the  canister  with  the  mouth,  but  they opened  as
many canisters as did members of both observer groups. An
actual benefit to observer animals in terms of success rate
could be found when the task was made more difficult by
closing the lids of the canisters much more firmly. After this
change,  only  the  mouth-openers  achieved  opening  the
canisters and retrieving the desired mealworms. Thus, even
‘slavish’ copying (i.e.,  copying in  the  absence of insight)
may therefore  have  beneficial  effects for  observers  [26].
Furthermore, as emphasized by Caldwell and Whiten [38],
social learning may provide particular practical benefits to
individuals  when  it  induces  an  individual  to  persist  with
unrewarded  manipulations  of  an  object,  as  individual
learning (trial and error) is unlikely to be successful under
such circumstances. 

Although this study implies that learning by imitation is
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more  widespread  in  the  animal  kingdom  than  recently
assumed,  both  the  studies  that  failed  to  demonstrate
imitation  in  monkeys as  well  as  our  own experiences  in
previous  studies  suggests  that  imitation  is  a  rarely  used
mechanism. This might be due to the special requirements
of  imitative  learning.  To  allow  detailed  observations
imitation  requires  proximity  of  the  individuals.  Thus
imitation  is  more  likely  to  be  found  in  species  with
egalitarian  social  systems where  the  individual  distances
between  all  group  members  are  small.  Additionally  the
copied behavior itself must show certain characteristics to
be appropriate for transmission by imitation. If the behavior
in question is to simple it is more likely that it is learned by
individual  learning,  while  if  the  behavior  is  on  the other
hand  to  complex it  is  unlikely  that  it  can be  learned  by
observational  learning  at  all.  A further  limiting factor in
imitative learning – but widely neglected in discussions and
experiments until today – is the attention of the observer. If
the observer does not pay attention to the whole action or
action sequence demonstrated, but looses interest before it
is  completed,  it  will  not  be  able  to  learn  the  action
sufficiently  well  or  at  all.  The  attention-holding  process
might vary according to the dominance, sex and relationship
of  the  demonstrator,  as  well  as  the  type  of  action
demonstrated, and the vigilance, interest, and motivation of
the observer. While we found generally quite short attention
spans  in  marmosets,  they  are  sufficiently  long  for  the
actions demonstrated in our experiments [44]. However, in
the study with the film canisters, the observers have been
found to be particularly attentive.

3 ACTION IMITATION
Recent theories of imitation have dissected the imitative act
into  two  components,  the  body  part  used  and  the  action
performed [45].  With  respect  to  body  part  imitation,  the
finding that marmosets would copy mouth versus hand use
[39] and pigeons likewise would copy beak versus food use
[46] was important in classing these as true imitation [9-11,
42,  47,  48].  Use of different body parts  to  deal  with the
same task relies on visuomotor mapping from seen parts of
the model’s body to equivalent parts of the self. But for an
action  to  qualify  as  imitation  in  the  restricted  sense  of
“learning  how  to  move”  (action  imitation),  the  observer
must  learn  the  specific  response  topography,  i.e.,  the
specific action by which the response is made [9]. Despite
various approaches to,  and definitions  of, imitation [2-4],
most scholars  agree that  when an individual  replicates an
action  that  it  has  observed  being  performed  by  another
individual  it  requires  a  matching  system  that  allows
conversion  of  observed  actions  by  others  into  actions
executed by oneself. In other words, visual input needs to
be  transformed  into  corresponding  motor  output  (the
‘correspondence’ problem).

The  greatest  challenge  for  an  animal  solving  the
correspondence  problem  is  to  perform  imitation  of
‘perceptually opaque’ actions, those model actions of which
the observer’s image is not similar to the sensory feedback
received during performance of the same action [42].  This
is particularly true if the action demonstrated by the model

does  not  already  exist  in  the  observer’s  behavioral
repertoire.  So  far,  precise  copying  of  novel  actions  is
underspecified in theory and vague in evidence. The models
currently  available,  including  those  that  rest  on  mirror
neurons,  are  not  sufficiently  competent  to  explain  high
matching fidelity in the imitation of  novel actions, thereby
solving both problems of imitation, the transfer of skill and
the correspondence problem, at the same time. There is also
no convincing evidence of movement copying in nonhuman
animals  with  the  trajectory  of  the  movement  or  the
dynamics  of  the  model’s  action  being  replicated  by  the
observer with high fidelity. The few cases in which animals
have been reported as achieving some degree of matching
are lacking rigorous quantitative analysis of the matching
degree (e.g. only qualitative descriptions of the imitator’s
performance are provided [49, 50].

A paradigm that has come closest to the assessment of
the precision of copying is the  “do-as-I-do paradigm”.  I a
replication  of the classic study by Hayes and Hayes [51],
Custance and colleagues [52]  found only a modest degree
of matching between tutor and subject. Coders blind to what
each  chimpanzee  has  actually  watched  identified  some
matching in relation to touching several parts of the body in
sight,  as well as  out  of  sight,  symmetric and  asymmetric
conjunctions  of  hands,  digit  movements,  and  hand  or
whole-body  actions.  However,  the  matching  fidelity  was
low overall; only a small fraction of the novel actions were
reproduced (13 or 20 from a total of 48 novel gestures), and
the imitations were far from perfect. Similarly, in a study by
Myowa-Yamakoshi  [53],  five  female  nursery-reared
chimpanzees rarely reproduced a demonstrated action at the
first  attempt  (less  than  6%  of  the  overall  actions).  In  a
further,  more  recent  study,  only  20% of  the  chimpanzee
observers matched the demonstrator’s actions, i.e., opening
a tube with the hands [54].

4 THE PRECISE COPYING OF
MOVEMENT TRAJECTORIES

To investigate imitation of movement patterns in marmoset
monkeys we reanalyzed the  actions  shown by the  mouth
model and her six observers of the Voelkl and Huber [39]
study and – for the sake of comparison – tested further 24
naïve  animals (non-observers)  that  had  never  observed  a
model.  In  order  to  video-capture  the  movements  from a
fixed perspective, only one baited canister was attached to a
wooden board that was placed in a six cm gap between a
glass window in the front-side of the testing cage and an
opaque partition wall. This setup ensured that animals could
approach the artificial fruit  from only two directions – in
both  cases approximately parallel  to  the  window and  the
lens  of  the  video  camera.  The  completely  shut  canister
required  –  due  to  the  tightness  of  the  lid  –  a  powerful
opening technique. Our marmosets have never achieved to
open a completely shut canister by hand but only by mouth. 

The model, five out of six observers, but only four out of
24 non-observers succeeded in opening the containers with
their  mouth  (Voelkl  &  Huber,  in  prep.).  These  opening
attempts provided six opening movements of the model, 14
of observers and 21 of non-observers. The head movement

3



of  the  subjects  was  tracked  by manually  identifying  the
position  of five morphological  features in  the face of the
subject  on  a  frame-to-frame basis  (25  frames per  s).  We
then  defined  five  parameters  to  describe  the  movement,
used  discriminant  function  analysis  of  the  orthogonalized
data, and thus generated a function with clearly distinctive
mean discriminant scores for movements of the model and
the  non-observers.  As  main  result,  we  found  the  mean
scores  for  the  observers  being closer  to  the  mean  of  the
model than to the non-observer. Thirteen out of 14 observer
movements were classified as model movements. Thus, the
movement  patterns  of  the  observers  were  clearly  more
similar to the movement pattern of the model than to those
of the non-observers. 

5 HOW DO BRAINS SOLVE THE
IMITATIVE LEARNING PROBLEM?

More than a century of research on imitation has left us with
a  crucial  functional  problem:  how are  observers  able  to
transform  a  visual  presentation  of  an  action  into  motor
output? For  most currently available theories  of imitation
the key to solution is automatic activation of existing motor
representations. But here marmosets learned by observation
a  novel  movement  pattern,  not  available  from  the  own
behavior repertoire. Even if we assume that marmosets have
already  performed  similar  movements  before,  like  biting
into an object or levering it up with the head, how can we
explain  the  exact  matching  of  the  observers,  e.g.  the
convergence of the paths of the head, the same inclination
of the head in the course of the opening action? A minimal
requirement would be to adjust an action present in one’s
motor repertoire to a different observed action [55].

As  evidenced  by  the  significant  difference  in  the
movement shown by observers and non-observers, opening
a film box is not an all-or-nothing behavior for marmosets.
There  are  still  many  degrees  of  freedom  for  the  exact
performance, created by the movements of the head and the
whole  body when attempting to  open  the  lid  of the  film
canister. The common problem for imitation theories is to
account for the close convergence of Bianca’s (the model)
and  the  observers’  opening  actions  despite  the  actual
variance of ways to achieve the common goal of opening
the lid  as  evidenced  by the  non-observers.  Which  of  the
many theories currently available in the literature can offer a
sufficient explanation of the creation of a novel action from
using  only  visual  information?  Or  more  generally,  what
does this result  tell us about  what is  actually involved in
successful action imitation,  i.e.,  learning how to move the
body by observing the behavior of others? And what role do
the mirror neurons play?

Mirror  neurons might code the likely future actions  of
others so that observers are able to anticipate the intention
of  others  [56]  rather  than  to  provide  a  form  of  motor
learning.  Macaques,  for  instance,  might  have  used  their
mirror neurons to recognize being imitated [19]. However,
the actions that they were shown by the human model have
already existed in the observers’ motor repertoire. Perhaps a
first step in the direction of clarifying the potential role of
mirror neurons for imitative learning might be the detection

of  a  new  type  of  visuomotor  neurons,  called  tool-
responding  mirror  neurons,  in  the  lateral  section  of  the
macaque  monkey’s  ventral  premotor  area  F5  [57].  The
neurons show experience-dependent responses and perhaps
enable  the  observing  monkey  to  extend  action-
understanding  capacity  to  actions  that  do  not  strictly
correspond  to  its  motor  representations.  However,  in
contrast  to  our  findings,  these  neurons  were  found  to
discharge  only  after  a  relatively long  visual  exposure  to
actions  of  a  tool-using  experimenter.  It  was  therefore
proposed that the changes in the body schema and/or in the
motor representations of the observer are possible only for
motor training [58], but that tool actions cannot be directly
translated into own motor repertoire. The authors concluded
with  hypothesizing  that  a  mirror  mechanism  evolved  in
monkeys  for  action  understanding,  but  only  emerged in
human evolution as suitable neural  substrate for imitation
[57].

Recently, theoretical  and empirical attempts have been
made  to  explain  imitative  learning  through  reafferent
feedback  loops  in  the  brain.  As  part  of  a  conceptual
framework for motor learning and sensorimotor control, the
‘modular  selection  and  identification  for  control  model’
(MOSAIC) is  based  on  multiple  pairs  of  ‘predictor’  and
‘controller’  models  processing  feedforward and  feedback
sensorimotor information, respectively [59-61].  Indeed, the
MOSAIC model has been shown to learn a simple acrobat
task (swinging up  a jointed  stick to  the  vertical) through
action  observation  and  imitation  [62].  The  results  of
functional  magnetic  resonance  experiments  suggested  the
superior temporal sulcus (STS) as the region at which the
observed actions, and the reafferent motor-related copies of
actions made by the imitator, interact [63]. Furthermore, in
the macaque there seems to be a circuitry composed of the
STS,  providing  a  higher-order  visual  description  of  the
observed action,  the  rostral  sector  of  the  inferior  parietal
lobule (PF) and the ventral premotor cortex (area F5) that
codes  the  action  of  others  and  maps  it  onto  the  motor
repertoire of the observer [64].  Thus, imitative learning is
supported  by interaction  of the core circuitry of imitation
with the  dorsolateral prefrontal  cortex and perhaps  motor
preparation  areas  —  namely,  the  mesial  frontal,  dorsal
premotor and superior parietal areas. In humans, this direct
route of visuo-motor conversion on a sensory-motor level of
imitation  is  used  especially  for  transforming  a  novel  or
meaningless action into a motor output,  while a semantic
mechanism,  working  on  the  basis  of  stored  memories,
allows  reproductions  of  known actions  on  an intentional
level of processing [65-67]. It remains to be shown whether
non-human animals can also use multiple routes of action
imitation. 

In conclusion, the present findings suggest that monkeys
are  not  only  able  to  reproduce  known  actions  shown by
others or to recognize when others reproduce actions they
themselves have executed before, but are also able to learn
new actions by observation. Such abilities are functional by
providing  a  type  of  learning  that  avoids  remaining  with
insufficient or ineffective variants or time-consuming trial-
and-error learning.
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Visuo-Cognitive Perspective Taking for Action
Recognition

Matthew Johnson and Yiannis Demiris 1

Abstract. Many excellent architectures exist that allow imitation of
actions involving observable goals. In this paper, we develop a Sim-
ulation Theory-based architecture that uses continuous visual per-
spective taking to maintain a persistent model of the demonstrator’s
knowledge of object locations in dynamic environments; this allows
an observer robot to attribute potential actions in the presence of goal
occlusions, and predict the unfolding of actions through prediction
of visual feedback to the demonstrator. The architecture is tested in
robotic experiments, and results show that the approach also allows
an observer robot to solve Theory-of-Mind tasks from the ‘False Be-
lief’ paradigm.

1 Introduction

When we see another person performing an action, we are usually
able to understand the purpose and intention underlying the action,
and can reproduce the action for ourselves. TheHAMMER architec-
ture [5, 16] can be used to equip a robot with this common human
ability. TheHAMMER architecture achieves the mapping between ob-
served and self-generated action by directly involving the observer
robot’s motor system in the action recognition process; during obser-
vation of the demonstrator’s actions, all the observer’s inverse models
(akin to motor programs) are executed in parallel in simulation us-
ing forward models. The simulated actions generated by the inverse
models are compared to the observed action, and the one that matches
best is selected as being the observed action. The internal action
simulation, combined with the comparison to the observed action,
achieves the mapping between observed action and self-generated
action that is required for imitation [4].

By using the motor system to achieve action recognition, theHAM -
MER architecture is taking a Simulation Theory approach to solv-
ing the imitation problem. In the ‘Theory of Mind’ paradigm, the
Simulation Theory is used to attribute mental states to other people
by using one’s own cognitive decision-making mechanism as a ma-
nipulable model of other’s minds, taken off-line and placed into the
context of their situation [13, 9, 8]. For this to work, the state of
the ‘target’ agent is used instead of one’s own state, but transformed
into an egocentric format that our first-person decision-making and
behaviour-generation mechanisms will accept.

Similarly, in order to provide meaningful data for comparison, the
simulated actions used by theHAMMER architecture during recog-
nition must be generated as though from the point of view of the
demonstrator. Since theHAMMER architecture uses a Simulation
Theory approach, the observer’s inverse models require first-person

1 BioART, ISN Group, Department of Electrical and Electronic En-
gineering, Imperial College London. Email:{matthew.johnson,
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data in order to generate actions, and so spatial and visual perspective
taking are used to achieve the egocentric ‘shift’ from the observer to
the demonstrator. The data required for the inverse models to operate
is therefore derived from consideration of the demonstrator’s phys-
iospatial and sensory circumstances, and not the observer’s, using
perspective taking [11].

However, it is not only instantaneous sensory information that in-
forms goal selection and action planning. It is through keeping in
memory details of objects that are seen thatcognitive mapsare built
up, which are critical to action generation. In this paper, we present a
Simulation Theory approach to perspective taking that allows an ob-
server robot to use its visual perceptual mechanisms in simulation to
determine what the demonstrator is seeing; by performing this pro-
cess continually, the observer’s first-person cognitive map generation
routines can be used to build up and maintain a representation of the
demonstrator’s own cognitive map. Taking into account the demon-
strator’s knowledge of the world in this manner allows more accurate
state and goal information to be fed to theHAMMER architecture.

2 Background

In common and also academic use, the term ‘perspective taking’ has
many meanings in many different situations. There are such defini-
tions as:

• “People’s ability to experience and describe the presentation of an
object or display from different vantage points” [1]

• “Imagining oneself in another’s shoes” [7]
• “Understand[ing] how others perceive space and the relative po-

sitions of objects around them- [...] the ability to see things from
another person’s point of view” [15]

• “Consider[ing] the needs and wants of the opponent” [6]

In this paper we focus on equipping robots with perceptual and
cognitive perspective-taking abilities, through a Simulation Theory
approach, in order to improve the quality of the state information fed
to the HAMMER architecture. In this architecture, a cognitive map
is defined as being arepresentation in memory of the location of ob-
served objects. This memory is updated continually from observation
of the environment, and is available to the action generation system
for action planning. The cognitive map is used also as a manipulable
spatial model of the environment to facilitate perspective taking; to
enable visual perceptual perspective taking, the objects in the cogni-
tive map are linked with visuo-spatial representations that are used
to re-create the visual image seen by the demonstrator.



2.1 HAMMER

The HAMMER (Hierarchical Attentive Multiple Models for Execu-
tion and Recognition) architecture is a Simulation-Theoretical archi-
ture for action recognition and imitation, based on the hierarchical
coupling of internal models to produce simulation loops.HAMMER

achieves first-person action generation using coupledinverseandfor-
ward models, and uses the same arrangement to achieve imitation,
but fed from a perceptual perspective-taking process involving inter-
nal inverse and forwardvision models. The perceptual perspective
taking process has been shown to improve the performance of action
recognition in situations where the observer must take into account
visual occlusions and visual cues provided to the target [11].

2.2 Internal Inverse and Forward Models

One of the core components of theHAMMER architecture is thein-
verse modelfor motor control. Inverse models represent functionally
specialised units for generating actions to achieve certain goals. The
generic inverse model takes as input thecurrent stateof a system, a
goal statethat is the system’s desired state, and produces as output
the action required to move the system from its current state to the
goal state [12, 18]. In the control theory literature, the inverse model
is known as acontroller and its outputs are control signals; when
applied to robotics, the current state is the state of the robot and its
environment, and the outputs are motor commands. In that context,
inverse models are known asbehaviours.

Inverse models have severalinternal states, that are used in action
execution and recognition [10]. One of these states is theapplica-
bility of the inverse model. When presented with a goal, the inverse
model will calculate its level of applicability through simulation with
its coupled forward model. The applicability is a measure of how use-
ful the inverse model is for achieving the goal. A low applicability
level means that the inverse model cannot achieve the goal from its
current state, for example, the “Place object on shelf” inverse model
when the shelf is too high to reach. The applicability level is ex-
plained in more detail in Section 3.3.

Forward models of causal dynamics are used in predictive control
systems. The classic forward model takes as input a system state and
the dynamics currently acting on the system, and produces as output
thepredicted next state of the system. In theHAMMER architecture,
multiple forward models arecoupledto inverse models to create a
simulation process. This approach is similar to that used in other in-
ternal model-based systems for motor control [21, 20]. When cou-
pled to an inverse model, a forward model receives the action output
from the inverse model; the forward model then generates a predic-
tion of the state that would result, if the action was to be performed.

2.3 Inverse and Forward Vision Models

In [11], the capacity forvisual perceptual perspective takingwas in-
troduced to theHAMMER architecture. In keeping with the simula-
tion theoretical approach, this was achieved through a biologically
inspiredsimulation of visual perception. In the same way as action
recognition and imitation is achieved in theHAMMER architecture
through coupled inverse and forward models as used in control, vi-
sual perception and perspective taking is performed here through
coupled inverse and forward models of thevisual process. Thein-
verse vision modelis defined as taking two inputs, the first being
a camera image, and the second being the visual parameters with
which to process that image. The output from the model is the state

Figure 1. The perspective-taking process. Image information from the
camera, and the robot’s own knowledge held in the cognitive map, are fed

into a cascade of perspective transform ‘filters’. The outputs at each stage are
used as the ‘pretend states’ fed into theHAMMER architecture. ‘PT’ indicates
a perspective transform stage, and ‘IVM’ indicates an inverse vision model

for performing image processing.

output from processing. Aforward vision modelis defined as hav-
ing two inputs and one output. The forward vision model takes as
input visual object properties retrieved from the cognitive map (e.g.
colour, shape, etc), and their desired state (e.g. positions and orien-
tations taken from the cognitive map), and produces as output the
visual image that results from reconstructing these inputs. Inverse
and forward vision models are described in detail in [11].

The coupling of inverse and forward vision models results in sim-
ulation of perception, and givesHAMMER the ability to consider
what the demonstratorsees, as well as its position. This enables the
observer robot to take into account visual occlusions effecting the
demonstrator, and throughcontinual usage, the observer can keep
track of what objects the demonstrator has seen in the past and po-
tentially stored in its cognitive map. Because the demonstrator sees
different things to the observer due to its differing viewpoint, it be-
comes necessary for the observer robot to maintain a representation
of the demonstrator’s cognitive map in order to predict and recognise
actions. In keeping with the simulation theory approach, this may be
achieved by recruiting the observer’s own cognitive map creation and
updating processes, but fed with information derived from visual per-
ceptual perspective taking instead of first-person visual information.
Figure 2 shows the perception simulation process.

3 Implementation

The perspective taking architecture shown in Figures 1 and 2 was im-
plemented in C++ for experiments involving an observing observer
robot and a demonstrator robot. The target robots were ActivMedia
Peoplebots, equipped with grippers and firewire cameras. A version
of HAMMER was implemented and linked to the perspective taking
architecture.

3.1 Inverse and Forward Vision Models

Inverse vision models were implemented using the ARToolkit Plus,
an extension of the ARToolkit [2]. When presented with an im-
age containing two-dimensional square markers (fiducials) of known
size, the ARToolkit can calculate the position and orientation of the
markers in world co-ordinates. A set of three objects was therefore
produced with fiducials attached, and in order to extract the demon-
strator robot’s position and orientation at any point in time, a cubic
AR ‘hat’ was made, with a fiducial on each vertical face. This en-
sured that no matter which direction the demonstrator robot was fac-



ing, the observer robot would be able to determine its location and
orientation.

To construct visual scenes from the transformed cognitive map,
the forward vision models used the OpenGL graphics library
(www.opengl.org). To ensure that the same inverse vision models
as used for first-person visual processing would work with the re-
constructed image for the demonstrator robot, the fiducials used by
the ARToolkit were added in as OpenGL textures and linked to the
object entries in the cognitive map.

Figure 2. The perception simulation loop. The observer’s first-person view
of the scene is used to build up the observer’s cognitive map of the scene.

The cognitive map is filtered through the cognitive map perspective
transform that ‘filters’ the observer’s cognitive map to make it like the

demonstrator’s. This is then used as a basis for the perceptual perspective
transform, that begins with a spatial geometric transform to ‘re-centre’ on

the demonstrator, and then fed through the forward vision model to re-create
what the demonstrator is seeing. The observer can then use its inverse vision

models on the image to update its representation of the demonstrator’s
cognitive map, in the same way as it would update its own.

3.2 Cognitive Map Definition

The cognitive map was defined as being a list of objects, held in
memory. It was assumed that the robots already knew what each ob-
ject was and could identify them through the inverse vision models
(i.e. the inverse vision models were programmed to recognise the ob-
jects, through use of the fiducials, and extract relevant information).
When visual information for the objects was available from the in-
verse vision models, the cognitive map entries for those objects were
updated with world position and orientation values. Linked with this
information was a three-dimensional model of each object, and vi-
sual information (e.g. colour and texture) that would be used by the
observer’s forward vision model to re-create the image of the scene
from the point of view of the demonstrator. As can be seen from
Figure 1, the perspective-taking process is then comprised of the fol-
lowing steps:

1. The demonstrator is identified and the correct cognitive map per-
spective transform, comprising the differences from the observer’s
own cognitive map, is applied;

2. A spatial perspective transform is applied to the resulting cogni-
tive map, to re-centre it upon the demonstrator;

3. The forward vision model takes in the re-centred spatial data, and
accesses the visual information linked to the objects in the cogni-
tive map, to re-construct the image that the demonstrator is seeing.

This image is then processed by the observer’s inverse vision mod-
els, to update the demonstrator’s cognitive map transform, and to
provide state information toHAMMER.

3.3 Inverse and Forward Models

Inverse models for theHAMMER architecture were implemented as
PID controllers, generating robot velocities and delta-angle headings
in order to minimise the distance between the robot grippers and a
goal object. The state information required for the inverse models
was taken from either the observer’s own cognitive map, or its repre-
sentation of the demonstrator’s cognitive map. When used for action
simulation, the applicability levelAt of the inverse model was cal-
culated for thenth simulation iteration according to:
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The applicability accumulation is discounted over time and is in-
creased (rewarded) if the inverse model is making progress towards
achieving its goal, and decreased (punished) if it is not. The state dis-
tance between current stateSt and the goal state vectorλ is defined
as:

Sd =

M
∑

i=1

|λi − St,i| (2)

When Sd was less than a completion thresholdǫ1, the inverse
model became complete and did not generate motor commands even
when instructed to execute. In the following experiments,ǫ1 was cho-
sen to be 0.04.

Forward models used Euler integration to form 1-timestep predic-
tions based on the current state, and the robot velocity and heading
motor commands generated by the inverse models. As in [11], the
forward models were equipped with collision models of the robot
and objects in the environment, allowing the forward model to pre-
dict position and velocity states in situations when the robot ran into
tables or other objects.

3.4 Perspective Taking Visual Representations —
‘Ghosts’

Through coupling the perception simulation loop to the simulation of
action enabled by theHAMMER architecture, it is possible topredict
the visual feedbackarising from the action. By processing this visual
feedback with the inverse vision models, and updating the cognitive
map representation, the action simulation can continue further into
the future, and theoutcomeof actions predicted. In section 4, exper-
iments are described in which this approach is used to create mul-
tiple Perspective Taking Visual Representations(PTVRs), parallel
instances of the observer’s own perception and action mechanisms,
each driven by a different inverse model. Using perspective taking,
the observer can place these ‘ghosts’ in the place of the demonstrator,
and use them to predict what the visual feedback will be from possi-
ble actions the demonstrator may perform. This allows the observer
to predict the changes to the demonstrator’s knowledge of the world
during the course of a possible action, and how this may effect the
course of the action. Figure 3 shows the arrangement.



Figure 3. Perception and action simulation coupled for the generation of
PTVRs (‘ghosts’). Multiple ghosts can be instantiated and used in parallel,
each one driven by a different inverse model. By coupling theHAMMER
action simulation loop to the perception simulation loop, it is possible to
predict the visual feedback to the ghost and therefore the updates to the
ghost’s cognitive map. A ghost can represent either the observer or the

demonstrator performing a certain action.

4 Experiments

The implemented perspective-taking architecture was deployed onto
the robots arranged in the scenario shown in Figure 4.

Figure 4. Plan view of the experimental setup. The observer robot faces
two tables. Table 1 has objects 1 and 2, and table 2 has object 3. The

demonstrator robot is positioned so that it, and the tables and the objects, can
be clearly seen by the observer. The demonstrator is placed facing and close
to table 1, so that initially it is able only to see objects 1 and 2. The dashed
lines indicate the fields-of-view of the robots. The plan is not to scale, but
measurements have been provided to indicate size and relative position.

Measurements are in millimetres. The objects were 150mm across their long
edge. The ARToolKit fiducials had 120mm edge, and were mounted as per

Figure 5.

Three ARToolKit fiducials were attached to triangular objects, to
enable both the observer and the demonstrator to identify and lo-
cate those objects. The objects were placed so that both the observer
and the demonstrator could see the objects, however, initially, the
observer could see all three objects whereas the demonstrator could
see only the first two. The objects and the demonstrator robot were
given simple 3D models to enable their reconstruction into the image
produced by the forward vision model. Similarly, the implemented
HAMMER architecture was provided with three ’nudge object’ in-
verse models, one for each of the objects used during the experi-
ments. These inverse models, when activated, produced motor com-
mands for moving the robots from their current position to the spe-
cific object, and stopped when the robot gripper touched the object.

During the experiments it was assumed that the demonstrator’s cam-
era was kept stationary with respect to the robot’s frame, pointing
directly ahead of the robot.

4.1 Experimental Scenarios

The first experiment was designed to test the architecture’s ability to
update its cognitive map representations, in the presence of demon-
strator movements, and object movements both seen and unseen by
the demonstrator. There were three parts:

1. The observer takes the perspective of the demonstrator robot, and
initialises its representation of the demonstrator’s cognitive map;

2. Demonstrator rotates 45 degrees to its right. The observer, through
continual perspective taking, updates its cognitive map represen-
tations;

3. Object 1 is moved, unseen to the demonstrator, but seen by the
observer.

Experiment Two took this further, by having the observer main-
tain its cognitive map representations over five episodes of object
and demonstrator movements, in which objects were occluded from
both the demonstrator and the observer. The observer also had to
use its cognitive map representations to attempt to determine what
actions the demonstratorbelievedit could perform, through using
perspective taking and action simulation to calculate inverse model
applicabilities. The sequence was the following:

1. Demonstrator can see objects 1 and 2. Object 1 is not graspable,
and the demonstrator cannot see object 3 (Figure 4);

2. Object 1 is moved close to the demonstrator, occluding object 2
from the observer;

3. Demonstrator rotates 45 degrees to its right. Object 3 becomes
observable (as per Figure 7 B);

4. Object 1 is moved back to original position. The observer can see
this, but the demonstrator cannot;

5. Demonstrator rotates back to original position.

In Experiment Three the observer robot had to maintain its cogni-
tive map representations over four episodes ofsimultaneousdemon-
strator and object movements. The observer also had to predict the
visual feedback during each potential demonstrator action using its
PTVRs, in order to predict the impact of false beliefs on the perfor-
mance of the actions. The sequence was the following:

1. Demonstrator can see objects 1 and 2. Object 1 is not graspable,
and the demonstrator cannot see object 3 (Figure 4);

2. Demonstrator rotates 45 degrees to its right, then object 1 is moved
to a graspable position (unseen by demonstrator);

3. Objects 1 and 2 are moved away (unseen by demonstrator);
4. Demonstrator rotates back to original position. Object 3 moved

away (unseen by demonstrator).

5 Results

5.1 Experiment 1

Figure 6 shows the observer’s view of the scene during part 1 of the
experiment. The demonstrator robot and the objects are visible. Fig-
ure 6 A shows the thresholded camera image fed to the observer’s
inverse vision models, and Figure 6 B shows the resulting recon-
struction of the visual scene, using data from the observer’s cognitive



map and its forward vision model. The ARToolKit has successfully
extracted the position and orientation of the objects and the demon-
strator, and Table 1 shows the contents of the observer’s cognitive
map resulting from the processing. The X, Y, Z position and angle
of objects are extracted and updated in the observer’s cognitive map
representations while the objects are visible.

Table 1. Cognitive map entries for centroid positions and orientations of
objects when viewed by the observer robot (first-person perspective). The

values shown are relative to the observer’s camera position and orientation.
The results correspond to the scene shown in Figure 6.

Object X (m) Y (m) Z (m) Angle (Degrees)
Demonstrator -0.56 0.20 1.80 357.51
Object 1 0.32 -0.28 1.61 44.03
Object 2 0.20 -0.27 1.75 50.39
Object 3 -0.15 -0.24 2.21 12.13
Table 1 0.37 0.00 1.75 90.00
Table 2 -0.15 0.00 2.30 0.00

Figure 7 shows the result of the perceptual perspective taking. Fig-
ure 7 A is what the observer determines the demonstrator to be seeing
during the first part of the experiment; Figure 5 shows the demonstra-
tor’s actual camera image of this scene—the simulation of perception
has clearly resulted in accurate perspective taking. Objects 1 and 2
are observed, but object 3 is outside the field-of-view on the table to
the right. Figure 7 B shows the scene during part 2, after the demon-
strator has rotated 45 degrees to the right. The observer robot realises
through perspective taking that object 3 is now visible to the demon-
strator, and objects 1 and 2 are not.

Table 2 shows the results from part 3 — moving object 1 while it
can be seen by the observer, but not by the demonstrator. Through
perceptual perspective taking the observer knows that the demon-
strator cannot see the object being moved — and so, it updates its
owncognitive map with the change in position, but not the demon-
strator’s. This leads to the discrepancy between the object 1 position
values for the observer and the demonstrator, as shown in the table.
The demonstratorbelievesthat the object is in the place where it last
saw it, whereas the observerknowsit to be somewhere else.

Table 2. Cognitive map entries for observer and demonstrator after
movement of object 1 inside the observer’s field of view but outside of the
demonstrator’s. Through perceptual perspective taking, the observer knows
that the demonstrator cannot see object 1 while it is being moved, and so the

demonstrator’s cognitive map is not updated with the changes in position
and orientation as the object is moved.

Object X (m) Y (m) Z (m) Angle (Degrees)
Observer’s Cognitive Map

Object 1 0.12 0.06 0.55 20.96
Object 2 0.24 -0.26 1.82 55.07
Object 3 0.05 -0.23 2.17 40.86

Demonstrator’s Cognitive Map
Object 1 0.26 -0.03 0.83 64.40
Object 2 0.24 -0.26 1.82 55.07
Object 3 0.05 -0.23 2.17 40.86

5.2 Experiment 2

Building on the success of Experiment 1, the perspective taking was
linked to the HAMMER architecture for action simulation experi-
ments. Figure 8 shows the results of the applicability calculations for

Figure 5. The demonstrator’s view of the table and objects 1 and 2. Figure
7 (A) shows an internal simulation of this viewpoint by the observer.

Experiment 2. Each episode is separated by a period of zero applica-
bility, before the action simulations begin and then reset five seconds
later. Figure 8 A shows the applicability levels when the observer is
drawing on its representation of the demonstrator’s cognitive map to
generate state information for the inverse models, and in Figure 8 B
the observer is using its own cognitive map. The final applicability
levels achieved by each inverse model are shown in Table 3.

The top graph effectively shows the observer’s attempt to deter-
mine, through simulation, what actions the demonstratorbelievesit
can perform; the lower graph is the observer calculating what ac-
tions the demonstrator can actually perform, given the state of the
world as the observer knows it to be. In the first three episodes, the
demonstrator’s cognitive map and the observer’s own are in agree-
ment as to what inverse models are applicable: the ‘nudge object 3’
inverse model is not simulated for the demonstrator in the first two
episodes as the observer determines that the demonstrator is unaware
of object 3’s existence (through the perceptual perspective taking).
While the demonstrator is looking at object 3, object 1 is moved to
an un-nudgeable position; the demonstrator does not see this, but the
observer does, the result being that the observer calculates that the
demonstrator still believes that touching object 1 is possible, even
though it itself knows that the action cannot be accomplished. Upon
the demonstrator rotating back to observe objects 1 and 2 in episode
5, the false belief is resolved and the applicability levels are once
again in agreement.

5.3 Experiment 3

Experiment 3 took the perspective taking-action simulation of Exper-
iment 2 further, by having the observer use its PTVRs to predict the
visual feedback resulting from potential demonstrator actions, and
through this, predict the updates to the demonstrator’s cognitive map
and how this would effect the outcome of each action. Figure 9 shows
the results. Figure 9 A shows the applicability levels of the three in-
verse models over the four episodes, as determined by the observer
when observing the demonstrator and basing its action simulations
on its representation of the demonstrator’s cognitive map. Figure 9
B, C and D show the cognitive map updates predicted by each of the
three ‘ghosts’, as used by the observer during prediction of visual
feedback.

In this experiment, the demonstrator robot may not see an object
being movedat the time, but if it believes an action with that object



Figure 6. The observer’s view of the scene. (A) shows the thresholded camera image sent to the inverse vision models. Objects 1 and 2 are on the table facing
the demonstrator, and object 3 is on the table facing the observer. (B) shows the observer’s cognitive map, rendered by OpenGL. The three fiducial markers can

clearly be seen on the tables, and the demonstrator robot (and its ‘hat’) can be seen to the right.

Figure 7. The demonstrator’s view of the scene, re-created by the observer in simulation. (A) shows the what the demonstrator sees at the beginning of the
experiment, objects 1 and 2. In (B), the demonstrator robot has rotated 45 degrees to the right, and the observer determines that it is able to see object 3. The

demonstrator’s actual view of (A) is shown in Figure 5.

is still possible and begins to execute it, then after it has rotated and
seen the new object configuration, its cognitive map will be updated,
the applicability of the action re-calculated, and then it will stop ex-
ecution since it realises the action is now impossible. Episodes 3 and
4 show this; while the demonstrator is looking at object 3, objects 1
and 2 are moved away from the edge of the table. The demonstrator
still believes that the objects are touchable, and so the observer sends
out ‘ghosts’ to simulate how the action may unfold. The spikes in
Figure 9 B and C show the predicted updates to the demonstrator’s
cognitive map when it sees that the objects have moved; as can be
seen from figure Figure 9 A, negative applicabilities are calculated
and the observer predicts the demonstrator will stop executing those
actions. In episode four, the demonstrator rotates to observe the new
configuration of objects 1 and 2, and unseen, object 3 is moved away.
Figure 9 D shows the resulting cognitive map update for that episode.
Again, the result is that the inverse model is no longer applicable and
the action is halted mid-execution.

6 Discussion

In developmental psychology, several experimental tasks have
been devised in order to investigate the development of cognitive
perspective-taking abilities in the paradigm offalse belief. One of

the first tasks in this field was devised by the developmental psychol-
ogists Heinz Wimmer and Josef Perner, in response to Daniel Den-
nett’s critique of the experimental protocols used by David Premack
and Guy Woodruff in their seminal article that originated the term
‘Theory of Mind’ [19, 14]. This is theaction predictiontask (also
known as the “unexpected transfer” task).

The action prediction task tests an observer determining what a
target agent will do when holding a false belief about the world. The
test subject, usually a child, observes a puppet-show involving the
main character, “Maxi”, and his mother. In the show, Maxi watches
his mother place a chocolate bar inside a box. Maxi then leaves the
room and his mother transfers the chocolate from that box into a dif-
ferent one. Maxi then returns, and the subject is asked where he will
look for the chocolate. Further questions include what Maxi would
tell to someone he wants to deceive as to the location of the choco-
late, and someone he would want to tell the truth to. The result of this
task is that four-year-old children give predictions based on correctly
attributing the false belief, whereas younger children do not.

Through the use of the cognitive map perspective taking described
in this paper, the observer would be able to solve this task. By being
able to represent the cognitive map of the demonstrator robot sepa-
rate to its own, the observer robot is intrinsically able to represent the
concept that the demonstrator may possess a false belief about the



Figure 8. Applicability levels of the observer’s inverse models to the demonstrator, over five repeated episodes. Each episode lasted five seconds, after which
the applicability levels were reset to zero. Table 3 shows the final applicability levels for each inverse model at the end of the each episode.

Figure 9. A. Applicability levels of the observer’s inverse models to the demonstrator, over four repeated episodes.B, C, D. Cognitive map updates for each
of the three ‘ghosts’, executing the inverse models ‘nudge object’ 1, 2, and 3 respectively. A spike indicates that the ‘ghost’ has seen something that necessitates

a change to the cognitive map, and an update is made accordingly. The legend for these graphs is the same as for Figure 8.

location of objects in the world, due to objects moving outside the
field-of-view, or object movement being obscured due to occlusions
within the field of view. When asked to make predictions as to what
the demonstrator may do in such situations, the observer robot is then
able to take into account the false belief in the demonstrator’s goal
setting and action planning. This is illustrated through the results to
part 3 of experiment 1, detailed in section 5.1. Through perceptual
perspective taking the observer knows that the demonstrator cannot
see object 1 being moved — and so, it updates itsowncognitive map
with the change in position, but not the demonstrator’s.

Knowledge of this kind, as to the presence of false beliefs in ob-
served agents, can be used by an observer to determine what actions
a target agent considers to be available to it, as opposed to what ac-
tions it can in fact perform. This information is useful when priming
a Simulation-Theory based architecture, such as theHAMMER archi-

tecture, with the action simulations it requires for action recognition.
The demonstrator will derive its own action goals from what it be-
lieves to be the state of the world and move accordingly, and without
a representation of the demonstrator’s cognitive map, the observer
will feed its perspective transform with its own world-state beliefs
and potentially end up hypothesizing different goals for its action
generation systems — this results in the comparison between inter-
nally generated action and observed action being meaningless. In
other words, using perceptual perspective taking alone means that
we see the world aswe believe it is from the demonstrator’s point
of view, whereas what we need to do, in order to infer intention,
is see the world as thedemonstratorbelieves it is from the demon-
strator’s point of view. To do the former is to risk not recognising
the demonstrator’s movements and their action context at all, or to
mis-recognise the action as being something else, or to be unable



Table 3. Final applicability levels for each inverse model shown in Figure 8. ‘D’ indicates that the observer is using its representation of the demonstrator’s
cognitive map when determining what inverse models are applicable; ‘O’ indicates that the observer is using its own cognitive map to determine the

applicability level of the inverse models. The numbers highlighted in bold type, for ‘Nudge object 1’ in episode 4, indicates the situation where the observer
determines that the demonstrator may possess afalse beliefas to the actions it can make. The absence applicability levels for ‘Nudge object 3’ in episodes 1

and 2 is due to the demonstrator robot being unaware, at that stage, of the existence of object 3.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5

I-Model D O D O D O D O D O

Nudge object 1 -8.80 1.07 3.35 3.05 3.65 3.28 3.65 0.26 -5.28 0.98
Nudge object 2 3.59 3.89 3.59 3.93 3.69 3.22 3.69 3.50 3.97 3.90
Nudge object 3 — 2.85 — 2.86 2.83 2.55 2.87 2.65 3.01 3.25

to interpret the demonstrator’s goal, and therefore be unable to imi-
tate or learn. The results for experiments 2 and 3 show how through
coupling the perspective taking architecture developed in this paper
to the action simulation capabilities ofHAMMER, the observer can
successfullypredict andattributeactions to the demonstrator, while
taking into account prior knowledge and experience, and potential
false beliefs.

In previous research, theHAMMER architecture was used to model
and make predictions regarding the visuomotor ‘mirror’ neurons
found in area F5 of macaque monkey premotor cortex [3]. These
neurons are active both when observing an object-directed action,
and when performing the same action, leading to suggestions that
they underly the imitation capability. Recently, it was found that a
subset of these neurons fire even when the object goal of the action
is hidden from view, so long as the observer has prior knowledge of
the object’s presence [17]. With the addition of the cognitive map
mechanism described in this paper,HAMMER gains this capability,
by keeping a long-term memory of the locations of objects. This can
be seen in the results for episode 2 of Experiment 2, where object 1
occludes object 2 from the observer’s sight, but the action simulation
is still performed. Furthermore, the results of section 5 offer a further
prediction—that when a demonstrator performs an action based on a
knownfalse beliefas to the presence of an object, the observer’s mir-
ror neurons will fire. Although there is currently no evidence either
way, this would lend support to the hypothesis that the mirror neu-
rons encodeintentionand underly action understanding, in addition
to action recognition.

7 Conclusions

In this paper we have presented a perspective-taking architecture that
uses simulation of visual perception to build up and maintain repre-
sentations of the cognitive map of a demonstrator. This mechanism,
used to improve the state information provided to theHAMMER im-
itation architecture, was deployed onto robots for perspective-taking
and action-prediction experiments, in which an observer successfully
attributed potential actions and action predictions to a demonstrator
possessing false beliefs regarding the environment. In future work,
the mechanism will extended and investigated in experiments involv-
ing the observer inferring false beliefs from the actions of a demon-
strator.
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Abstract. One of the long-term goals in the domain of human-
robot interaction is that robots will approach these interactions 
equipped with some of the same fundamental cognitive capabilities 
that humans use.  This will include the ability to perceive and 
understand human action in terms of an ultimate goal, and more 
generally to represent shared intentional plans in which the goal 
directed actions of the robot and the human are interlaced into a 
shared representation of how to achieve a common goal in a 
cooperative manner.  The current research takes specific 
experimental protocols from studies of cognitive development to 
define behavior milestones for a perceptual-motor robotic system.  
Based on a set of previously established principals for defining the 
“innate” functions available to such a system, a cognitive 
architecture is developed that allows the robot to perform 
cooperative tasks at the level comparable to that of an 18 month 
old human child.  Structural and functional properties of the 
primate neurophysiological mechanisms for action processing are 
used to provide further constraints on how the architecture is 
implemented.   At the interface of cognitive development and 
robotics, the results on cooperation and imitation provide (1) a 
concrete demonstration of how cognitive neuroscience and 
developmental studies can contribute to human-robot interaction 
fidelity, and (2) a demonstration of how robots can be used to 
experiment with theories on the implementation of cognition in the 
developing human. 
 

1. INTRODUCTION 
One of the current open challenges in cognitive computational 

neuroscience is to understand the neural basis of the human ability 
to observe and imitate action.  The results from such an endeavor 
can then be implemented and tested in robotic systems.  Recent 
results from human and non-human primate behavior, 
neuroanatomy and neurophysiology provide a rich set of 
observations that allow us to constrain the problem of how 
imitation is achieved.  The current research identifies and exploits 
constraints in these three domains in order to develop a system for 
goal directed action perception and imitation.   

An impressive body of research exists on human imitation (62K 
responses to “human imitation” in Google Scholar), which has 
been empirically studied for over 100 years [15].  One of the 
recurrent findings across these studies is that in the context of goal 
directed action, it is the goal itself that tends to take precedence in 
defining what is to be imitated, rather than the means [1, 6, 25, 28, 
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29].  Of course in some situations it is the details (e.g. kinematics) 
of the movement itself that are to be imitated (see discussion in [6, 
7]), but the current research focuses on goal based imitation.  This 
body of research helped to formulate questions concerning what 
could be the neurophysiological substrates for goal based 
imitation.  In 1992 di Pellegrino in the Rizzolatti lab [8] published 
the first results on “mirror” neurons, whose action potentials 
reflected both the production of specific goal-directed action, and 
the perception of the same action being carried by the 
experimenter.  Since then, the premotor and parietal mirror system 
has been studied in detail in monkey (by single unit recording) and 
in man (by PET and fMRI) [see 25 for review].   

In the context of understanding imitation, the discovery of the 
mirror system had an immense theoretical impact, as it provided 
justification for a common code for action production and 
perception.  In recent years a significant research activity has used 
simulation and robotic platforms to attempt to link imitation 
behavior to the underlying neurophysiology at different levels of 
detail (see [24 and 27] for recent reviews from different 
perspectives, edited volumes [22, 23], and a dedicated special issue 
of Neural Networks [2]).  Such research must directly address the 
question of how to determine what to imitate.  Carpenter and Call 
[6] distinguish three aspects of the demonstration to copy:  the 
physical action, the resulting change in physical state, and the 
inferred goal – the internal representation of the desired state.  
Here we concentrate on imitation of the goal, with the advantage of 
eliminating the difficulties of mapping detailed movement 
trajectories across the actor and imitator [7]. 

Part of the novelty of the current research is that it will explore 
imitation in the context of cooperative activity in which two agents 
act in a form of turn-taking sequence, with the actions of each one 
folding into an interleaved and coordinated intentional action plan.  
We use the term “shared intentional plan” to insist on the idea that 
multiple agents have a shared intention that will  be realized 
through their use of a corresponding plan – the shared intentional 
plan.   With respect to constraints derived from behavioral studies, 
we choose to examine child development studies, because such 
studies provide well-specified protocols that test behavior that is 
both relatively simple, and pertinent.  The expectation is that a 
system that can account for this behavior should extend readily to 
more complex behavior, as demonstrated below. 

Looking to the developmental data, Warneken, Chen and 
Tomasello [31] engaged 18-24 month children and young 
chimpanzees in goal-oriented tasks and social games which 
required cooperation.  They were interested both in how the 
cooperation would proceed under optimal conditions, but also how 
the children and chimps would respond when the adult had a 
problem in performing the task.  The principal finding was that 
children enthusiastically participate both in  goal directed  
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cooperative tasks and social games, and spontaneously attempt to 
reengage and help the adult when he falters.  In contrast, chimps 
are uninterested in non-goal directed social games, and appear 
wholly fixed on attaining food goals, independent of cooperation.  
Warneken et al. thus observed what appears to be a very early 
human capacity for (1) actively engaging in cooperative activities 
for the sake of cooperation, and (2) for helping or reengaging the 
perturbed adult [30, 31].     

In one of the social games, the experiment began with a 
demonstration where one participant sent a wooden block sliding  
down an inclined tube and the other participant caught the block in 
a tin cup that made a rattling sound.  This can be considered more 
generally as a task in which one participant moves an object so that 
the second participant can then in turn manipulate the object.  This 
represents a minimal case of a coordinated action sequence.  After 
the demonstration, in Trials 1 and 2 the experimenter sent the 
block down one of the tubes three times, and then switched to the 
other, and the child was required to choose the same tube as the 
partner.  In Trials 3 and 4 during the game, the experimenter 
interrupted the behavior for 15 seconds and then resumed.   

Behaviorally, children successfully participated in the game in 
Trials 1 and 2.  In the interruption Trials 3 and 4 they displayed 
two particularly interesting types of response that were (a) to 
attempt to perform the role of the experimenter themselves, and/or 
(b) to reengage the experimenter with a communicative act. This 
indicates that the children had a clear awareness both of their role 
and that of the adult in the shared coordinated activity.  This 
research thus identifies a set of behavioral objectives for robot 
behavior in the perception and execution of cooperative intentional 
action.  Such behavior could, however, be achieved in a number of 
possible architectures.   

In order to begin to constrain the space of possible solutions we 
can look to recent results in human and primate neurophysiology 
and neuroanatomy.  It has now become clearly established that 
neurons in the parietal cortex and the premotor cortex encode the 
goal of simple actions both for the execution of these actions as 
well as for the perception of these same goal-directed actions when 
performed by a second agent [8, 25]. This research thus 

corroborates the emphasis from behavioral studies on the 
importance of the goal (rather than the details of the means) in 
action perception [1, 6, 25, 28, 29].   It has been suggested that 
these “mirror” neurons play a crucial role in imitation, as they 
provide a common representation for the perception and 
subsequent execution of a given action.  Interestingly, however, it 
has been clearly demonstrated that the imitation ability of non-
human primates is severely impoverished when compared to that of 
humans [25, 29-31].  This indicates that the human ability to 
imitate novel actions and action sequences in real time (i.e. after 
only one or two demonstrations) relies on additional neural 
mechanisms.   

In this context, a recent study of human imitation learning [5] 
implicates Brodmann’s area (BA) 46 as responsible for 
orchestrating and selecting the appropriate actions in novel 
imitation tasks. We have recently proposed that BA 46 participates 
in a dorsal stream mechanism for the manipulation of variables in 
abstract sequences and language [14].  Thus, variable “slots” that 
can be instantiated by arbitrary motor primitives during the 
observation of new behavior sequences, are controlled in BA 46, 
and their sequential structure is under the control of corticostriatal 
systems which have been clearly implicated in sensorimotor 
sequencing (see [14]).  This allows us to propose that this 
evolutionarily more recent cortical area BA 46 may play a crucial 
role in allowing humans to perform compositional operations (i.e. 
sequence learning) on more primitive action representations in the 
ventral premotor and parietal motor cortices.  In other words, 
ventral premotor and parietal cortices instantiate shared perceptual 
and motor representations of atomic actions, and BA46 provides 
the capability to compose arbitrary sequences of these atomic 
actions, while relying on well known corticostriatal 
neurophysiology for sequence storage and retrieval.  The 
functional result is the human ability to observe and represent 
novel behavioral action sequences.  We further claim that this 
system can represent behavioral sequences from the “bird’s eye 
view” or third person perspective, as required for the cooperative 
tasks of Warneken et al. [31].  That is, it can allow one observer to 
perceive and form an integrated representation of the coordinated 

 
Fig 1.  Cooperation System. In a shared work-space, human and robot manipulate objects (green, yellow, read and blue  circles corresponding to dog, 
horse, pig and duck), placing them next to the fixed landmarks (light, turtle, hammer, etc.). Action: Spoken commands interpreted as individual words 
or grammatical constructions, and the command and possible arguments are extracted using grammatical constructions in Language Proc.  The 
resulting Action(Agent, Object, Recipient) representation is the Current Action.  This is converted into robot command primitives (Motor Command) 
and joint angles (Motor Control) for the robot. Perception:  Vision provides object location input, allowing action to be perceived as changes in World 
State (State Comparator).  Resulting Current Action used for action description, imitation, and cooperative action sequences.  Imitation: The user 
performed action is perceived and encoded in Current Action, which is then used to control the robot under the supervision of Executive Control.  
Cooperative Games.  During observations, individual actions are perceived, and attributed to the agent or the other player (Me or You).  The action 
sequence is stored in the We Intention structure, that can then be used to separately represent self vs. other actions..     



 
 

actions of two other agents engaged in a cooperative activity.  The 
observer can then use this representation to step in and play the 
role of either of the two agents. 

2. IMPLEMENTATION 
In a comment on Tomasello et al [29] on understanding and 

sharing intention, Dominey [10] analyses how a set of initial 
capabilities can be used to provide the basis for shared intentions.  
This includes capabilities to  

 
1. perceive the physical states of objects,  
2. perceive (and perform) actions that change these states,  
3. distinguish between self and other,  
4. perceive emotional/evaluation responses in others, and  
5. learn sequences of predicate-argument representations. 
 
The goal is to demonstrate how these 5 properties can be 

implemented within the constraints of the neurophysiology data 
reviewed above in order to provide the basis for performing these 
cooperative tasks.  In the current experiments the human and robot 
cooperate by moving physical objects to different positions in a 
shared work-space as illustrated in Figures 1 and 2.  The 4 
moveable objects are pieces of a wooden puzzle, representing a 
dog, a pig, a duck and a cow.  These pieces can be moved by the 
robot and the user in the context of cooperative activity.  Each has 
fixed to it a vertically protruding metal screw, which provides an 
easy grasping target both for the robot and for humans.  In addition 
there are 6 images that are fixed to the table and serve as landmarks 
for placing the moveable objects, and correspond to a light, a 
turtle, a hammer, a rose, a  lock and a lion, as partially illustrated in 
Figures 1 & 2.  In the interactions, human and robot are required to 
place objects in zones next to the different landmarks, so that the 
robot can more easily determine where objects are, and where to 
grasp them.  Figure 1 provides an overview of the architecture, and 
Figure 2, which corresponds to Experiment 6 provides an overview 
of how the system operates.   
 

2.1 Representation 
The structure of the internal representations is a central factor 

determining how the system will function, and how it will 
generalize to new conditions.  Based on the neurophysiology 
reviewed above, we use a common representation of action for 
both perception and production.  Actions are identified by the 
agent, the object, and the target location to move that object to.  As 
illustrated in Figure 1, by taking the short loop from vision, via 
Current Action Representation, to Motor Command, the system is 
thus configured for a form of goal-centered action imitation.  This 
will be expanded upon below.   

A central feature of the system is the World Model that 
represents the physical state of the world, and can be accessed and 
updated by vision, motor control, and language, similar to the 
Grounded Situation Model of [21]. The World Model encodes the 
physical locations of objects  that is updated by vision and 
proprioception (i.e. robot action updates World Model with new 
object location).   Changes in the World Model in terms of an 
object being moved allows the system to detect actions in terms 
these object movements. Actions are represented in terms of the 
agent, the object and the goal of the action, in the form 
MOVE(object, goal location, agent). These representations can be 
used for commanding action, for describing recognized action, and 
thus for action imitation and narration, as seen below.    

In order to allow for more elaborate cooperative activity, the 
system must be able to store and retrieve actions in a sequential 
structure.  This form of real time sequence learning for imitation is 
not observed in non-human primates.  Interestingly, in this context, 
an fMRI study [5] that addressed the human ability to observe  and 
program arbitrary actions indicated that a cortical area (BA46) 
which is of relatively recent phylogenetic origin is involved in such 
processes. Rizzolatti and Craighero [25] have thus suggested that 
the BA 46 in man will orchestrate allow the real-time capability to 
store and retrieve recognized actions, and we can further propose 
that this orchestration will recruit canonical brain circuitry for 
sequence processing including the cortico-striatal system (see [14] 
for discussion of such sequence processing).  

 
Figure 2.  Cooperative task of Exp 5-6.  Robot arm, with 6 landmarks 
(Light, turtle, hammer, rose, lock and lion from top to bottom).  Moveable 
objects include Dog and Horse. In A-D, human demonstrates a “horse 
chase the dog” game, and successively moves the Dog then Horse, 
indicating that in the game, the user then the robot are agents, respectively.  
After demonstration, human and robot “play the game”. In each of E – F 
user moves Dog, and robot follows with Horse. In G robot moves horse, 
then in H robot detects that the user is having trouble and so “helps” the 
user with the final move of the dog.  See Exp 5 & 6.   
 

In the current study we address behavioral conditions in 
which focus on the observation and immediate re-use of an 
intentional (goal directed) action plan.  However, in the more 
general case, one should consider that multiple intentional action 
plans can be observed and stored in a repertory (IntRep or 
Intentional Plan Repertory in Figure 1).  When the system is 
subsequently observing the behavior of others, it can compare the 
ongoing behavior to these stored sequences.  Detection of a match 



 
 

with the beginning of a stored sequence can be used to retrieve the 
entire sequence.  This can then be used to allow the system to 
“jump into” the scenario, to anticipate the other agent’s actions, 
and/or to help that agent if there is a problem. 
 

2.2 Visual perception 
Visual perception is a challenging technical problem.  To 

simplify, standard lighting conditions and a small set  (n = 10) of 
visual object to recognize are employed (4 moveable objects and 6 
location landmarks).  A VGA webcam is positioned at 1.25 meters 
above the robot workspace.  Vision processing is provided by the 
Spikenet Vision System (http://www.spikenet-technology.com/).  
Three recognition models for each object at different orientations 
(see Fig. 3) were built with an offline model builder. During real-
time vision processing, the models are recognized, and their (x, y) 
location in camera coordinates are provided.  Our vision post-
processing eliminates spurious detections and returns the reliable 
(x, y) coordinates of each moveable object in a file.  The nearest 
landmark is then calculated.  

 
 

Figure 3.  Vision processing.  Above: A. – D.  Three templates each for the 
Dog, Duck, Horse and Pig objects at three different orientations.  Below, 
encompassing circles indicate template recognition for the four different 
objects near different fixed landmarks, as seen from the camera over the 
robot workspace 

 

2.3 Motor Control & Visual-Motor Coordination 
While visual-motor coordination is not the focus of the current 

work, it was necessary to provide some primitive functions to 
allow goal directed action.  All of the robot actions, whether 
generated in a context of imitation, spoken command or 
cooperative interaction will be of the form move(x to y) where x is 
a member of a set of visually perceivable objects, and y is a 
member of the set of fixed locations on the work plan. 

Robot motor control for transport and object manipulation with 
a two finger gripper is provided by the 6DOF Lynx6 arm 
(www.lynxmotion.com).  The 6 motors of the arm are coordinated 
by a parallel controller connected to a PC computer that provides 
transmission of robot commands over the RS232 serial port. 

Human users (and the robot) are constrained when they move an 
object, to place it in one of the zones designated next to each of the 
six landmarks (see Fig 3).  This way, when the nearest landmark 
for an object has been determined, this is sufficient for the robot to 
grasp that object at the prespecified zone.   

In a calibration phase, a target point is marked next to each of 
the 6 fixed landmark locations, such that they are all on an arc that 
is equidistant to the center of rotation of the robot arm base.  For 
each, the rotation angle of Joint 0 (the rotating shoulder base) 
necessary to align the arm with that point is then determined, along 
with a common set of joint angles for Joints 1 – 5 that position the 
gripper to seize any of the objects.  Angles for Joint 6 that controls 
the closing and opening of the gripper to grasp and release an 
object were then identified.  Finally a neutral position to which the 
arm could be returned in between movements was defined.  The 
system was thus equipped with a set of primitives that could be 
combined to position the robot at any of the 6 grasping locations, 
grasp the corresponding object, move to a new position, and place 
the object there.  

 
 

 
Figure 4.  Spoken Language Based Cooperation flow of control.  
Interaction begins with proposal to act, or imitate/play a game.  Act – user 
says an action that is verified and executed by robot.  World Model 
updated based on action.  Downward arrow indicates return to Start.  
Imitate/Play – user demonstrates actions to robot and says who the agent 
should be when the game is to be played (e.g. “You/I do this”).  Each time, 
system checks the state of the world, invites the next action and detects the 
action based on visual object movement.  When the demo is finished, the 
plan (of a single item in the case of imitation) is stored and executed (Play 
Plan).  If the user is the agent (encoded as part of the game sequence), 
system checks execution status and helps user if failure.  If robot is agent, 
system executes action, and then moves on to next item. 

 

2.4 Cooperation Control Architecture 
The spoken language control architecture illustrated in Fig 4 is 

implemented with the CSLU Rapid Application Development 
toolkit (http://cslu.cse.ogi.edu/toolkit/).  This system provides a 
state-based dialog management system that allows interaction with 
the robot (via the serial port controller) and with the vision 
processing system (via file i/o).  It also provides the spoken 
language interface that allows the user to determine what mode of 
operation he and the robot will work in, and to manage the 
interaction via spoken words and sentences. 

Figure 4 illustrates the flow of control of the interaction 
management.  In the Start state the system first visually observes 



 
 

where all of the objects are currently located. From the start state, 
the system allows the user to specify if he wants to ask the robot to 
perform actions (Act), to imitate the user, or to play (Imitate/Play).  
In the Act state, the user can specify actions of the form “Put the 
dog next to the rose” and a grammatical construction template [9, 
11-14] is used to extract the action that the robot then performs.    

 

2.5  Imitation and Learning Shared Intentional 
Plans 

In the Imitate state, the robot first verifies the current state 
(Update World) and then invites the user to demonstrate an action 
(Invite Action).  The user shows the robot one action.  The  robot 
re-observes the world and detects the action based on changes 
detected (Detect Action).  In particular, it will observe that an 
object has been moved to a new location.  This corresponds to the 
action of moving the object to that location.  This action is then 
saved and transmitted (via Play the Plan with Robot as Agent) to 
execution (Execute action).  A predicate(argument) representation 
of the form Move(object, landmark) is used both for action 
observation and execution, thus radically simplifying the 
correspondence problem [see 27].   Imitation is thus a minimal 
case of Playing in which the “game” is a single action executed by 
the robot.   

In the more general case, the robot should learn to play a game 
that involves a succession of moves executed by the user and robot 
in a specific turn-taking sequence.  For a given game, the user can 
demonstrate multiple successive actions, and indicate the agent - 
by saying “You/I do this” - for each action.  The resulting 
intentional plan specifies what is to be done by whom.  When the 
user specifies that the plan is finished, the system moves to the 
Save Plan.  In this state, the system stores the shared intentional 
plan, consisting of a sequence of actions and a specification of the 
agent for each of these action.  Control then moves on to the Play 
Plan state.  For each action, the system recalls whether it is to be 
executed by the robot or the user.  Robot execution takes the 
standard Execute Action pathway.  User execution performs a 
check (based on user response) concerning whether the action was 
correctly performed or not.  If the user action is not performed, 
then the robot communicates with the user, and performs the action 
itself.  Thus, “helping” was implemented by combining an 
evaluation of the user action, with the existing capability to 
perform a stored action representation. 

Once the shared intentional plan has been stored or “learned” it 
can then be re-used in the future.  This, when entering the 
Imitate/Play state, the user is given the option of playing the most 
recently learned game, or learning a new one. 
 

3. EXPERIMENTAL RESULTS 
For each of the 6 following experiments, equivalent variants 

were repeated at least ten times to demonstrate the generalized 
capability and robustness of the system.  In less than 5 percent of 
the trials, errors of two types were observed to occur.  Speech 
errors resulted from a failure in the voice recognition, and were 
recovered from by the command validation check (Robot: “Did 
you say …?”).  Visual image recognition errors occurred when the 
objects were rotated beyond 20° from their upright position.  These 
errors were identified when the user detected that an object that 
should be seen was not reported as visible by the system, and were 
corrected by the user re-placing the object and asking the system to 

“look again”.  At the beginning of each trial the system first queries 
the vision system, and updates the World Model with the position 
of all visible objects.  It then informs the user of the locations of 
the different objects, for example “The dog is next to the lock, the 
horse is next to the lion.”  It then  asks the user “Do you want me 
to act, imitate, play or look again?”, and the user responds with one 
of the action-related options, or with “look again” if the scene is 
not described correctly.   

3.1 Experiment 1:  Validation of Sensorimotor 
Control  

In this experiment, the user says that he wants the “Act” state 
(Fig 4), and then uses spoken commands such as “Put the horse 
next to the hammer”.  Recall that the horse is among the moveable 
objects, and hammer is among the fixed landmarks.  The robot 
requests confirmation and then extracts the predicate-argument 
representation - Move(X to Y) - of the sentence based on 
grammatical construction templates. In the Execute Action state, 
the action Move(X to Y) is decomposed into two movement 
primitives [27] of Get(X), and Place-At(Y). Get(X) queries the 
World Model in order to localize X with respect to the different 
landmarks, and then performs a grasp at the corresponding 
landmark target location.  Likewise, Place-At(Y) simply performs a 
transport to target location Y and releases the object.  
Decomposing the get and place functions allows the composition 
of all possible combinations in the Move(X to Y) space.  Ten trials 
were performed moving the four objects to and from different 
landmark locations.  Experiment 1 thus demonstrates (1) the ability 
to transform a spoken sentence into a Move(X to Y) command, (2) 
the ability to perform visual localization of the target object, and 
(3) the sensory-motor ability to grasp the object and put it at the 
specified location.  In ten experimental runs, the system performed 
correctly. 

3.2 Experiment 2:  Imitation 
In this experiment the user chooses the “imitate” state.  As 

stated above, imitation is centered on the achieved ends – in terms 
of observed changes in state – rather than the means towards these 
ends.  Before the user performs the demonstration of the action to 
be imitated, the robot queries the vision system, and updates the  
World Model (Update World in Fig 4) and then invites the user to 
demonstrate an action.  The robot pauses, and then again queries 
the vision system and continues to query until it detects a 
difference between the currently perceived world state and the 
previously stored World Model (in State Comparator of Fig 1, and 
Detect Action in Fig 4), corresponding to an object displacement.  
Extracting the identity of the displaced object, and its new location 
(with respect to the nearest landmark)  allows the formation of an 
Move(object, location) action   representation.  Before imitating, 
the robot operates on this representation with a meaning-to-
sentence construction in order to verify the action to the user, as in 
“Did you put the dog next to the rose?”  It then asks the user to put 
things back as they were so that it can perform the imitation.  At 
this point, the action is executed (Execute Action in Fig 4).  In ten 
experimental runs the system performed correctly.  This 
demonstrates (1) the ability of the system to detect the goals of 
user-generated actions based on visually perceived state changes, 
and (2) the utility of a common representation of action for 
perception, description and execution. 
 



 
 

3.3 Experiment 3:  A Cooperative Game  
The cooperative game is similar to imitation, except that there is 

a sequence of actions (rather than just one), and the actions can be 
effected by either the user or the robot in a cooperative manner.  In 
this experiment, the user responds to the system request and enters 
the “play” state.  In what corresponds to the demonstration in 
Warneken et al.  [17] the robot invites the user to start showing 
how the game works.  The user then begins to perform a sequence 
of actions.  For each action, the user specifies who does the action, 
i.e. either “you do this” or “I do this”.   The intentional plan is thus 
stored as a sequence of action-agent pairs, where each action is the 
movement of an object to a particular target location.  In Fig 1, the 
resulting interleaved sequence is stored as the “We intention”, i.e. 
an action sequence in which there are different agents for different 
actions. When the user is finished he says “play the game”.  The 
robot then begins to execute the stored  intentional plan.  During 
the execution, the “We intention” is decomposed into the 
components for the robot (Me Intention) and the human (You 
intention). 

In one run, during the demonstration, the user said “I do this” 
and moved the horse from the lock location to the rose location.  
He then said “you do this” and moved the horse back to the lock 
location.  After each move, the robot asks “Another move, or shall 
we play the game?”.  When the user is finished demonstrating the 
game, he replies “Play the game.”  During the playing of this game, 
the robot announced “Now user puts the horse by the rose”.  The 
user then performed this movement.  The robot then asked the user 
“Is it OK?” to which the user replied “Yes”.  The robot then 
announced “Now robot puts the horse by the lock” and performed 
the action.  In two experimental runs of different demonstrations, 
and 5 runs each of the two demonstrated games, the system 
performed correctly.  This demonstrates that the system can learn a 
simple intentional plan as a stored action sequence in which the 
human and the robot are agents in the respective actions. 

 
 

Action User identifies 
 agent 

User Demonstrates Action  Ref in 
Figure 2 

1. I do this Move dog from the lock to the 
rose 

B 

2. You do this Move the horse from the lion 
to the lock 

B 

3. I do this  Move the dog from the 
rose to the hammer 

C 

4. You do this  Move the horse from the lock 
to the rose 

C 

5. You do this Move the horse from the rose 
to the lion 

D 

6. I do this  Move the dog from the 
hammer to the lock 

D 

Table 1.  Cooperative “horse chase the dog” game specified by the user in 
terms of who does the action (indicated by saying) and what the action is 
(indicated by demonstration).  Illustrated in Figure 2. 

 

3.4 Experiment 4:  Interrupting a Cooperative 
Game 

In this experiment, everything proceeds as in experiment 3, 
except that after one correct repetition of the game, in the next 
repetition, when the robot announced “Now user puts the horse by 
the rose” the user did nothing.  The robot asked “Is it OK” and 
during a 15 second delay, the user replied “no”.  The robot then 
said “Let me help you” and executed the move of the horse to the 

rose.  Play then continued for the remaining move of the robot.  
This illustrates how the robot’s stored representation of the action 
that was to be performed by the user allowed the robot to “help” 
the user. 

3.5 Experiment 5:  A More Complex Game 
Experiment 3 represented the simplest behavior that could 

qualify as a cooperative action sequence.  In order to more 
explicitly test the intentional sequencing capability of the system, 
this experiment replicates Exp 3 but with a more complex task, 
illustrated in Figure 2.  In this game (Table 1), the user starts by 
moving0 the dog, and after each move the robot “chases” the dog 
with the horse, till they both return to their starting places.   

As in Experiment 3, the successive actions are visually 
recognized and stored in the shared “We Intention” representation.  
Once the user says “Play the game”, the final sequence is stored, 
and then during the execution, the shared sequence is decomposed 
into the robot and user components based on the agent associated 
with each action.  When the user is the agent, the system invites the 
user to make the next move, and verifies (by asking) if the move 
was ok.  When the system is the agent, the robot executes the 
movement.  After each move the World Model is updated.  As in 
Exp 3, two different complex games were learned, and each one 
“played” 5 times.  This illustrates the learning by demonstration 
[31] of a complex intentional plan in which the human and the 
robot are agents in a coordinated and cooperative activity. 

 

3.6 Experiment 6:  Interrupting the Complex Game 
As in Experiment 4, the objective was to verify that the robot 

would take over if the human had a problem.  In the current 
experiment this capability is verified in a more complex setting.  
Thus, when the user is making the final movement of the dog back 
to the “lock” location, he fails to perform correctly, and indicates 
this to the robot.  When the robot detects failure, it reengages the 
user with spoken language, and then offers to fill in for the user.  
This is illustrated in Figure 2H.  This demonstrates the generalized 
ability to help that can occur whenever the robot detects the user is 
in trouble. 

4. DISCUSSION 
 Significant progress has been made in identifying some of the 

fundamental characteristics of human cognition in the context of 
cooperative interaction, particularly with respect to social 
cognition [16-19].  Breazeal and Scassellati [4]  investigate how 
perception of socially relevant face stimuli and object motion will 
both influence the emotional and attentional state of the system and 
thus the human-robot interaction.  Scassellati [26] further 
investigates how developmental theories of human social cognition 
can be implemented in robots.  In this context, Kozima and Yano 
[18] outline how a robot can attain intentionality – the linking of 
goal states with intentional actions to achieve those goals – based 
on innate capabilities including: sensory-motor function and a 
simple behavior repertoire, drives, an evaluation function, and a 
learning mechanism.   

The abilities to observe an action, determine its goal and 
attribute this to another agent are all clearly important aspects of 
the human ability to cooperate with others.  The current research 
demonstrates how these capabilities can contribute to the “social” 
behavior of learning to play a cooperative game, playing the game, 
and helping another player who has gotten stuck in the game, as 



 
 

displayed in 18-24 month children [29, 30].  While the primitive 
bases of such behavior is visible in chimps, its full expression is 
uniquely human [29, 30].  As such, it can be considered a crucial 
component of human-like behavior for robots.   

The current research is part of an ongoing effort to understand 
aspects of human social cognition by bridging the gap between 
cognitive neuroscience, simulation and robotics [3, 9-14], with a 
focus on the role of language (see [20]).  The experiments 
presented here indicate that functional requirements derived from 
human child behavior and neurophysiological constraints can be 
used to define a system that displays some interesting capabilities 
for cooperative behavior in the context of imitation.  Likewise, 
they indicate that evaluation of another’s progress, combined with 
a representation of his/her failed goal provides the basis for the 
human characteristic of “helping.”  This may be of interest to 
developmental scientists, and the potential collaboration between 
these two fields of cognitive robotics and human cognitive 
development is promising.    The developmental cognition 
literature lays out a virtual roadmap for robot cognitive 
development [10, 28].  In this context, we are currently 
investigating the development of hierarchical means-end action 
sequences [27]. At each step, the objective will be to identify the 
behavior characteristic and to implement it in the most economic 
manner in this continuously developing system for human-robot 
cooperation.  

At least two natural extensions to the current system can be 
considered.  The first involves the possibility for changes in 
perspective.  In the experiments of Warneken et al. the child 
watched two adults perform a coordinated task (one adult 
launching the block down the tube, and the other catching the 
block).  At 24 months, the child can thus observe the two roles 
being played out, and then step into either role.  This indicates a 
“bird’s eye view” representation of the cooperation, in which 
rather than assigning “me” and “other” agent roles from the outset, 
the child represents the two distinct agents A and B for each action 
in the cooperative sequence.  Then, once the perspective shift is 
established (by the adult taking one of the roles, or letting the child 
choose one) the roles A and B are assigned to me and you (or vice 
versa) as appropriate.   

This actually represents a minimal change to our current system.  
First, rather than assigning the “you” “me” roles in the We 
Intention at the outset, these should be assigned as A and B.  Then, 
once the decision is made as to the mapping of A and B onto robot 
and user, these agent values will then be assigned accordingly.  
Second, rather than having the user tell the robot “you do this” and 
“I do this” the vision system can be modified to recognize different 
agents who can be identified by saying their name as they act, or 
via visually identified cues on their acting hands.   

The second issue has to do with inferring intentions.  The 
current research addresses one cooperative activity at a time, but 
nothing prevents the system from storing multiple such intentional 
plans in a repertory (IntRep in Fig 1).  In this case, as the user 
begins to perform a sequence of actions involving himself and the 
robot, the robot can compare this ongoing sequence to the initial 
subsequences of all stored sequences in the IntRep.  In case of a 
match, the robot can retrieve the matching sequence, and infer that 
it is this that the user wants to perform.  This can be confirmed 
with the user and thus provides the basis for a potentially useful 
form of learning for cooperative activity. 

In conclusion, the current research has attempted to build and  
test a robotic system for interaction with humans, based on 

behavioral and neurophysiological requirements derived from the 
respective literatures.  The interaction involves spoken language 
and the performance and observation of actions in the context of 
cooperative action.  The experimental results demonstrate a rich set 
of capabilities for robot perception and subsequent use of 
cooperative action plans in the context of human-robot 
cooperation.  This work thus extends the imitation paradigm into 
that of sequential behavior, in which the learned intentional action 
sequences are made up of interlaced action sequences performed in 
cooperative alternation by the human and robot.  While many 
technical aspects of robotics (including visuomotor coordination 
and vision) have been simplified, it is hoped that the contribution 
to the study of imitation and cooperative activity is of some value. 
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Multiagent Collaborative Task Learning
through Imitation

Sonia Chernova and Manuela Veloso1

Abstract. Learning through imitation is a powerful approach for ac-
quiring new behaviors. Imitation-based methods have been success-
fully applied to a wide range of single agent problems, consistently
demonstrating faster learning rates compared to exploration-based
approaches such as reinforcement learning. The potential for rapid
behavior acquisition from human demonstration makes imitation a
promising approach for learning in multiagent systems. In this work,
we present results from our single agent demonstration-based learn-
ing algorithm, aimed at reducing demonstration demand of a single
agent on the teacher over time. We then demonstrate how this ap-
proach can be applied to effectively train a complex multiagent task
requiring explicit coordination between agents. We believe that this
is the first application of demonstration-based learning to simultane-
ously training distinct policies to multiple agents. We validate our
approach with experiments in two complex simulated domains.

1 Introduction

Programming robots is a challenging problem due to sensor com-
plexity, noise, and the non-deterministic effects of robot actions. To
address this challenge, autonomous learning approaches have been
developed that allow robots to learn task execution through interac-
tion with the environment [14]. Most of these approaches, however,
rely on a long trial-and-error experimental process that is impracti-
cal due to time constraints and physical wear on the robot. Learn-
ing in systems with multiple robots is further complicated by the
complex interactions that can occur between distributed agents, such
as communication via message passing, physical interaction and re-
source contention. To address these problems, natural and intuitive
approaches must be developed that allow new skills to be taught to
multiple of robots in a timely manner.

Learning from demonstration, a collaborative learning ap-
proach based on human-robot interaction, offers an alternative to
exploration-based methods. The goal of this approach is to learn
to imitate the behavior of a teacher by watching a demonstration
of the task. Demonstration-based learning has been successfully ap-
plied to a variety of single agent learning problems [5, 8, 18, 28]; its
fast learning rate compared to exploration-based learning methods,
such as reinforcement learning, makes learning from demonstration
a promising approach for multiagent systems.

In this work, we first present results of our single agent
demonstration-based learning algorithm, theconfident execution
framework [10]. We then apply this framework to a collaborative
multiagent domain, demonstrating its effectiveness in simultaneously

1 Computer Science Department, Carnegie Mellon University, email: so-
niac@cs.cmu.edu, veloso@cs.cmu.edu

training multiple robots to perform a joint task. Our learning frame-
work aims to reduce each agent’s demonstration demands on the
teacher by allowing the agent to perform its task autonomously when
it is confident about its actions, and request expert assistance at times
of uncertainty. As a result, each agent operates with gradually in-
creasing autonomy as the task is learned, relieving the teacher from
repeated demonstrations of acquired behavior and allowing simulta-
neous supervision of multiple agents.

In the next section we discuss related work in the areas of demon-
stration and imitation learning, followed by a complete description
of the confident execution learning framework in Section 3. In Sec-
tion 4 we present experimental results demonstrating our approach
in single and multi agent domains.

2 Related Work

Learning from demonstration is an interactive learning method in
which the agent aims to imitate the behavior of an expert teacher.
Demonstration-based methods have been successfully applied to a
wide range of single agent learning problems.

Nicolescu and Mataric [17, 18] present a learning framework
based on demonstration, generalization and teacher feedback, in
which training is performed by having the robot follow a human
and observe its actions. A high-level task representation is then con-
structed by analyzing the experience with respect to the robot’s un-
derlying capabilities. The authors also describe a generalization of
the framework that allows the robot to interactively request help from
a human in order to resolve problems and unexpected situations. This
interaction is implicit as the agent has no direct method of communi-
cation; instead, it attempts to convey its intentions by communicating
though its actions.

Lockerd and Breazeal [8, 15] demonstrate a robotic system where
high-level tasks are taught through social interaction. In this frame-
work, the teacher interacts with the agent through speech and vi-
sual inputs, and the learning agent expresses its internal state through
emotive cues such as facial and body expressions to help guide the
teaching process. The outcome of the learning is a goal-oriented hi-
erarchical task model.

Bentivegna et al. [5, 6, 7] and Saunders et al. [25] present demon-
stration learning approaches using memory-based techniques. Both
groups use thek-nearest neighbor (KNN) [16] algorithm to classify
instances based on similarity to training examples, resulting in a pol-
icy mapping from sensory observations to actions. Our algorithm
takes a similar approach by utilizing Gaussian mixture models for
classification, but includes an interactive learning component simi-
lar to Nicolescu and Mataric. Inamura et al. [13] present a similar
method based on Bayesian Networks [20] limited to a discretely-



valued feature set.
A handful of studies have also examined imitation in the context

of multiagent systems. In the Ask For Help framework [11], rein-
forcement learning agents request advice from other similar agents in
the environment. Help is requested when an agent is confused about
what action to take, an event characterized by relatively equal quality
estimates for all possible actions in a given state.

A similar approach is presented by Oliveira and Nunes [19], in
which agents are able to select, exchange and incorporate advice
from other agents, combining it with reinforcement learning to im-
prove learning performance. The authors examine when and how
agents should exchange advice, and which of an agent’s teammates
should be communicated with. Their results show that exchange of
information can improve the average performance of learning agents,
although it may reduce the exploration of the state space, preventing
the optimal policy from being found in some cases.

Alissandrakis et al. [2, 3] present a general framework that en-
ables a robotic agent to imitate another, possibly differently embod-
ied, agent through observation. Using this framework, the authors
demonstrate the transmission of skills between individuals in a het-
erogeneous community of software agents. Their results indicate that
transmission of a behavior pattern through a chain of agents can be
achieved despite differences in the embodiment of some agents in the
chain. Additionally, the authors show that groups of mutually imitat-
ing agents are able to converge to a common shared behavior.

Price and Boutilier [21] present a multiagent system in which
novice agents learn by passively observing other agents in the en-
vironment. Each learning agent is limited to observing the actions of
others and no explicit teaching occurs. By observing a mentor, the
reinforcement learning agent can extract information about its own
capabilities in, and the relative value of, unvisited parts of the state
space. However, the task of an observed agent may be so different
that the observations provide little useful information for the learner,
in which case direct imitation of this expert must be avoided by the
algorithm.

The above methods study imitation from the perspective of a com-
munity of agents, where a single agent seeks advice from other mem-
bers of its group. A different approach is taken in the study of coach-
ing [23], where an external coach agent provides advice to a team of
agents in order to improve their performance at a task. The coach has
an external, often broader, view of the world and is able to provide
advice to the agents, but not control them. The agents must decide
how to incorporate the coach’s advice into their execution. Riley [23]
presents an approach for training the coach using imitation based on
example executions.

Our approach differs from the presented techniques in that it en-
ables a single human to simultaneously train multiple agents. The
agents may be differently embodied, and may learn different poli-
cies and perform different tasks. In our proposed system, the human
teacher is the only source of advice, providing demonstrations in the
form of action commands.

3 The Confident Execution Framework

In this section, we present a summary of our confident execution
learning framework which allows a single agent to learn a task pol-
icy from demonstration (for a more detailed description, please see
[10]). We then describe how this framework can be applied to simul-
taneously training multiple robots to perform a joint task.

Figure 1. An example of a 2-dimensional Gaussian mixture model with
three components. Contour lines below the GMM mark the one- and two-

standard deviation ellipses.

3.1 Task Representation

Our approach utilizes thelearning by experienced demonstration
technique [18], in which the agent is fully under the expert’s con-
trol while continuing to experience the task through its own sensors.
During each training timestep, the agent records sensory observa-
tions about its environment and executes the action selected by the
human expert. We assume the expert attempts to perform the task
optimally, without necessarily succeeding.

Observationso are represented using ann-dimensional feature
vector that can be composed of continuous or discrete values rep-
resenting the state of the robot. The agent’s actionsa are bound to a
finite setA of action primitives [4], which are the basic actions that
can be combined together to perform the overall task. The goal of
the system is to learn a policyπ : o → A, mapping observations
to action primitives. Each labeled training point(o, a) consists of an
observation labeled by its corresponding expert-selected action.

During training, the algorithm separates all datapoints into classes
based on their action label. A Gaussian mixture model (GMM), Fig-
ure 1, is then trained for each action class using the expectation-
maximization (EM) algorithm [12]. We selected Gaussian mixture
models for our approach due to previous successes of classification
methods in demonstration learning [5, 25], and because GMMs pro-
vide a built-in measure of classification confidence. Their robustness
to noise and ability to generalize and capture correlations between
continuous features make GMMs a powerful tool for robotic data
analysis.

Since a single action is often associated with a number of distinct
states (the actionturn left may be taken from several different loca-
tions), we use a separate Gaussian mixture to represent each action
class. Components within the mixture represent the different state
regions and the number of components is determined using cross-
validation. New datapoints are classified by selecting the Gaussian
mixture with the maximum likelihood. The output of the classifica-
tion is the action represented by the selected GMM. Additionally,
the model returns a confidence value representing the certainty of
the classification based on the likelihood.



3.2 The Learning Process

Table 1 shows a pseudocode summary of the learning process. Learn-
ing begins with a non-interactive demonstration training phase dur-
ing which each action of the robot is controlled by the expert through
teleoperation. The algorithm uses training examples acquired from
the demonstrations to generate a task model. Every timemaxNew

additional training points are acquired, the algorithm updates the
GMM based on the new data.

Additionally, the performance of the current learned policy is eval-
uated by comparing how closely it matches the behavior of the ex-
pert. Prior to updating the model with each new training point(o, a),
the algorithm classifies observationo using the current model. It then
compares the model-selected action to the demonstrated actiona.
Performing this comparison over a window of consecutive training
points results in an estimate of the prediction accuracy of the model
that relates how closely the policy matches the behavior of the expert.

The teacher performs non-interactive training until the model pre-
diction accuracy is sufficiently high, as determined by the expert.
At this point, learning transitions to theconfident executionstage,
during which the agent selects between autonomously executing its
learned policy action and requesting help from the expert based on
the classification confidence of the above model. The algorithm ad-
just the agent’s autonomy by comparing the classification confidence
to an autonomy threshold. Classification confidences greater than the
threshold result in autonomous execution of the model-selected ac-
tion, while confidences below the threshold cause the agent to pause
its execution of the task and signal the teacher that a demonstration
is needed.

Since the autonomy threshold value is continuous, our approach
allows smooth adjustment of the autonomy level. This type of mech-
anism is referred to as adjustable, or sliding, autonomy and has been
proven effective in a wide range of applications, from personal assis-
tants [26] to space exploration [27]. Our algorithm combines learning
with adjustable autonomy, resulting in an interactive teaching method
that targets low confidence regions of the state space and reduces de-
pendence on the human expert as the agent gains proficiency at its
task. In the presented experiments, the human teacher manually sets
the confidence threshold value that determines the level of autonomy.
We are currently developing a technique for calculating this value au-
tomatically.

As the agent’s model improves over time, the agent will encounter
fewer observations with low classification confidence, resulting in
fewer demonstration requests. Learning terminates when the agent is
able to execute the task completely autonomously, or when the ex-
pert is satisfied with the performance of the model. The agent then
deterministically executes the action selected by the model, regard-
less of the classification confidence. This mode of operation is typical
of traditional learning approaches where the learned policy is always
trusted once learning is complete.

3.3 Multiagent Approach

The confident execution learning framework is a promising approach
for multiagent learning due to its fast learning rate compared to
exploration-based methods such as reinforcement learning [10], and
reduced demand on the expert over time. In this work, we examine
how it can be directly applied to training multiple agents simultane-
ously.

In a multiagent setting, the expert’s workload and teaching style
differ depending on the degree of collaboration required between the

Algorithm 3.1: THE LEARNING FRAMEWORK()

procedure INITIAL TRAINING()
observation← GETSENSORDATA()
expertAct← GETEXPERTACTION()
(gmmAct, conf)← CLASSIFY(observation)
predAccuracy ← TRACKPRED(gmmAct, expertAct)

if numNewDatapoints > maxNew:
then UPDATEMODEL(observation, expertAct)

EXECUTEACTION(expertAct)
return (predAccuracy)

procedure CONFIDENTEXECUTION()
observation← GETSENSORDATA()
(gmmAct, conf)← CLASSIFY(observation)

if conf > confThresh :
then

˘

EXECUTEACTION(gmmAct)

else

8

<

:

expertAct← GETEXPERTACTION()
UPDATEMODEL(observation, expertAct)
EXECUTEACTION(expertAct)

Table 1. Pseudocode overview of the learning framework.

agents. Domains with little collaboration allow each agent to oper-
ate with little regard for the actions of others, and training can be
done independently for each agent. In such cases, it may be possible
to introduce new agents at different times, resulting in a mixture of
novice and expert agents to avoid overloading the expert at the be-
ginning of the training stage. Domains that require greater collabo-
ration between agents benefit from demonstration-based approaches
because exploration over the joint action space of multiple robots is
quite costly [9]. In these domains, it is beneficial to demonstrate the
task to multiple collaborating agents at the same time.

Using our approach described in the previous section, each agent
is able to learn its own individual policy regardless of the level of
collaboration required. Our algorithm scales to an arbitrary number
of robots without any modifications to the learning framework.

4 Experimental Results

We validate our approach using two simulated domains with contin-
uous and multidimensional feature spaces.

4.1 Single Agent Driving Domain

In this section we present results of a fast and dynamic simulated
car driving domain (Figure 2). In this domain, the agent takes the
shape of a car that must be driven by the expert on a busy road. The
speed of the car is fixed at 60 mph while all other cars move in their
lanes at predetermined speeds between 20 and 40 mph. The learning
agent can not change its speed, and must navigate between other cars
to avoid collision. The agent is limited to three actions: remaining
in the current lane, and shifting one lane to the left or right of the
current position. The road has three normal lanes and a shoulder lane
on both sides; the car is allowed to drive on the shoulder but can not
go further off the road.

The environment is represented using four features, a distance to
the nearest car in each of the three lanes and the current lane of the
agent. The agent’s lane is represented using a discrete value symbol-
izing the lane number. The distance features are continuously valued



Figure 2. Screenshot of the driving simulator.

in the [-25,25] range; note that the nearest car in a lane can be behind
the agent.

Demonstration of the task was performed by a human using a key-
board interface. Figure 3 shows the prediction accuracy of the model
during the initial non-interactive training phase. Training was per-
formed until the model reached 80% prediction accuracy over a 150-
timestep window, which resulted in a demonstration length of 500
timesteps, or approximately 2.1 minutes. After transitioning to the
confident execution phase, the expert completed the training after
150 demonstration timesteps when the model exhibited good per-
formance. During the confident execution phase all demonstrations
were done as sequences of ten consecutive moves to simplify the
task of the expert due to the fast-paced nature of this domain.

The feature space of this domain is complex as the different action
classes frequently overlap. Figure 4 shows a small sample of the data
representing how the agent should drive in the middle lane. The data
is split into two regions based on the relative position (in front or
behind) of the nearest car in the agent’s current lane. No samples
appear in the 10 to -10 distance range along the Lane2 axis as the
expert avoids collisions that would occur from having another car in
such close proximity.

The final model consisted of 34 Gaussian components across three
GMMs (one for each action class). The final policy was able to imi-
tate the expert’s driving style and navigate well in the complex driv-
ing domain. Since the algorithm aims to imitate the behavior of the
expert, no ’true’ reward function exists to evaluate the performance
of a given policy. However, we present two domain-specific evalua-
tion metrics that capture the key characteristics of the driving task.

Since the demonstrated behavior attempts to navigate the domain
without collisions, our first evaluation metric is the number of colli-
sions experienced under each policy. Collisions are measured as the
percentage of the total timesteps that the agent spends in contact with
another car. Always driving straight and colliding with every car in
the middle lane results in a 30% collision rate.
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Figure 3. Prediction accuracy of the learned model over the
non-interactive training phase using a window of 150 timesteps.

Figure 4. Driving training data representing the driving strategy used
when the agent is in the middle lane. Graph axes represent distance to the

nearest car in each of the three driving lanes.

Our second evaluation metric is the proportion of the time the
agent spends in each lane over the course of a trial. This metric cap-
tures the driving preferences of the expert and provides an estimate of
the similarity in driving styles. Each evaluation trial was performed
for 1000 timesteps over an identical road segment.

Figure 5 compares the performance of the algorithm at different
stages in the learning process using these two metrics. Each line in
the figure represents a composite bar graph showing the percentage
of total time spent by the agent in each lane. Collision percentages
for each policy are reported to the right of the bar graphs. The bottom
line in the figure shows the performance of the expert over the eval-
uation road segment (not used for training). We see that the expert
successfully avoids collisions, and prefers to use the left three lanes,
only rarely using the right lane and right shoulder.

The top five lines summarize the behavior of the agent during the
non-interactive training phase. Training was stopped after every 100
training examples for evaluation. Initially the agent always remains
in the center lane, accumulating a 30.4% collision rate in the process.
As learning progresses, the agent learns to change lanes effectively,
beginning to use all five available lanes after 500 demonstration in-
stances, with a collision rate of only 1.3%. However, the agent’s lane
preference differs significantly from the expert as the agent spends
most of its time driving on the right shoulder.



Figure 5. Policy performance comparison using lane distribution and
collision evaluation metrics.

The three middle lines display performance during the confident
execution phase at 50-timestep intervals. Similarity in lane prefer-
ence improves over this final training phase, reaching final perfor-
mance very similar to that of the expert. Additionally, our agent’s
performance is comparable to that learned using Inverse Reinforce-
ment Learning by Abbeel et al. in [1]. For further evaluation of this
domain, including empirical results demonstrating how adapting ex-
ecution based on confidence focuses training on relevant areas of
the domain and a comparison between confident execution and non-
interactive demonstration, please see our previous work [10].

4.2 Multiagent Furniture Movers Domain

In this section we present a multiagent collaborative furniture movers
domain, Figure 6. In this domain, two agents must move a long,
heavy couch from one room to another through a narrow hallway and
stairs. We assume that the agents hold opposite ends of the furniture
piece throughout this task. Each agent uses six noisy local sensors
to determine distances to nearby walls. Additionally, each agent is
equipped with a stair sensor that reports a binary value representing
the presence or absence of a staircase in the immediate vicinity. The
complete feature vector for each agent consists of six continuous dis-
tance measurements, and two binary stair features, one for the agent’s
own location and one for its teammate’s. Note that each agent only
has a local view of the world, and its teammate’s stair information is
only updated via a specialcommunicateaction.

A total of six actions are available to the agents:forward, back,
left, right, communicate, andstair. At each timestep, each agent ex-
ecutes an action based on its own individual policy, and their overall
movement is determined by the joint action of both agents. Progress
can only be made if the agents select complimentary actions; for ex-
ample, pulling in opposite directions or attempting to rotate and push
at the same time will have no effect on the overall position of the
furniture piece. Thecommunicateaction has no special penalty asso-
ciated with it, but it does not allow any other action to be activated
during that cycle. Since the communicating agent remains stationary
for that turn, it prevents any movement regardless of the action taken
by the other agent (we assume the couch is too heavy for one agent to
move on its own). All movements of the robots are discretized, and
the domain can be completed optimally in 39 steps.

The staircase poses a special challenge in this domain, as it re-
quires explicit coordination between the agents. Both agents must
select thestair action to navigate over the stair segment successfully.
However, the corridor is narrow, and the agents are forced to move
one after the other instead of side-by-side. As a result, the rear agent
is not able to sense when the front agent reaches the staircase. To suc-

Figure 6. Screenshot of the furniture movers domain. Two agents must
collaborate to move a couch from one room to another through a narrow

hallway with stairs.
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Figure 7. Total number of demonstration requests made by the agents
during each trial of the confident execution training phase.

cessfully pass through this region, the front agent must communicate
its stair data in order for the rear agent to recognize that thestair ac-
tion is required. Similarly, once the front agent moves past the stairs,
the rear agent must communicate its stair information to ensure that
the front agent knows to continue executing thestair action.

Since a single agent can not perform the task alone, both agents
were trained to perform the task at the same time. Demonstra-
tions were performed on an individual basis for each agent. During
the confident execution stage, an agent requesting a demonstration
waited for the teacher’s response, while the other agent was free to
continue its execution of the task. Note that in this task, the second
agent is not able to make progress on its own due to the constraints of
the domain, however, the algorithm places no restrictions upon this
agent’s actions.

We first evaluate the performance of our learning method us-
ing only the non-interactive demonstration technique, in which the
agents have no autonomy and the expert performs exhaustive demon-
strations of the task. We then present results using the complete con-
fident execution framework. This comparison allows us to evaluate
confident execution independently in the context of imitation learn-
ing.

Using only the non-interactive demonstration technique, the
agents required four demonstrations of the complete domain, or a
total of 156 examples per agent, to achieve 100% prediction accu-
racy and learn the optimal policy. This result confirms that learning
from demonstration allows the agents to imitate the behavior of the
expert from a small number of examples. Each agent learned its own,
unique, policy; the final learned model for each agent consisted of six
8-dimensional Gaussian mixture models.

Confident execution was used to reduce the number of re-
quired demonstrations even further by eliminating demonstrations



of already acquired behavior. Training was performed using non-
interactive demonstration until both models reached 80% prediction
accuracy over a window of 15 timesteps, resulting in a total of 65
demonstrations per agent. Under confident execution, the agents con-
tinued to perform the task, requesting assistance from the expert at
times of uncertainty. Figure 7 shows the total number of demonstra-
tion requests made by both agents during each confident execution
trial. The number of demonstration requests made decreases with
training, until no further requests are made after the 14th learning
trial. This resulted in an overall total of 86 demonstrations per agent,
approximately half of the number of demonstrations required by the
non-interactive method.

Finally, we compare the performance of our algorithm to rein-
forcement learning. Specifically, Q-learning with a non-deterministic
update function was used the learn a policy for each agent. To sim-
plify the task, all action combinations that did not have an effect
(such as one agent moving forward, while the other moves back)
were not taken into account. This approach was able to learn the opti-
mal policy after 470 iterations, and a total of 58370 exploration steps.
Table 2 summarizes the results of all three learning approaches. Note
that reinforcement learning performs poorly in this domain because
the state of the world is not fully observable as each agent does not
know the action taken by its teammate. Partial observability makes
this a very challenging problem [22], and a number of special ap-
proaches have been developed for dealing with this case [24]. We
plan to evaluate and compare these approaches in future work.

Algorithm # Steps to Learn
Non-Interactive Demonstration 156

Confident Execution 86
Reinforcement Learning 58370

Table 2. Comparison of the number of cycles required to learn the optimal
policy in the furniture movers domain.

5 Conclusion

In this paper, we proposed imitation as an alternative to exploration-
based methods for learning in multiagent systems. We demonstrated
the effectiveness of this approach using our demonstration-based
learning framework in a complex simulated multiagent domain. Us-
ing our technique, we were able to quickly and accurately train the
agents to imitate a human demonstration of the task. Additionally,
our results showed that the confident execution approach effectively
reduces the workload of the expert, allowing training to scale to a
greater number of agents.
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Echo State Network Applied to a Robot Docking Task
Xavier Dutoit and Davy Sannen and Marnix Nuttin1

Abstract. Reservoir Computing (RC) is a new technique which
allows to use complex recurrent neural networks while keeping the
training complexity low. We apply here RC as a high-level controller
for a robot which has to perform a docking task. The RC method
presents two main advantages. The task can be taught in a black-box
approach, using only learning by imitation. The explicit dependence
from situations to actions does not need to be coded. And RC requires
only training simple readouts which can be guaranteed to find a local
minimum.

1 INTRODUCTION

When controlling a robot, one wants the robot to be intelligent and
autonomous. This means that the robot has to be able to decide ac-
tions by itself in a environment which is constantly changing. More-
over, as the sensors are not perfect, the robot has a noisy or even
inconsistent perception of this environment.

In order to solve those problems, a lot of work has been done in
the field of robotic control. This work can be divided in different
categories (see [13] for a more complete description):

• Reactive Control: The robot has no memory but just makes a
mapping from situations to action. This is simple to implement
and fast to execute, but the number of tasks it can perform is rather
limited.

• Deliberative Control: Here some more complex processing is in-
volved, and the robot has a memory, so it can associate an action to
a given situation with a given past. This allows to deal with more
complex task, but requires more hardware and computation time.

• Hybrid Control: This approach is a trade-off between the two
preceding techniques, and can allow to combine their advantages.

• Behaviour-based Control: As the name says, the robot has a set
of behaviour. Depending on the situation, it can choose which be-
haviour to execute. This allows to be more flexible.

We intend to solve here a non-reactive task and will use delibera-
tive control. However, deliberative architectures usually need explicit
coding. We will rather use here another approach which would allow
to solve the task in a more natural way, without coding the explicit
dependency from situation to actions. Instead, in our approach, it is
possible to train the robot by imitation.

To do so, we use Artificial Neural Networks (ANNs). They allow
to process inputs in a nonlinear and adaptive way. Unlike classical
approaches, there is no need to know in advance how to solve the
task: neural networks can show an ability to learn by themselves,
when provided a good set of examples. They can then generalize
from this set of examples. Moreover, they are typically able to deal
with noisy or inconsistent data (see for instance [25]). This altogether
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makes them very interesting for robotic applications. More precisely,
we will consider ANNs in the framework of Reservoir Computing
(RC).

2 RESERVOIR COMPUTING

The basic idea of RC is to input the data into a big recurrent network
and then to train some simple readouts to extract useful information,
while the network itself remains unchanged. RC has been introduced
by [17] with theLiquid State Machines (LSMs), where the network
consist of spiking neurons, and [10] with theEcho State Networks
(ESNs), where the network consists of sigmoidal neurons. It can also
be compared to the results from [24] when they studied the weight
dynamics of a recurrent neural network and to theBackpropagation-
Decorrelation algorithm [26].

The part of the network which is not trained can be seen as a reser-
voir of functions, and the output neurons as readouts that can extract
the main features from this reservoir.

When the input is presented to the reservoir, it is in fact projected
into a high dimensional and highly dynamic space. This is similar
to a kernel method (see e.g. [6] for a review), and has the advantage
over classical kernel methods that it can include time.

A great advantage of RC is then that we can apply simple readout
functions to the reservoir, like linear discriminants, which are simple
to train and can be guaranteed to find a global optimum in the offline
case.

The power of reservoir computing has potentially no limit: any
task can be solved as long as the desired features are present in the
reservoir. On the other hand, a drawback is that the features have to
be presents in the reservoir, which is not always the case, and it is
typically hard to know in advance how to design a reservoir in order
to make it capture those features. But if it manages to have those
features, it requires absolutely no prior knowledge about the task to
be solved, whereas with other approaches, some hard-coding of time-
dependent actions has to be made.

We will here focus more particularly on ESNs. They are simpler
to implement and simulate than LSMs, as they use classical (sig-
moidal) neurons whereas LSMs use spiking neurons interconnected
by synapses with a weight and a delay.

2.1 Applications of Reservoir Computing

RC has been applied with promising results in several domains, like:

Speech recognition In [28], an LSM has been trained to recog-
nize spoken digits. The LSM has shown a good robustness against
noise. It is interesting to see that, amongst 3 different pre-processing
techniques of the sound, the most biological model, the Lyon Passive
Ear[16], has lead to the best results.



Movement prediction In [5], an LSM has been trained to predict
the movement of a ball with real-world images. It was able to pre-
dict the movement reliably up to 200 ms ahead. However, the results
depend on a good choice of the parameters of the liquid.

The XOR problem and real liquid [9] used a real liquid excited
by electric motors and whose image was recorded by a web-cam.
They trained it to simulate a XOR logic gate and to distinguish be-
tween the spoken digits ’one’ and ’zero’ and showed good perfor-
mances and good robustness against noise.

Real-time obstacle avoidance [4] used a LSM implemented in
real-time to control a small robot and make it avoid obstacles. The
learning was done by demonstration.

Arm control [14] used a LSM to control a robot arm in a bio-
logically inspired way. The arm was trained to reach different target
points. It was a first implementation of a closed-loop system con-
trolled by neural microcircuits.

2.2 Learning by imitation

If we control a robot with reservoir computing, as nothing is pro-
grammed beforehand, it has to learn the task. A very appealing way
is to make it learn by imitation. It consists of showing the robot a
desired behaviour in order to make it learn to exhibit the same behav-
iour afterward, when the same situation is presented (see for instance
[2] for a review).

Learning by imitation is very appealing because of its conceptual
simplicity when compared to other methods. Typically, it is often
much simpler to show a robot what to do by doing it ourselves than
to program it. It has also the advantage that it does not necessarily
require concrete knowledge about the robotic domain: a person who
does not know how a robot has to be programmed can still show some
tasks to the robot. This advantage is interesting, especially if we con-
sider the application of domestic robots, where anybody could teach
a robot a given task in this way. It is very appealing for cooperation
between human and robot and for real-world learning applications
[1], [3], [8], [18], [19], [23].

Moreover, learning by imitation is a natural way to teach and
learn for human beings and animals. It is very commonly observed
amongst monkeys, for instance, and in fact it is the reason of the
nameaping.

3 THE EXPERIMENT

3.1 Related work

We try here to apply the technique of RC to learn a docking task.
ESNs have already been applied to control task (see for instance [21,
22, 20]). However, the previous applications generally use the ESN
as a low-level controller of which the goal is to output the motor
command based on a desired trajectory. In our approach, we first
present a set of trajectories to learn, but then, during the testing phase,
the ESN has to decide the trajectory based on the sonar input only.

The docking task has also already been solved with a behaviour-
based approach [15]. However, when using a behaviour-based ap-
proach, the task needs to somehow be segmented in the different ma-
noeuvres the robot will have to make. On the other hand, with RC,
the raw data is fed to the reservoir, without any preprocessing or prior
knowledge involved.

This task can also be solved using planners [27],[7]. However, we
are interested here in a more adaptive and flexible approach, as we
think it might exhibit some interesting features in the long run.

3.2 Goal

The robot must perform a docking task, i.e. it must first go backward
and then go forward and turn left (cf. Fig. 1). It starts around the point
indicated by ’Start’, oriented towards the positive direction of thex

axis. In one zone, the shaded area, there are some points where the
robot will go twice, and thus be twice in the same situation, but with
different desired outputs. So the task is not a purely reactive task, it
features time dependency.

A run is considered as successful if the robot first goes back
enough to enter the shaded zone (cf. Fig. 1) and then reaches the
goal area.

3.3 Setup

We first simulated a robot based on the PIONEER-1 robots. It has 7
sonars placed symmetrically at its front (see Fig. 1), at the angles of
±90,±30,±15 and0 degrees (0being the forward direction of the
robot).

The robot can give discrete commands out of two independent
sets:

• Linear velocity: go forward or go backward
• Rotational velocity: turn-left, do-not-turn or turn-right

A step forward or backwards corresponds to a distance of 100 mm,
a turn left or right to an angle ofπ

8
.

Figure 1. The Docking Task. The robot starts at the point indicated by
Start; it moves along the solid line, each dot representing a step; the shaded
area represent the contradictory zone; the dotted lines indicate the sonars for

the robot at the starting position.

3.4 Training data

The network is trained by demonstration.60 different trajectories
were created by a human supervisor (20 from the original starting
point, and 40 from other random points in the environment), and they
were then randomly shifted to create new trajectories. In total, the
training set consists of494 trajectories.

For each trajectory, we record the 7 sonar data. In the simulation
environment, those data do not get any noise. Each sonar returns the
distance (in [mm]) to the nearest wall.



For each trajectory, the sonar data were fed to the network and the
3 readouts were trained to map the states of the network onto the
desired motor commands (see section 4.5 for the detailed training
procedure).

4 THE ECHO STATE NETWORK

The ESN considered here consists of one input layer, one reservoir,
and one output layer.

There areni neurons in the input layer,nr neurons in the reservoir
andno neurons in the output layer.

In the present task,ni = 7 (the 7 sonars inputs), andno = 3
(we use 3 outputs to command the two velocities, the mapping from
outputs to commands is described below, section 4.3)

4.1 Input

At each time stept, the input vectori(t) is multiplied by a input
weight matrixWI , of sizenr × ni, and fed to the reservoir.

4.2 Reservoir

The reservoir, consisting ofnr neurons, is described by a connection
matrixW, of sizenr×nr, and at each time step by a state vectors(t).
This state vector is all zero at the beginning and is updated according
to the following equation:

s(t+1) = f

(

m·
(

WI ·i(t)+W·s(t)
)

+(1−m)·s(t)
)

∀ t > 0 (1)

s(0) = 0

wheref can be any linear or non-linear function (here we use a sig-
moidal function, the hyperbolic tangent), andm (0 ≤ m ≤ 1) is a
parameter tuning the dynamic of the reservoir.

4.3 Output

Each readoutr is a linear discriminant, described by a weight vector
Wr. The output of the networkOr at timet is given by:

Or(t) = Wr · s(t) (2)

wheres(t) is the state vector augmented with a bias term:

s(t) =

[

s(t)
1

]

In our case, there are 3 readouts, one for the linear velocityV , two
for the rotational velocityR. The actual commands are:

V (t) =

{

+1 if O1(t) > 0
−1 otherwise

(3)

R(t) =

{

+1 if O2(t) − O3(t) > Θ
−1 if O3(t) − O2(t) > Θ
0 otherwise

(4)

Θ being a threshold factor, determined experimentally.

4.4 Network creation

The reservoir is created at random, according to the following para-
meters:

ni the number of inputs
nr the size of the reservoir
ci the input connection fraction
cr the reservoir connection fraction
iw the weights distribution of the inputs
m the memory parameter

The input connection matrixI is anr×ni matrix with a proportion
ci of non-zero weights. Those non-zero weights take on their values
uniformly in iw (in our case,iw = {−0.1; +0.1}).

The reservoir connection matrixC is a nr × nr matrix with a
proportioncr of non-zero weights. Those non-zero weights take on
their values out of a 0-mean gaussian distribution with variance 1.

Once generated, this connection matrix is rescaled: it is divided by
its spectral radius (so that its spectral radius is 1 after rescaling). This
rescaling allows to stand at the limit of theecho state property [10].

4.4.1 Effect of the memory parameter m

The parameterm allows to have leaky neurons, i.e. neurons which
have a certain memory. Indeed, ifm < 1, at each time step, a neuron
will have as net input (i.e. before applying the non-linear function)
the net input from other neurons multiplied bym and(1−m) times
its own delayed input. In the absence of external input, the activity
level of a given neuron exponentially decays with a time constant of
1

m
[time steps].
Now concerning the echo state property, one has to note that we

can rewrite equation 1 as:

s(t + 1) = f
(

˜WI · i(t) + ˜W · s(t)
)

∀ t > 0

where ˜WI = m · WI and ˜W = m · W + (1 − m) · I (I being the
identity matrix).

As W has a spectral radius equal to one, i.e. all its eigenvalues are
smaller or equal to one,˜W has all its eigenvalues smaller or equal
to m, and its spectral radius equal tom. So the echo state property
is guaranteed form < 1, and we stand at the limit of this property
whenm = 1.

4.5 Training

The training set consist of a set ofnt vector of sizeni, and of a set
of nt associated desired output pairs(V̂(t), R̂(t)). For each sample
t, we define the 3 desired output(Ô1(t), Ô2(t), Ô3(t)) as follows:

Ô1(t) = V̂(t)

Ô2(t) =

{

+1 if R̂(t) = +1
−1 otherwise

Ô3(t) =

{

+1 if R̂(t) = −1
−1 otherwise

Now to do the actual training, the network is fed with thent input
samples, and we collect the augmented states in a matrixS:

S = [s(1) s(2) . . . s(nt)]

The readouts are computed by solving the following equation in the
least square sense:

Wr · S = Ôr r = 1, 2, 3



whereÔr is the vector containing the desired output for all thent

samples:

Ôr = [Ôr(1) Ôr(2) . . . Ôr(nt)]

The actual commands are then computed according to (2), (3) and
(4).

4.6 Training error

The training error is the proportion of wrong commands over the
training set, defined as:

ET =
∑

t

e(t)

where:

e(t) =







0 if V (t) = V̂ (t) andR(t) = R̂(t)

1 if V (t) 6= V̂ (t) andR(t) 6= R̂(t)
0.5 otherwise

4.7 Testing error

Once the network was trained, it was tested starting from 10 different
point chosen randomly around the original starting point according
to a normal distribution of mean0 and of variance200 mm on thex
axis and100 mm on they axis. To avoid the robot starting too close
to a wall or outside the world, the starting point was limited to be no
more than500 mm and300 mm away from the starting point, on the
x andy axis resp.

The testing error is the proportion of trajectories which did not
fulfill the success criterion (see above, section 3.2).

5 RESULTS

We applied here an ESN approach to teach a robot to perform a dock-
ing task. Several reservoirs were created randomly, without any pro-
gramming of the task beforehand, and were trained by demonstra-
tion to reproduce the training runs. By training only 3 linear dis-
criminants, it is possible to achieve an average success rate of 76 %
on testing (see Fig. 2 for examples of successful trajectories). Some
of the networks managed to perform the task successfully in all the
cases tested.

In the present experiment, as the task is time-dependent, an im-
portant point is the memory of the reservoir. So far, there exist little
methodology or measure of the memory of a given reservoir[11, 12].
However, we can say that the memory roughly depends on two para-
meters: the reservoir sizenr and the memory scalem.

Thenr controls the memory on a global scale. When all parame-
ters stay constant, a bigger reservoir will mean that there exist poten-
tially longer loops inside the reservoir, and the input will thus have
longer echoes.

On the other hand,m controls the memory on a local scale: the
smallerm is, the longer is the memory of a given neuron, as a past
input will have an exponentially decreasing effect for a longer time.
However,m also scales down the global spectral radius, thus chang-
ing the memory on a global scale as well.

The general results for those two parameters are shown in Fig. 3.

Figure 2. Example of trajectories with different starting points around the
original starting point

5.1 Reservoir size

If we take a closer look at the effect onnr (see Fig. 4), we see that in
the present experiment a bigger reservoir leads to better results. This
is because it allows to have more memory, but also because a bigger
reservoir is likely to capture more features from the input, and thus
is more likely to capture the relevant features for the task.

5.2 Memory scale

If we now look at the effect ofm, the memory scale, we see that a
smallerm, corresponding to a longer memory, produces on average
better results. However, for the testing error, there is a lower limit
under which the test error starts to increase again.

One can notice than even with a badly scaled memory, we can
still have around 40 % of the networks which succeed to perform the
task. This shows that it is not required to know in advance what are
the memory requirements of the task in order to be able to perform it
successfully.

There is also a second noticeable point: in the training samples,
the time spent in the contradictory input zone (shaded area in Fig. 1)
was around 7 steps. So the robot saw twice the roughly same input,
first at a given time and then 7 time steps later. So we can roughly
say that the memory requirements for this task is about 7 time steps,
i.e. a robot must have a memory spanning at least 7 time steps in
order to perform the task. But we can see that withm = 0.25, i.e.
when each neuron has a time scale of 4 steps, there were still around
35 % of the networks which performed the task successfully. So even
when the memory is badly scaled, it is possible to sometimes succeed
in performing the task. This shows that a reservoir can exhibit on a
global scale a behaviour on a time scale larger than the local time
scale of any of its element.

5.3 Extension to more realistic environment

We then applied the task in the environment of the Saphira robot
simulator. This means that there was some noise in the input and in
the output, i.e. the sonars data were noisy and the commands were
not perfectly executed. Moreover, in this environment, the robot has
now a radius of about 200 mm and so it has less margin to manoeuver.
So the sonars data were all getting subtracted 200 before being fed
to the robot.

It succeeded both in the simulation environment and with a real
robot (Fig. 7), and an example of successful trajectories is shown in
Fig. 6.
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Figure 3. General view of the effect ofnr andm: (a) training error, (b)
testing error

6 CONCLUSION

We considered here an application of an emerging technique: reser-
voir computing. To the best of our knowledge, it is the first time RC is
applied on a high-level to a navigation problem such as this docking
task. With RC, it has been possible to successfully perform a control
task in the simulated world, as well as in the real world, where the
sensor readings were noisy, and the commands were not perfectly
executed.

This RC technique allows a simple training. Indeed, it is sufficient
to generate some training examples and to show them to the network.
Thus we do not need to know the explicit correspondence from input
to output, which is typically hard to know. Moreover, we can also
use a very simple training algorithm, which is guaranteed to find an
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Figure 6. Example of the application in the Saphira environment: solid
line: simulation environment, dotted line: real world.

optimal solution (in the least-square sense): the training consists of
a matrix inversion, which can be computationally expensive, but is
straightforward and guarantees to find the global optimum. A draw-
back is that this method can only be implemented offline. The RC
approach also allows to be flexible, and even though some parame-
ters have to be tuned and tested, it is possible to perform the desired
task even with badly scaled parameters. Thus we think that this tech-
nique is promising for robot task control.
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Figure 7. The real world setup
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[17] W. Maass, T. Natschläger, and H. Markram, ‘Real-time computing
without stable states: A new framework for neural computation based
on perturbations’,Neural Computation, 14(11), 2531–2560, (2002).

[18] M. Nuttin, Learning Approaches to Robotics Manufacturing: Contri-
butions and Experiments, Ph.D. dissertation, K.U.Leuven, 1998.

[19] M. Nuttin and H. Van Brussel, ‘Learning assembly operations: A case

study with real-world objects’,Studies in Informatics and Control, 3,
205–221, (1996).

[20] M. Oubbatti, Neural Dynamics for Mobile Robot Adaptive Control,
Ph.D. dissertation, Universität Stuttgart, 2006.

[21] P.G. Ploeger, A. Arghir, T. G̈unther, and R. Hosseiny, ‘Echo state net-
works for mobile robot modeling and control’,Proceedings of the
ROBOCUP 2003.

[22] M. Salmen and P.G. Ploeger, ‘Echo state networks used for motor con-
trol’, Proceedings of the ICRA 2005.

[23] S. Schaal, A. Ijspeert, and A. Billard, ‘Computational approaches to
motor learning by imitation’,Philosophical Transactions of the Royal
Society B: Biological Sciences, 358(1431), 537–547, (2003).

[24] U.D. Schiller and J.J. Steil, ‘On the weights dynamics of reccurent
learning’, inESANN’2003 Proceedings, pp. 73–78, (2003).

[25] J.W. Shavlik, R.J. Mooney, and G.G. Towel, ‘Symbolic and neural
learning algorithms: An experimental comparison’,Machine Learning,
6(2), 111–144, (1991).

[26] J.J. Steil, ‘Backpropagation-decorrelation: online reccurent learning
with o(n) complexity’, inProc. IJCNN, volume 1, pp. 843–848, (2004).

[27] J. Vandorpe,Navigation techniques for the mobile robot LiAS, Ph.D.
dissertation, K.U.Leuven, 1997.

[28] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout,
‘Isolated word recognition with the liquid state machine: a case study’,
preprint submitted to Elsevier Science, (2005).



Can Motionese Tell Infants and Robots
“What to Imitate”?

Yukie Nagai 1 and Katharina J. Rohlfing 2

Abstract. An open question in imitating actions by infants and
robots is how they know “what to imitate.” We suggest that parental
modifications in their actions, called motionese, can help infants and
robots to detect the meaningful structure of the actions. Parents tend
to modify their infant-directed actions, e.g., put longer pauses be-
tween actions and exaggerate actions, which are assumed to help in-
fants to understand the meaning and the structure of the actions. To
investigate how such modifications contribute to the infants’ under-
standing of the actions, we analyzed parental actions from an infant-
like viewpoint by applying a model of saliency-based visual atten-
tion. Our model of an infant-like viewpoint does not suppose any a
priori knowledge about actions or objects used in the actions, or any
specific capability to detect a parent’s face or his/her hands. Instead,
it is able to detect and gaze at salient locations, which are standing
out from the surroundings because of the primitive visual features,
in a scene. The model thus demonstrates what low-level aspects of
parental actions are highlighted in their action sequences and could
attract the attention of young infants and robots. Our quantitative
analysis revealed that motionese can help them (1) to receive im-
mediate social feedback on the actions, (2) to detect the initial and
goal states of the actions, and (3) to look at the static features of the
objects used in the actions. We discuss these results addressing the
issue of “what to imitate.”

1 INTRODUCTION

Imitation learning is a promising approach for robotics researchers to
enable their robots to autonomously acquire new skills from humans
[21, 31]. It allows robots to learn new behaviors by first observing
human movements and then reproducing them by mapping into their
motor commands. It consequently reduces the efforts of designers in
developing robots’ behaviors. In addition to these engineering ben-
efits, the research on imitation learning leads us to the deeper un-
derstanding of human intelligence [2]. Human infants, even neonate
[25, 26], are able to imitate actions. In the course of their develop-
ment, infants can reproduce actions and the goal of actions shown
by another person. The ability to imitate is moreover discussed as a
route to their further cognitive development, e.g., the differentiation
of the self and other, the understanding of other’s intention, and the
use of language [9]. Thus, to investigate the mechanism for imitation
learning from a constructivist viewpoint allows us to uncover human
intelligence [2].

There are some advantages in robot imitation, however, we still
have an open question of how robots know “what to imitate” and
“how to imitate.” Nehaniv and Dautenhahn [28, 29] discussed these

1 Bielefeld University, Germany, email: yukie@techfak.uni-bielefeld.de
2 rohlfing@techfak.uni-bielefeld.de

two fundamental issues in robot imitation. Breazeal and Scassellati
[7, 8] also pointed out the issues and reported the current techniques
used in robot systems. When a robot attempts to imitate a human ac-
tion or a sequence of his/her actions to achieve a goal-oriented task,
it has to first detect the movements of the person and then determine
which movements are relevant to the task. A robot without any a pri-
ori knowledge about the task does not know which actions of the
person are important and necessary for the task, while he/she some-
times produces not only actions directly related to the task but also
unrelated ones. It is also required to detect the initial and goal states
of the actions and the objects involved in the actions so that a robot
can imitate the sequence of the actions not only at a trajectory level
but also at a goal level. These problems are stated as the issue of
“what to imitate,” and several approaches have been proposed from
different perspectives (e.g., [4, 6, 10, 11, 34]).

Another issue to be solved in robot imitation is how a robot knows
“how to imitate.” A robot that tries to imitate human actions has to
be able to transform the observed actions of a person into its motor
commands so as to reproduce the same actions or to achieve the same
goal of the actions. A difficulty in transforming the actions is that a
robot cannot access to the somatosensory information of the person
and is thereby unable to directly map the actions into the motor com-
mands. Moreover, the body structure of a robot is usually different
from the person’s, which makes the problem more difficult. These
issues are called “how to imitate” and have been investigated from
various approaches (e.g., [1, 3, 4, 10]).

In addressing these issues from a standpoint of cognitive devel-
opmental robotics [2], we suggest that parental modifications in their
infant-directed actions can help robots as well as infants to imitate the
actions [12, 30]. When infants attempt to imitate actions presented
by their parents, they also face the same problems: “what to imitate”
and “how to imitate.” Although infants are supposed to have little se-
mantic knowledge about actions as robots do, they are surprisingly
able to imitate the actions. They are skillful in processing a stream
of ongoing activity into meaningful actions and organizing the in-
dividual actions around ultimate goals [33]. We thus consider that
parental actions aid infants solving “what to imitate” and “how to
imitate.” It is known that parents tend to modify their actions when
interacting with their infants (e.g., [5, 30]). They, for example, put
longer and more pauses between their movements, repeat the same
movements, and exaggerate their movements when interacting with
infants compared to when interacting with adults. Such modifica-
tions, called motionese, are suggested to aid infants structuring the
actions and understanding the meaning of the actions. However, we
do not know yet how it actually affects and contributes to the infants’
understanding of the actions. Because the current researches have an-
alyzed motionese only from an adult’s viewpoint, i.e., they focused



only on the actions relevant to a task, it is still unclear what aspects
of parental actions would be attended to by infants and how they help
infants to understand and imitate the actions.

We analyze motionese from an infant-like viewpoint and discuss
how it can help infants and robots to detect “what to imitate.” Our
model of an infant-like viewpoint does not suppose any a priori
knowledge about actions or objects used in the actions. It does not
know which parental actions are relevant to a task, what the goal of
the task is, or what objects are involved in the task. Furthermore, it
is not equipped with any specific ability to detect a parent’s face or
his/her hands. Instead, it is able to detect and gaze at outstanding lo-
cations in a scene. To simulate such a capability of visual attention,
we adopt a model of saliency-based visual attention [16, 17] inspired
by the behaviors and the neural mechanism of primates. A salient
location in this model is defined as a location which locally stands
out from the surroundings because of its color, intensity, orientation,
flicker, and motion [16]. It thus can demonstrate what low-level as-
pects of parental actions are highlighted in their action sequences
and could attract the attention of young infants and robots. We ana-
lyze motionese with the model and discuss the results toward solving
the issue of “what to imitate.”

The rest of this paper is organized as follows. In Section 2, we
summarize the current evidences of motionese from psychological
and computational studies. In Section 3, we introduce the model of
saliency-based visual attention and describe the benefits of using it
for the analysis of motionese. Next, we show analytical experiments
of motionese in Section 4, and discuss the experimental results in
Section 5. Finally, we conclude with future directions in Section 6.

2 PARENTAL MODIFICATIONS IN
INFANT-DIRECTED INTERACTIONS

It is well known that parents significantly alter the acoustic charac-
teristics of their speech when talking to infants (e.g., [19]). They, for
example, raise the overall pitch of their voice, use wider pitch, slow
the tempo, and increase the stress. These phenomena, called moth-
erese, are suggested to have the effects of attracting the attention of
infants and providing easily structured sentences to infants, which
consequently facilitates their language learning.

In contrast to motherese, motionese is phenomena of parental
modifications in their actions. Parents tend to modify their actions
when interacting with infants so that they maintain the attention of
infants and highlight the structure and the meaning of the actions
as in motherese. Brand et al. [5] revealed that mothers altered their
actions when demonstrating the usage of novel objects to their in-
fants. They videotaped mothers’ interactions first with an infant and
then with an adult, and manually coded them on eight dimensions:
the proximity to the partner, the interactiveness, the enthusiasm, the
range of the motion, the repetitiveness, the simplification, the punctu-
ation, and the rate. Their results comparing the infant-directed inter-
actions (IDI) and adult-directed interactions (ADI) revealed signifi-
cant differences in the first six dimensions out of the eight (higher
rates in IDI than in ADI). Masataka [22] focused on a signed lan-
guage and found that deaf mothers also altered their signed language.
He observed deaf mothers when interacting with their deaf infants
and when interacting with their deaf adult friends, and analyzed the
characteristics of their signs. His comparison indicated that, when
interacting with infants, deaf mothers significantly slowed the tempo
of signs, frequently repeated the same signs, and exaggerated each
sign. His further experiments showed that such modifications in a
signed language attracted greater attention of both deaf and hearing

infants [23, 24]. Gogate et al. [14] investigated the relationship be-
tween maternal gestures and speech in a object-naming task. They
asked mothers to teach their infants novel words by using distinct
objects and observed how the mothers used their gestures along with
their speech. Their results showed that mothers used the target words
more often than non-target words in temporal synchrony with the
motion of the objects. They thus suggested that maternal gestures
likely highlighted the relationship between target words and objects,
of which effects were demonstrated in their further experiment [13].
Iverson et al. [18] also revealed that maternal gestures tended to co-
occur with speech, to refer to the immediate context, and to reinforce
the message conveyed in speech in daily mother-infant interactions.
Their analysis moreover showed positive relationships between the
production of maternal gestures and the verbal and gestural produc-
tions and the vocabulary size of infants.

In contrast to the former studies, in which motionese was manually
coded, Rohlfing and her colleagues [12, 30] applied a computational
technique to evaluate motionese. They adopted a 3D body tracking
system [32], which was originally developed for human-robot inter-
actions, to detect the trajectory of a parent’s hand when he/she was
demonstrating a stacking-cups task to his/her infant first and then to
an adult. Their quantitative analysis revealed that parents put longer
and more pauses between actions and decomposed a rounded move-
ment into several linear movements in IDI compared with in ADI.
They suggested with these results that motionese can help infants and
robots to detect the meaning of actions. This approach is very attrac-
tive for robotics researchers because their model can be immediately
implemented into robots and enables them to leverage the advantages
of motionese in imitation learning. However, it is still an open ques-
tion how robots know “what to imitate.” Although their study as well
as the former studies showed that parents modify their task-relevant
actions so as to be easily understood, robots as well as young infants
do not know which parents’ actions are relevant to a task. To address
this problem, we apply a model of saliency-based visual attention to
the analysis of motionese.

3 SALIENCY-BASED VISUAL ATTENTION

3.1 Architecture of model

To analyze motionese from an infant-like viewpoint, i.e., without any
a priori knowledge about actions or objects used in the actions, we
adopt a model of saliency-based visual attention [16, 17]. The model,
inspired by the behavior and the neuronal mechanism of primates,
can simulate the attention shift of humans when they see natural
scenes. Humans are able to rapidly detect and gaze at salient loca-
tions in their views. A salient location here is defined as a location
which locally stands out from the surroundings because of its color,
intensity, orientation, flicker, and motion [16]. For example, when we
see a white ball in a green field, we can rapidly detect and look at the
ball because of its outstanding color, intensity, and orientation. When
a dot is moving left while a number of dots moving right, the former
dot will be tracked visually because of its distinguished motion. The
model of saliency-based visual attention imitates such a primal but
adaptable attention mechanism of humans.

Figure 1 shows the overview of the model used in our experi-
ment. This is the same as the model proposed in [16] excepting the
absence of the mechanism of “inhibition of return,” which inhibits
the saliency of locations that have been gazed at. It means that our
model determines attended locations frame by frame independently.
The model works as follows:
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Figure 1. A model of saliency-based visual attention, which was revised from original one proposed in [17]

1. Five visual features (colors, intensity, orientations, flicker, and
motions) are first extracted by linearly filtering a frame of an input
video, and then image pyramids with different scales are created.

2. The differences between a center-fine scale and a surround-coarser
scale image are calculated to detect how much each location
stands out from the surroundings.

3. The center-surround differences are normalized to first eliminate
modality-dependent differences and then globally promote maps
containing a few conspicuous locations while globally suppress-
ing maps containing numerous conspicuous peaks. The results are
called feature maps.

4. The feature maps are combined through the across-scale addition
to get together the different scales into one map.

5. The combined maps are normalized again to obtain conspicuity
maps.

6. The conspicuity maps of the five features are linearly summed into
a saliency map.

7. Finally, the most salient locations in the saliency map are selected
as the attended locations in the frame.

In our analysis, image locations of which saliency were higher than
the maximum × 0.9 in each frame were selected as the attended lo-
cations. That is, not only one location but several locations could be
attended to in a frame. Refer to [16, 17] for more detail explanations
of the processing.

3.2 Benefit of applying model to analysis of
motionese

Applying the model to the analysis of motionese enables us to re-
veal what visual features of parental actions are highlighted in their
action streams and could attract the attention of young infants and
robots. Over the first year of life, infants semantic knowledge of ac-
tions, such as environmental, social, and psychological constraints
on their organization and structure, is quite limited in comparison to
adults. Thus, infants do not clearly understand the meaning or the
structure of the actions when they see the actions for the first time.
They also have limited information about objects, e.g., what objects
are involved in the actions and what the initial and goal states of
the objects are. Instead, they are certainly able to detect and gaze at
salient locations in their views. For example, when colorful toys are
shown to infants (usually, infants’ toys have bright colors like yellow,
red, and blue), they will look at the toys because of their salient col-
ors. When a parent moves his/her hand to grasp and manipulate the
toys, the hand as well as the toys will attract the attention of infants.
Assuming only perceptual saliency, a parent’s face can also attract
the infants’ attention because both of its static visual features and of
its movement caused by his/her smiling and talking. Note that a par-
ent’s face and his/her hands can be attended to as salient locations
without supposing any specific capability to detect their features or
even skin color. We aim at evaluating how much meaningful struc-
tures of parental actions are detected without any knowledge about
actions, objects, or humans, and how they can contribute to solving
the problem of “what to imitate.”
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Figure 2. Experimental setup and sample image frames of videos

4 ANALYSIS OF MOTIONESE WITH
SALIENCY-BASED ATTENTION MODEL

4.1 Method

We analyzed the videotaped data used in [30]. In contrast to [30], in
which only the task-related parental actions were analyzed, we dealt
with all visual features in the scenes.

4.1.1 Subjects

Subjects were 15 parents (7 fathers and 8 mothers) of preverbal in-
fants at the age of 8 to 11 months (M = 10.56, SD = 0.89). We
chose this age because infants start to imitate simple means-end ac-
tions such as acting on one object to obtain another [33] and to show
the understanding of goal-directed actions at 6 months of age [20].

4.1.2 Procedure

Parents were instructed to demonstrate a stacking-cups task to an
interaction partner while explaining him/her how to do it. The in-
teraction partner was first their infants and then an adult. Figure 2
(a) illustrates the top-view of the experimental setup, and (b) and (c)
show sample image frames of cameras which were set behind a par-
ent and a partner and focused on each of them. The stacking-cups
task was to sequentially pick up the green, the yellow, and the red
cups and put them into the blue one on the white tray.

(a) input image, in which attended lo-
cations denoted by circles (b) saliency map (sum of (c)-(g))

(c) color map (d) intensity map (e) orientation map

(f) flicker map (g) motion map

Figure 3. Example of saliency map equally summing up five conspicuity
maps and attended locations

4.1.3 Analysis

We analyzed videos recording the parents’ actions as shown in Fig-
ure 2 (b). The videos were input to the model of saliency-based visual
attention, and image locations with high saliency were detected as the
attended locations frame by frame. Figure 3 shows how the attended
locations were determined in a frame: (a) shows an input image (320
× 256 [pixels]), in which three attended locations are denoted by
red circles, and (b) shows the saliency map of the scene (40 × 32
[pixels]), which sums up the five conspicuity maps: (c) the color, (d)
the intensity, (e) the orientation, (f) the flicker, and (g) the motion
maps. The view of the maps corresponds to the input image, and the
brightness of the pixels represents the degree of saliency, i.e., white
means high saliency while black means low. In the example, the fa-
ther was showing the green cup to his infant by shaking it, and there-
fore the cup and his right hand were attended to by the model. The
color map extracted the green, the yellow, and the red cups as well
as the father’s face and hands as salient locations, while the intensity
map detected the white tray and the father’s black cloth. The orien-
tation map detected the father’s face, his hands, and the contour of
the tray because of their rich edges. The flicker and the motion maps
extracted the father’s right hand with the green cup because of their
movement. As a result, the saliency map, which equally summed up



the five conspicuity maps, detected the three highly salient locations
in the scene (see Figure 3 (a)). Note that our model selected the loca-
tions of which saliency was higher than the maximum × 0.9 in each
frame, which allows us to evaluate the general tendency of parental
actions. Through our experiment, the blue cup was not salient due to
the blue background.

4.2 Results

4.2.1 Proportion of attended locations

We first compared how often a parent’s face, his/her hands, and the
cups were attended to by the model in IDI and in ADI. The attended
locations were automatically classified using the predefined colors
and positions of the targets. The results were compared separately in
three time periods: before, during, and after the task. The start and the
end of the task were defined when a parent picked up the first cup and
when he/she put down the final cup into the blue one, respectively.
The length of the periods before and after the task was 2 [sec].

Figures 4, 5, and 6 show the results for the periods before, during,
and after the task. In each graph, the horizontal axis denotes the label
of the subjects, and the vertical axis denotes the proportion at which
(a) a parent’s face, (b) his/her hands, and (c) the cups were attended
to over the period. When an attended location was at none of them,
e.g., at a parent’s cloth and at the tray, it was counted as (d) the others.
The means and the standard deviations are listed in Table 1.

Before task: The non-parametric test (the Wilcoxon test) revealed
significant differences in the proportion of attention on the cups (Fig-
ure 4 (c); Z = −2.045, p < 0.05) and in that on the others ((d);
Z = −1.988, p < 0.05). It indicates that the cups attracted more
attention in IDI than in ADI, and that the others were less attended
to in IDI than in ADI.

During task: The non-parametric test revealed a significant dif-
ference in the proportion of attention on a parent’s face (Figure 5 (a);
Z = −2.556, p < 0.05). It also showed a statistical trend in the
proportion of attention on parent’s hands ((b); Z = −1.817, p =
0.069). A parent’s face attracted much more attention in IDI than in
ADI while his/her hands attracted less attention in IDI than in ADI.

After task: The non-parametric test revealed a statistical trend in
the proportion of attention on a parent’s face (Figure 6 (a); Z =
−1.874, p = 0.061). The parametric t-test showed a trend in the
proportion of attention on the cups ((c); t(14) = 1.846, p = 0.086).
These results suggest that a parent’s face was attended to in ADI
more than in IDI, and that the cups were attended to in IDI more than
in ADI.

4.2.2 Contribution of static features to saliency of objects

We next analyzed how much the static visual features of the cups
contributed to their saliency in IDI and in ADI. Here the static fea-
tures include the color, the intensity, and the orientation while the
motion features include the flicker and the motion. The sum of the
degrees of saliency derived from the static features was compared
between IDI and ADI.

Figure 7 shows the contribution rate of the static features to the
saliency of the cups (a) before, (b) during, and (c) after the task. Ta-
ble 2 lists the means and the standard deviations. The non-parametric

Table 1. Proportions of attended locations

IDI ADI
M SD M SD

parent’s face 0.070 0.104 0.049 0.047

before task
parent’s hands 0.583 0.171 0.521 0.192
cups 0.289 0.145 0.196 0.185
others 0.216 0.184 0.356 0.220
parent’s face 0.040 0.038 0.019 0.017

during task
parent’s hands 0.680 0.150 0.715 0.127
cups 0.448 0.117 0.433 0.112
others 0.089 0.088 0.089 0.083
parent’s face 0.085 0.103 0.154 0.117

after task
parent’s hands 0.484 0.311 0.475 0.239
cups 0.306 0.198 0.180 0.123
others 0.230 0.232 0.270 0.176

Table 2. Contribution of static features to saliency of cups

IDI ADI
M SD M SD

before task 0.461 0.331 0.240 0.267
during task 0.256 0.203 0.090 0.100
after task 0.650 0.349 0.421 0.405

test (the Wilcoxon test) revealed significant differences in the contri-
bution rates before the task (Figure 7 (a); Z = −2.040, p < 0.05)
and during the task ((b); Z = −3.045, p < 0.05). It indicates that
in the two time periods the static features much more contributed to
the saliency of the cups in IDI than in ADI.

5 DISCUSSIONS
Our first focus of analysis revealed that a parent’s face attracted much
more attention in IDI than in ADI during the task while it attracted
less attention in IDI than in ADI after the task. A reason is that the
parents in IDI often talked to and smiled at their infants when demon-
strating the task. They commented on each action while executing it,
tried to maintain the infants’ attention by addressing them verbally,
and tried to get the infants interested in the task by showing emo-
tional expressions. These behaviors caused movements on the par-
ents’ faces and made them more salient than others (see Figure 8
(a)). By contrast, in ADI the parents rarely talked to or smiled at
the adult partner during the task but explained the task after finish-
ing it. Thus, their faces attracted more attention after the task. The
result that the parents’ hands were more attended to in ADI than in
IDI during the task also indicates that their faces did not often move
compared to their hands. We suggest from these results that parents
give their infants immediate feedback on their actions, which helps
infants to detect what actions are important and relevant to the task.

Our further analysis focusing on the objects involved in the task
revealed that the objects were more salient in IDI than in ADI before
and after the task. The saliency emerged because the parents inter-
acting with their infants tended to put longer pauses before and after
the task. While many of the parents in ADI started the task without
checking whether the adult partner looked at the task-relevant loca-
tions, in IDI, they looked at the infants first and then started the task
after confirming the infants’ attention on the cups (see Figure 8 (b)).
They also tried to attract the infants’ attention on the cups by shak-
ing them before the task. The result that the other locations attracted
less attention in IDI than in ADI before the task also indicates that
the parents made much effort to attract the attention of infants on the
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Figure 4. Proportions of attended locations before task (2 [sec])
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Figure 5. Proportions of attended locations during task
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Figure 6. Proportions of attended locations after task (2 [sec])
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Figure 7. Contribution of static features to saliency of cups



(a) parent’s face attended to
during task in IDI

(b) cups attended to before task
in IDI

(c) cups attended to after task
in IDI

Figure 8. Examples of attended locations, which are indicated by a red, a
green, or a blue box if they are on a parent’s face, on his/her hands, or on the

cups, respectively

task-related locations. In addition, the parents in IDI tended to stop
their movement and look at the infants for a while after the task (see
Figure 8 (c)) while the parents in ADI continued to move and com-
mented a lot on the task. They likely showed the goal state of the
task to the infants. We therefore suggest that parents aid their infants
detecting the initial and goal states of the actions by inserting longer
pauses before and after the task.

Our analysis on the contribution of the static features to the
saliency of the objects showed that the features of the color, the inten-
sity, and the orientation of the cups contributed much more to their
saliency in IDI than in ADI. When the cups are attended to as salient
locations, two reasons are considered: motion and static visual fea-
tures. In IDI the saliency of the cups was derived not only from their
movement but also from their intrinsic features, i.e., the color, the
intensity, and the orientation, while in ADI the saliency was mostly
came from their movement. The reason is that the parents in IDI of-
ten stopped their movement during the demonstration of the task and
tried to attract the infants’ attention not on their hands’ motion but on
the cups they were holding. Thus, the cups were attended to as salient
locations because of their intrinsic features. We suggest with these re-
sults that parental actions help infants to detect the static features of
the objects, which consequently enables them to better perceive the
physical structure of the objects.

Although these findings are already very significant, some results
are considered to be improved. Our analysis, for example, found a
trend but did not reveal a statistically significant difference between
the proportions of attention on the cups in IDI and in ADI after the
task. Before the experiment, we hypothesized that the cups would
attract much more attention in IDI than in ADI after the task as before
the task. The reason why the cups were not so salient after the task
is the blue background. In the goal state, all of the green, the yellow,

and the red cups were put in the blue one, which means only the blue
one was visible. Thus, the blue cup in the blue background was not
detected as a salient location. We will therefore analyze other tasks
using other colored objects to evaluate our hypothesis.

The position of the camera which recorded parents’ actions also
can be optimized. The camera was set higher than the head position
of infants so that the view of the camera was not occluded by the in-
fants. This position caused less saliency of the parents’ faces because
they always looked down to gaze at infants. We will thus change the
position of the camera so that we can analyze motionese from a real
infant viewpoint.

6 CONCLUSION

Our analysis on parental actions using a saliency-based attention
model revealed that motionese can help infants (1) to receive imme-
diate social feedback on the actions, (2) to detect the initial and goal
states of the objects used in the actions, and (3) to look at the static
features of the objects. In imitation learning, immediate feedback on
the actions may allow infants to detect what actions are important
and should be imitated. To look at the initial and goal states of the
objects may be helpful in understanding the intention of the actions
and in imitating the actions not only at the trajectory level but also
at the goal level. To attend to the static features of the objects may
also help infants to perceive the structure and the configuration of
the objects. Therefore, all these results indicate that parental actions
contribute to highlight the meaningful structures of the actions. We
conclude that motionese can help infants to detect “what to imitate”
and that the saliency-based attention model enables a robot to lever-
age these advantages in its imitation learning.

In contrast to current studies on robot imitation, in which a robot
was given the knowledge about task-related actions and/or the goal
of actions, our analysis showed that motionese enables a robot to de-
tect these features autonomously. The model of saliency-based visual
attention could highlight them in the sequences of parental actions.
However, to solve the problem of “what to imitate,” we still need to
answer the following question. Which characteristics of actions, i.e.,
the trajectory or the goal of actions, should be imitated? We intend
to further analyze motionese with respect to this problem.

We will also address the issue of “how to imitate.” A robot that
attempts to imitate human actions has to know how to transform the
human movement into its own movement. To approach this problem,
we propose a simple mapping from human movement detected in a
robot’s vision to the motion primitives of the robot represented in
its somatic sense is enough to make the robot roughly imitate the
actions [15, 27]. The motion primitives are designed with a set of
neurons that are responsible to different motion directions while hu-
man movement is also detected and represented with neurons that are
responsible to different motion directions [27]. We will develop such
a mechanism and evaluate together with the attention model if they
enable robots to imitate human actions by leveraging motionese.
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Abstract. The Mental Image Directed Semantic Theory (MIDST) 
has proposed an omnisensory mental image model and its 
description language Lmd intended to facilitate intuitive 
human-system interaction such that happens between non-expert 
people and home robots. The most remarkable feature of Lmd is its 
capability of formalizing both temporal and spatial event concepts 
on the level of human/robotic sensations. This paper presents a 
brief sketch of Lmd and a theoretical consideration on robotic 
imitation of human action driven by human suggestion interpreted 
in Lmd, controlling the robotic attention mechanism efficiently. 
1 

1 INTRODUCTION 
Robotic or artificial imitation is one kind of machine learning on 
human actions and there have been reported a considerable number 
of studies on imitation learning from human actions demonstrated 
without any verbal hint [e.g., 1-3]. In this case, it is extremely 
difficult for a robot to understand which part of human 
demonstration is significant or not because there are too many 
things to attend to as it is. That is, it is an important issue where 
the attention of the observer should be focused on when a 
demonstrator performs an action. Whereas there have been several 
proposals to control attention mechanisms efficiently in such 
top-down ways as guided by the prediction or strategy based on 
sensory data and knowledge of goals or tasks [e.g., 4, 5, 14], they 
are not realistic when a large number of actions must be imitated 
distinctively with various speeds, directions, trajectories, etc.  
The author has been working on integrated multimedia 
understanding for intuitive human-robot interaction, that is, 
interaction between non-expert or ordinary people and home 
robots, where natural language is the leading information medium 
for their intuitive communication [6, 12]. For ordinary people, 
natural language is the most important because it can convey the 
exact intention of the sender to the receiver due to its syntax and 
semantics common to its users, which is not necessarily the case 
for another medium such as gesture or so. Therefore, the author 
believes that it is most desirable to realize robotic imitation aided 
by human verbal suggestion where robotic attention to human 
demonstration is efficiently controllable based on semantic 
understanding of the suggestion. 
For such a purpose, it is essential to develop a systematically 
computable knowledge representation language (KRL) as well as 
representation-free technologies such as neural networks for 
processing unstructured sensory/motory data. This type of 
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language is indispensable to knowledge-based processing such as 
understanding sensory events, planning appropriate actions and 
knowledgeable communication with ordinary people in natural 
language, and therefore it needs to have at least a good capability 
of representing spatiotemporal events that correspond to 
humans’/robots’ sensations and actions in the real world. 
Most of conventional methods have provided robotic systems with 
such quasi-natural language expressions as ‘move(Velocity, 
Distance, Direction)’, ‘find(Object, Shape, Color)’ and so on for 
human instruction or suggestion, uniquely related to computer 
programs to deploy sensors/ motors [e.g., 7, 8]. In association with 
robotic imitation intended here, however, these expression 
schemas are too linguistic or coarse to represent and compute 
sensory/motory events in an integrated way. 
The Mental Image Directed Semantic Theory (MIDST) [9] has 
proposed a model of human attention-guided perception yielding 
omnisensory images that inevitably reflect certain movements of 
the focus of attention of the observer (FAO) scanning certain 
matters in the world. More analytically, these omnisensory images 
are associated with spatiotemporal changes (or constancies) in 
certain attributes of the matters scanned by FAO and modeled as 
temporally parameterized “loci in attribute spaces”, so called, to be 
formulated in a formal language Lmd. This language has already 
been implemented on several types of computerized intelligent 
systems [e.g., 10, 12].  
This paper presents a brief sketch of the formal language Lmd and a 
theoretical consideration on robotic imitation of human 
demonstrated action aided by human suggestion interpreted as 
semantic expression in Lmd. The most remarkable feature of Lmd is 
its capability of formalizing spatiotemporal matter concepts 
grounded in human/robotic sensation while the other similar KRLs 
are designed to describe the logical relations among conceptual 
primitives represented by lexical tokens [e.g., 11]. In Lmd 
expression are hinted what and how should be attended to in 
human action as analogy of human FAO movement and thereby 
the robotic attention can be controlled in a top-down way. 

2 A BRIEF SKETCH OF Lmd 
An attribute space corresponds with a certain measuring 

instrument just like a barometer, thermometer or so and the loci 
represent the movements of its indicator. For example, the moving 
black triangular object shown in Figure 1 is assumed to be 
perceived as the loci in the three attribute spaces, namely, those of 
‘Location’, ‘Color’ and ‘Shape’ in the observer’s brain. 



 

 

Figure1.  Mental image model 
 
Such a locus is to be articulated by “Atomic Locus” with an 
absolute time-interval [ti, tf] (ti< tf) as depicted in Figure 2 (up) 
and formulated as (1). 

 

 

   L(x,y,p,q,a,g,k)                               (1) 
This formula is called ‘Atomic Locus Formula’ whose first two 
arguments are often referred to as ‘Event Causer (EC)’ and 
‘Attribute Carrier (AC)’, respectively. A logical combination of 
atomic locus formulas defined as a well-formed formula (i.e., wff) 
in predicate logic is called simply ‘Locus Formula’. The intuitive 
interpretation of (1) is given as follows, where ‘matter’ refers to 
‘object’ or ‘event’ largely. 

“Matter ‘x’ causes Attribute ‘a’ of Matter ‘y’ to keep (p=q) or 
change (p ≠ q) its values temporally (g=Gt) or spatially (g=Gs) 
over a time-interval, where the values ‘p’ and ‘q’ are relative to 
the standard ‘k’.”  

When g=Gt and g=Gs, the locus indicates monotonic change or 
constancy of the attribute in time domain and that in space domain, 
respectively. The former is called ‘temporal event’ and the latter, 
‘spatial event’. For example, the motion of the ‘bus’ represented 
by S1 is a temporal event and the ranging or extension of the 
‘road’ by S2 is a spatial event whose meanings or concepts are 
formulated as (2) and (3), respectively, where A12 denotes 
‘Physical Location’. These two formulas are different only at 
‘Event Type (i.e., g)’. 

Figure 2.  Atomic Locus (up) and Locus of ‘fetch’ (down) 
 

AC
 
Tokyo     Temporal event      Osaka

Spatial event 
                         FAO

 
 
 
 
 
 

(S1) The bus runs from Tokyo to Osaka.  
(∃x,y,k)L(x,y,Tokyo,Osaka,A12,Gt,k)∧bus(y) (2)  

(S2) The road runs from Tokyo to Osaka.  
(∃x,y,k)L(x,y,Tokyo,Osaka,A12,Gs,k)∧road(y) (3)  

The author has hypothesized that the difference between temporal 
and spatial event concepts can be attributed to the relationship 
between the Attribute Carrier (AC) and the Focus of the Attention 
of the Observer (FAO) [9]. To be brief, it is assumed that the FAO 
is fixed on the whole AC in a temporal event but runs about on the 
AC in a spatial event. According to this assumption, as shown in 
Figure 3, the bus and the FAO move together in the case of S1 
while the FAO solely moves along the road in the case of S2. 

Figure 3. FAO movements and Event types 
 
In order for explicit indication of time duration, ‘Empty Event 
(EE)’ denoted by ‘ε’ is introduced by the definition (5) with the 
attribute ‘Time Point (A34)’. According to this scheme, the 
duration [ta, tb] of an arbitrary locus χ can be expressed as (6). 

ε([t1,t2])↔(∃x,y,g,k) L(x,y,t1,t2,A34,g,k)  (5) 
χ Π ε([ta, tb])    (6) 

All the same way, an object concept is also defined and expressed 
in Lmd as a combination of potential events on its properties and its 
relations with others. For example, the conceptual descriptions of 
‘rain’, ‘wind’ and ‘air’ can be given as (7)-(9), reading ‘Rain is 
water attracted from the sky by the earth, makes an object wetter, 
is pushed an umbrella to by a human,…,’ ‘Wind is air, affects the 
direction of rain,… ,’ and ‘Air has no shape, no taste, no vitality, 
…,’ respectively.  

Any locus in a certain Attribute Space can be formalized as a 
combination of atomic locus formulas and, so called, 
tempo-logical connectives, among which the most frequently used 
are ‘Simultaneous AND (Π)’ and ‘Consecutive AND (•)’ as appear 
in the conceptual definition (4) of the English verb ‘fetch’ depicted 
in Figure 2 (down). 
  (λx,y)fetch(x,y)↔(λx,y)(∃p1,p2,k)L(x,x,p1,p2,A12,Gt,k)• 
((L(x,x,p2,p1,A12,Gt,k)ΠL(x,y,p2,p1,A12,Gt,k))∧x≠y∧p1≠p2  (4) 



(λx)rain(x)↔(λx)(∃x1,x2,…)L(_,x,x1,x1,A41,Gt,_) 
∏L(Earth,x,Sky,Earth,A12,Gt,_)∏L(x,x2,p,q,A25,Gt,_) 
∏L(x3,x4,x,x,A19,Gt,x3)∧water(x1) 
∧object(x2)∧human(x3)∧umbrella(x4)∧(p<q)… (7) 
(λx)wind(x)↔(λx)(∃x1,x2,…)L(_,x,x1,x1,A41,Gt,_) 
∧air(x1)∧(L(x,x2,p,q,A13,Gt,_)∧rain(x2)…     (8) 

(λx)air(x)↔(λx)(…∧L*(_,x,/,/,A11,Gt,_)∧…∧ 
L*(_,x,/,/,A29,Gt,_)∧…∧L*(_,x,/,/,A39,Gt,_)∧ …) (9) 

Hereafter, for simplicity of Lmd expression, the special symbols ‘*’, 
‘_’and ‘/’ are often employed to represent ‘always’, ‘something (or 
some value)’ and ‘nothing (no value)’ as defined by (10)-(12), 
respectively. 

X* ↔ (∀[p,q])X Π ε([p,q])   (10) 
L(…,_,…) ↔ (∃ω)L(…,ω,…)  (11) 
L(…,/,…) ↔ ~(∃p) L(…,ω,…)  (12) 

Table 1 shows about 50 attributes extracted exclusively from 
English and Japanese words of common use contained in certain 
thesauri [9]. Most of them (i.e., A01-A45) correspond to the 
sensory receptive fields in human brains. For example, those 
marked with ‘*’ in this table can be associated to the sense ‘sight’. 
Correspondingly, six categories of standards shown in Table 2 
have been extracted that are necessary for representing relative 
values of each attribute in Table 1. These tables show that 
ordinary people live their casual lives, attending to tens of 
attributes of the matters in the world to cognize them in 
comparison with several kinds of standards. 
 

Table 1.  List of attributes 
Code Attribute [Property†] (words/phrases concerned)
*A01 PLACE OF EXISTE NCE [N] (happen, perish)
*A02 LENGTH [S] (long, shorten, close, away) 
*A03 HEIGHT [S] (high, lower) 
*A04 WIDTH [S] (widen, narrow) 
*A05 THICKNESS [S] (thick, thin) 
*A06 DEPTH1 [S] (deep, shallow) 
*A07 DEPTH2 [S] (deep, concave) 
*A08 DIAMETER [S] (across, in diameter) 
*A09 AREA [S] (square meters, acre) 
*A10 VOLUME [S] (litter, gallon) 
*A11 SHAPE [N] (round, triangle) 
*A12 PHYSICAL LOCATION [N] (move, stay) 
*A13 DIRECTION [N] (turn, wind, left) 
*A14 ORIENTATION [N] (orientate, command) 
*A15 TRAJECTORY [N] (zigzag, circle) 
*A16 VELOCITY [S] (fast, slow) 
*A17 MILEAGE [S] (far, near) 

A18 STRENGTH OF EFFECT [S] (strong, powerful) 
A19 DIRECTION OF EFFECT [N] (pull, push) 
A20 DENSITY [S] (dense, thin) 
A21 HARDNESS [S] (hard, soft) 
A22 ELASTICITY [S] (elastic, flexible) 
A23 TOUGHNESS [S] (fragile, stiff) 
A24 TACTILE FEELING [S] (rough, smooth) 
A25 HUMIDITY [S] (wet, dry) 
A26 VISCOSITY [S] (oily, watery) 
A27 WEIGHT [S] (heavy, light) 

A28 TEMPERATURE [S] (hot, cold) 
A29 TASTE [N] (sour, sweet, bitter) 
A30 ODOUR [N] (pungent, sweet) 
A31 SOUND [N] (noisy, silent, loud) 

*A32 COLOR [N] (red, white) 
A33 INTERNAL SENSATION [N] (tired, hungry) 
A34 TIME POINT [S] (o’clock, elapse) 
A35 DURATION [S] (hour, minute, long, short) 
A36 NUMBER [S] (ten, quantity, number) 
A37 ORDER [S] (first, last) 
A38 FREQUENCY [S] (sometimes, frequent) 
A39 VITALITY [S] (alive, dead, vivid) 
A40 SEX [S] (male, female) 
A41 QUALITY [N] (make, destroy) 
A42 NAME [V] (name, token) 
A43 CONCEPTUAL CATEGORY [V] (mammal) 
*A44 TOPOLOGY [V] (in, out, touch) 
*A45 ANGULARITY [S] (sharp, dull, right angle) 
B01 WORTH [N] (improve, praise, deny, alright) 
B02 LOCATION OF INFORMATION [N] (tell, hear)
B03 EMOTION [N] (like, hate) 
B04 BELIEF VALUE [S] (believe, trust) 

 ………………………….. 
†S: scalar value, N: non-scalar value.  *Attributes 

 concerning the sense of sight. 
 
Table 2.  List of standards 
Categories Remarks 

Rigid 
Standard 

Objective standards such as denoted by 
measuring units (meter, gram, etc.). 

Species 
Standard 

The attribute value ordinary for a species. 
A short train is ordinarily longer than a 
long pencil. 

Proportional
Standard 

‘Oblong’ means that the width is greater 
than the height at a physical object. 

Individual
Standard 

Much money for one person can be too little 
for another. 

Purposive
Standard 

One room large enough for a person’s 
sleeping must be too small for his jogging. 

Declarative
Standard 

The origin of an order such as ‘next’ must 
be declared explicitly just as ‘next to him’. 

3 INTELLIGENT SYSTEM IMAGES-M 

3.1 System configuration 
The intelligent system IMAGES-M [e.g., 10, 12] is assumed to be 
the main intelligence of the robot intended here. As shown in 
Figure 4, IMAGES-M is one kind of expert system equipped with 
five kinds of user interfaces for multimedia communication, that is, 
Sensory Data Processing Unit (SDPU), Speech Processing Unit 
(SPU), Picture Processing Unit (PPU), Text Processing Unit 
(TPU), and Action Data Processing Unit (ADPU) besides 
Inference Engine (IE) and Knowledge Base (KB). Each processing 
unit in collaboration with IE performs mutual conversion between 
each type of information medium and locus formulas. 



Mary carries the book.        Surface Structure IMAGES-M is a language-centered intelligent system in order to 
facilitate intuitive interaction between humans and robots. For 
comprehensible communication with humans, robots must 
understand natural language semantically and pragmatically. Here, 
as shown in Figure 5, semantic understanding means associating 
symbols to conceptual images of matters (i.e., objects or events), 
and pragmatic understanding means anchoring symbols to real 
matters by unifying conceptual images with perceptual images. 

 
 

carries 
 
Dep1           Dep2 
 
Mary            book    Surface Dependency 

 

                          Structure 
 

the 
                                      Conceptual 
                                       Structure 
(∃y,p1,p2)L(Mary,Mary,p1,p2,A12,Gt,_)Π 
L(Mary,y,p1,p2,A12,Gt,_)∧Mary≠y∧p1≠p2∧book(y)     
 
Figure 6. Mutual conversion between natural language and Lmd 
 
 (Input)  

With the long red stick Tom precedes Jim. 
(Output) 

Tom with the long red stick goes before Jim goes.  
Jim goes after Tom goes with the long red stick. Figure 4. Configuration of IMAGES-M 
Jim follows Tom with the long red stick.  
Tom carries the long red stick before Jim goes. 

 

………………… 
Figure 7. Paraphrasing as semantic understanding by IMAGES-M 
 
The Up above consists of two operations to unify the first 
dependent (Dep.1) and the second dependent (Dep.2) of the 
current word with the variables x and y, respectively. Here, Dep.1 
and Dep.2 are the ‘subject’ and the ‘object’ of ‘carry’, respectively. 
Therefore, the surface structure ‘Mary carries a book’ is translated 
into the conceptual structure (15) via the surface dependency 
structure shown in Figure 6. 

(∃y,p1,p2)L(Mary,Mary,p1,p2,A12,Gt,_)Π 
L(Mary,y,p1,p2,A12,Gt,_)∧Mary≠y∧p1≠p2∧book(y)    (15) 

For another example, the meaning description of the English 
preposition ‘through’ is also given by (16). 

Figure 5.  Semantic and pragmatic understanding  

[(∃x,y,p1,z,p3,g,p4)(L(x,y,p1,z,A12,g,_)• 
L(x,y,z,p3,A12,g,_))Π L(x,y,p4,p4,A13,g,_)∧p1≠z∧z≠p3 
:ARG(Dep.1,z); IF(Gov=Verb)→PAT(Gov,(1,1)); 
 IF(Gov=Noun)→ARG(Gov,y);]                  (16) 

3.2 Semantic understanding 
As shown in Figure 6, natural language expression (i.e, surface 
structure) and Lmd expression (i.e., conceptual structure) are 
mutually translatable through surface dependency structure by 
utilizing syntactic rules and word meaning descriptions [9].  
A word meaning description Mw is defined by (13) as a pair of 
‘Concept Part (Cp)’ and ‘Unification Part (Up)’. 

Mw↔ [Cp:Up]   (13) 

The Up above is for unifying the Cps of the very word, its governor 
(Gov, a verb or a noun) and its dependent (Dep.1, a noun). The 
second argument (1,1) of the command PAT indicates the 
underlined part of (13) and in general (i,j) refers to the partial 
formula covering from the ith to the jth atomic formula of the 
current Cp. This part is the pattern common to both the Cps to be 
unified. This is called ‘Unification Handle (Uh)’ and when missing, 
the Cps are to be combined simply with ‘∧’. 
Therefore the sentences S3, S4 and S5 are interpreted as (17)-(19), 
respectively. The underlined parts of these formulas are the results 
of PAT operations. The expression (20) is the Cp of the adjective 
‘long’ implying ‘there is some value greater than some standard of 
‘Length (A02)’ which is often simplified as (20’). 

The Cp of a word W is a locus formula about properties and 
relations of the matters involved such as shapes, colors, functions, 
potentialities, etc while its Up is a set of operations for unifying the 
Cps of W’s syntactic governors or dependents. For example, the 
meaning of the English verb ‘carry’ can be given by (14). 

[(∃x,y,p1,p2) L(x,x,p1,p2,A12,Gt,_)Π  
L(x,y,p1,p2,A12,Gt,_)∧x≠y∧p1≠p2:ARG(Dep.1,x); 
ARG(Dep.2,y);]                               (14) 



(S9) □ is in the room.  (S3) The train runs through the tunnel. 
(∃x,y)L(_,x,y,□,A12,Gs,_)ΠL(_,x,In,In,A44,Gt,IM) 
∧ISR(x)∧room(y)     (23) 
(∃x,y)L(_,x,□,y,A12,Gs,_)ΠL(_,x,Cont,Cont,A44,Gt,IM) 
∧ISR(x)∧room(y)     (23’) 

(∃x,y,p1,z,p3,p4)(L(x,y,p1,z,A12,Gt,_)• 
L(x,y,z,p3,A12,Gt,_))Π L(x,y,p4,p4,A13,Gt,_)  
∧p1≠z ∧z≠p3∧train(y) ∧tunnel(z)                 (17) 

(S4) The path runs through the forest. 
For more complicated examples, consider S10 and S11. The 
underlined parts are deemed to refer to some events neglected in 
time and in space, respectively. These events correspond with 
skipping of FAOs and are called ‘Temporal Empty Event’ and 
‘Spatial Empty Event’, denoted by ‘εt ’ and ‘εs ’ as Empty Events 
with g=Gt and g=Gs at (5), respectively. Their concepts are 
described as (24) and (25), where ‘A15’ and ‘A17’ represent the 
attribute ‘Trajectory’ and ‘Mileage’, respectively. From the 
viewpoint of pragmatic understanding, the formula (25) can refer 
to such a spatial event depicted as the still picture in Figure 8 
(down) while (24), a temporal event to be recorded as a movie.  

(∃x,y,p1,z,p3,p4)(L(x,y,p1,z,A12,Gs,_)• 
L(x,y,z,p3,A12,Gs,_))Π L(x,y,p4,p4,A13,Gs,_) 
∧p1≠z ∧z≠p3 ∧path(y) ∧forest(z)                 (18) 

(S5) The path through the forest is long. 
(∃x,y,p1,z,p3,x1,q,p4,k1) 

  (L(x,y,p1,z,A12,Gs,_)•L(x,y,z,p3,A12,Gs,_))  
Π L(x,y,p4,p4,A13,Gs,_) ∧L(x1,y,q,q,A02,Gt,k1)  
∧p1≠z∧z≠p3∧q>k1∧path(y)∧forest(z)             (19) 
(∃x1,y1,q,k1)L(x1,y1,q,q,A02,Gt,k1)∧q>k1               (20) 
(∃x1,y1,k1)L(x1,y1,Long,Long,A02,Gt,k1)          (20’) 

The process above is completely reversible except that multiple 
natural expressions as paraphrases can be generated by TPU in 
IMAGES-M as shown in Figure 7 because such event patterns as 
shown in Figure 2 are sharable among multiple word concepts. 
This is one of the most remarkable features of MIDST and is also 
possible between different languages as understanding-based 
translation [10, 12]. 

(S10) The bus runs 10km straight east from A to B, and after a 
while, at C it meets the street with the sidewalk. 

(∃x,y,z,p,q)(L(_,x,A,B,A12,Gt,_)Π 
 L(_,x,0,10km,A17,Gt,_)ΠL(_,x,Point,Line,A15,Gt,_)Π 
  L(_,x,East,East,A13,Gt,_))•εt•(L(_,x,p,C,A12,Gt,_) 
 ΠL(_,y,q,C,A12,Gs,_)ΠL(_,z,y,y,A12,Gs,_)) 
 ∧bus(x)∧street(y)∧sidewalk(z)∧p≠q                   (24) 
(S11) The road runs 10km straight east from A to B, and after a 
while, at C it meets the street with the sidewalk. 3.3 Pragmatic understanding 

(∃x,y,z,p,q)(L(_,x,A,B,A12,Gs,_)Π 
L(_,x,0,10km,A17,Gs,_)ΠL(_,x,Point,Line,A15,Gs,_)Π 
L(_,x,East,East,A13,Gs,_))•εs •(L(_,x,p,C,A12,Gs,_) 
ΠL(_,y,q,C,A12,Gs,_)ΠL(_,z,y,y,A12,Gs,_)) 
∧road(x)∧street(y)∧sidewalk(z)∧p≠q                 (25) 

An event expressed in Lmd is compared to a movie film recorded 
through a floating camera because it is necessarily grounded in 
FAO’s movement over the event. For example, it is not the ‘path’ 
but the ‘FAO’ that ‘sinks’ in S6 or ‘rises’ in S7. Therefore, such 
expressions refer to the same scene pragmatically in spite of their 
appearances, whose semantic descriptions are given as (21) and 
(22), respectively, where ‘A13’, ‘↑’ and ‘↓’ refer to the attribute 
‘Direction’, and its values ‘upward’ and ‘downward’, respectively. 
This fact is generalized as ‘Postulate of Reversibility of a Spatial 
Event (PRS)’ belonging to people’s intuitive knowledge about 
geography, and the conceptual descriptions (21) and (22) are called 
equivalent in the PRS. 

 

 

(S6) The path sinks to the brook. 
(∃x,y,p,z)L(x,y,p,z,A12,Gs,_)ΠL(x,y,↓,↓,A13,Gs,_) 
∧path(y) ∧brook(z) ∧p≠z   (21) 

(S7) The path rises from the brook. 
(∃x,y,p,z)L(x,y,z,p,A12,Gs,_)ΠL(x,y,↑,↑,A13,Gs,k2) 
∧path(y) ∧brook(z) ∧p≠z   (22) 

 
 

For another example of spatial event, Figure 8 (up) concerns 
human perception of the formation of multiple distinct objects, 
where FAO runs along an imaginary object so called ‘Imaginary 
Space Region (ISR)’. This spatial event can be verbalized as S8 
using the preposition ‘between’ and formulated as (22), 
corresponding also to such concepts as ‘row’, ‘line-up’, etc. Any 
type of topological relation between two objects is also to be 
formulated by employing an ISR. For example, S9 is translated 
into (23) or (23’), where ‘In’, and ‘Cont’ are the values ‘inside’ 
and ‘contains’ of the attribute ‘Topology (A44)’ represented by 
3x3 matrices at the Sandard of ‘9-intersection model (IM)’ [13], 
where ‘In’ and ‘Cont’ are the transposes each other. 

 
 
 
 
 
 
 
 
 
 

N
sidewalk

road      street 

10 km

A    B      C 

Figure 8.  Complicated spatial events: ‘row’ (up) and ‘example 
of road map’ (down) 

(S8) □ is between ∆ and ○.  
(∃y,p)(L(_,y,∆,□,A12,Gs,_)•L(_,y,□,○,A12,Gs,_))Π 

    L(_,y,p,p,A13,Gs,_) ∧ISR(y)   (22)  



Ti , KL⇒ Si  

 

Di , KD ⇒ Peri  
Si , Peri, KD ⇒ Pi , Defi (= Ci) 
Pi , Defi, KD⇒ Ii 

, where  
Inti : The i-th intention by the human, 
Ti : The i-th suggestion by the human, 
Si : Result of semantic understanding of the i-th suggestion, 
KL : Linguistic knowledge in the robot, 
Di : The i-th demonstration by the human, 
KD : Domain-specific knowledge in the robot at the i-th session, 
Peri : Perception of the i-th demonstration, 
Pi : Result of pragmatic understanding of the i-th suggestion, 
Defi : Default specification for the i-th imitation, 
Ii : The i-th imitation by the robot, 
⇒ : Conversion process (e.g., inference, translation). 

 

 

(a) A map generated from a locus formula by IMAGES-M 
 
H: How does the national road run? 
S: It extends between Pref. A and Pref. C via Pref. B. 
H: Where does the bus go from the rail way station A? 
S: It reaches the town D. 
H: What is between the buildings A and B? 
S: The railway D. 
H: Where do the street A and the road B meet?  
S: At the crossing C. Figure 10.  Imitation as human-robot interaction 
H: Where do the street A and the road B separate?  
S: At the crossing C. 

 

(b) Q-A on the map (a) by human (H) and IMAGES-M (S) 
Figure 9. Cross-media operations as pragmatic understanding 
 
Figures 9 (b) shows an example of question-answering on the real 
map (a) between a human and IMAGES-M [6, 10, 12], where the 
map is a pictorial interpretation of a locus formula by PPU. The 
system understood the query texts pragmatically by anchoring 
them to the map as a model of the real world, utilizing effectively 
several kinds of intuitive postulates such as PRS, as a matter of 
course, where distinction between temporal and spatial events is 
crucially important. 

4 IMITATION GUIDED BY SUGGESTION 

4.1 Definition 
As shown in Figures 10 and 11, robotic imitation intended 
here is defined as a human-robot interaction where a human 
presents a robot a pair of demonstration and suggestion that 
is the expression of his/her intention and it behaviouralizes 
its conception, namely, the result of semantic and pragmatic 
understanding of the suggestion.  
The processes shown in Figures 10 and 11 can be formalized as 
follows, where the pair of Pi and Defi is called ‘Conception’ for the 
i-th imitation and denoted by Ci. 

Figure 11. Imitation guided by suggestion 

Inti ⇒ Ti , Di  



4.2 Theoretical simulation 
As shown in Figure 10, it is assumed that there is a feedback loop 
between a human and a robot in order for the human to improve 
his/her previous suggestion or demonstration and for the robot to 
correct its previous imitation. For example, consider the scenario 
presented below and depicted in Figure12. 
Scenario : 
Robby is an intelligent humanoid robot and Tom is his user. 
Robby is called by Tom and enters Tom’s room. This is Robby’s 
first visit there. Robby sees Tom leftward and the brown pillar 
forward (, but doesn’t see the green box or the yellow table). After 
a while, Tom tells Robby “Imitate me to my demonstration and 
suggestion.”…… 
Here is described a theoretical simulation of the robotic imitation 
driven by the top-down control of the attention mechanism, which 
is almost that of problem finding/solving in the filed of AI [6, 12]. 
 

 
Figure 12. Tom’s demonstrations and Robby’s imitations  

 
The sequence of the events assumed to happen is as follows. 
[Robby’s Perception of the initial situation, Sit0] 
  Sit0↔ L(_,O21,Brown,Brown,A32,Gt,_)Π 

L(_,O22,Robby,Tom,A12,Gs,_)Π 
L(_,O22,Lw21,Lw21,A13,Gs,Robby)Π 
L(_,O23,Robby,O21,A12,Gs,_)Π 
L(_,O23,Fw21,Fw21,A13,Gs,Robby) 
∧pillar(O21)∧ISR(O22)∧ISR(O23) 

Robby’s perception of the situation (i.e., the underlined part of the 
scenario) is still rough due to its economical working mode that is 
to be specified by each Standard (or precision). The attributes A32 
and A13 are ‘Color’ and ‘Direction’, respectively. The values Fw21 
and Lw21 stand for ‘forward’ and  ‘leftward’ viewed from Robby 
as designated at the Standard, respectively. 
[Tom’s Intention_1, Int1]  

Int1↔L(Robby,Robby, O11 ,O13,A12,Gt,_)Π 
L(Robby,O11,Robby,Robby,A12,Gt,_)Π 
(L(_,O14,Tom,O11,A12,Gs,_)•L(_,O14,O11,Robby,A12,Gs,_))Π 
L(_,O14,D11,D11,A13,Gs,_)ΠL(Robby,Robby,V11,V11,A16,Gt,_)ΠL
(_,O15,Robby,O12,A12,Gs,_)ΠL(Robby,O15,Dis,Dis,A44,Gt,_) 
∧box(O11)∧pillar(O12)∧table(O13)∧ISR(O14)∧ISR(O15) 

This formula implies that Tom wants Robby to carry the box 
between them to the table at a certain ‘Velocity(A16)’, V11  
without touching the pillar on the way, where ‘O11’ and ‘O13’ as the 

values of A12 represent their locations at each time point, and ‘D11’ 
is the direction to the box and Robby viewed from Tom.  
Tom is conscious that every attribute value to specify Robby’s 
action is essentially vague but he believes that it should be 
imitated within certain tolerance associated with each Standard. 
The values Dis and Meet stand for ‘disjoint’ and ‘meet (or touch)’ 
in Topology(A44), respectively. 
 
<SESSION_1> 
[Tom’s Suggestion_1, T1 and Demonstration_1, D1] 

Int1⇒T1, D1 
T1 ↔ “Go to the table with the box between us like this.” 
D1 ↔ Figure 12 

Tom decides to verbalize only the underlined part of Intention_1, 
Int1 saliently with the belief that the rest can be included in his 
demonstration. Tom converts (or translates) Int1 into T1 and D1. 
[Robby’s Semantic_Understanding_1, S1] 

T1, KL⇒S1 
S1↔(∃ x1,x2,x,y,z,p)L(x2,x2,y,x,A12,Gt,_)Π 

    L(x2,y, x2,x2,A12,Gt,_)Π (L(_,z,x2,y,A12,Gs,_)• 
    L(_,z,y,x1,A12,Gs,_))ΠL(_,z,p,p,A13,Gs,_) 
    ∧x2≠x∧x2≠y∧box(y)∧table(x)∧ISR(z) 
    ∧person_1(x1)∧person_2(x2) 
Robby interprets T1 into S1. The variable ‘x’ or ‘y’ is not yet 
anchored to the ‘real table’ or the ‘real box’ in the real 
environment because Robby has not perceived them yet. The 
predicates ‘person_1’ and ‘person_2’ refer to the first person (I) 
and the second person (You) and are to be pragmatically 
understood as ‘Tom’ and ‘Robby’, respectively. 
[Robby’s Pragmatic_Understanding_1, P1 and Default_1, Def1] 

D1⇒Per1 
S1, Per1, KD ⇒P1, Def1 
P1↔L(Robby,Robby,O24,O25,A12,Gt,_)Π 
  L(Robby,O24,Robby,Robby,A12,Gt,_)Π 
  (L(_,O26,Robby,O25,A12,Gs,_)•L(_,O26,O25,Tom,A12,Gs,_))Π 
  L(_,O26,Lw21,Lw21,A13,Gs,_)∧box(O24)∧table(O25)∧ISR(O26) 

Def1 ↔ L(Robby,Robby,1m/sec,1m/sec,A16,Gt,_)∧… 
The ‘Location (A12)’ is attended to according to S1. Per1 makes 
Robby aware that the words ‘box’ and ‘table’ should be anchored 
to the ‘green object O24’ and the ‘yellow object O25’ behind the 
pillar in the real environment, respectively. Robby conceives that 
he should approach to the table at his certain Standard. Def1 is 
inferred from Per1 and KD as the default specification for the 
attributes not explicit in T1. 

[Robby’s Imitation_1, I1] 
P1, Def1, KD ⇒ I1  
I1↔Figure12 

Robby imitates D1 according to P1, Def1 and KD. 
----- Resetting the situation to the initial situation Sit0----- 
<SESSION_2> 
[Tom’s Suggestion_2, T2 and Demonstration_2, D2] 

I1⇒ PI1 
Int1, ~PI1⇒Int2 
Int2⇒T2, D2 
T2 ↔“Don’t touch the pillar.” 
D2 ↔ Figure 12 

Tom perceives I1 as PI1. He denies PI1 and creates Int2 
followed by T2 and D2. 



[Robby’s Semantic_Understanding_2, S2]  
T2, KL ⇒S2 
S2↔ (∃x)L(_,y,Robby,O21,A12,Gs,_) 

Π~L(Robby,x,Dis,Meet,A44,Gt,_)∧ISR(x)∧pillar(O21) 
  Robby gets aware that his imitation has been denied at the 
change of attribute ‘Topology (A44)’ from ‘Disjoint’ to ‘Meet’. 

[Robby’s Pragmatic_Understanding_2, P2 and Default_2, Def2]   
D2⇒Per2 
S2, Per2, KD ⇒P2, Def2 
P2↔P1∧L(_,O27,Robby,O21,A12,Gs,_)Π 

L(Robby,O27,Dis,Dis,A44,Gt,_)∧pillar(O21) ∧ISR(O27) 
Def2 ↔ L(Robby,Robby, 1m/sec, 1m/sec,A16,Gt,_)∧… 

According to S2, the ‘Location (A12)’ of Robby and the pillar 
and their ‘Topology (A44)’ are especially attended to, and the 
underlined part is conceived in addition to P1. No special 
attention is paid to the other attributes unmentioned yet.  

[Robby’s Imitation_2, I2] 
P2, Def2, KD ⇒ I2  
I2 ↔ Figure 12 

-----Resetting the situation to the initial situation Sit0----- 
 
<SESSION_3> 
 [Tom’s Suggestion_3, T3 and Demonstration_3, D3]  

I2⇒ PI2 
Int2, ~PI2⇒Int3 (↔Null) 
Int3⇒T3, D3 
T3 ↔“Alright.” 
D3 ↔ Null 

   Tom fails to deny PI2 and comes to have no other intention 
(Int3 ↔Null). That is, Tom is satisfied by I2 and only tells Robby 
“Alright.” 

[Robby’s Semantic_Understanding_3, S3] 
T3, KL ⇒S3 
S3 ↔ (∃x,y,k)L(x,y,1,1,B01,Gt,k)∧person(x) 

   Tom gets aware that something ‘y’ has evaluated by some 
person ‘x’ as perfect ‘1’ at ‘Worth (B01)’ with a certain 
Standard ‘k’. 

[Robby’s Pragmatic_Understanding_3, P3 and Default_3, Def3] 
S3, Per3, KD ⇒P3, Def3 
P3↔L(Tom,I2,1,1,B01,Gt,Tom)∧person(Tom) 
Def3 ↔L(Robby, I3,/,/,A01,Gt,_) 
Finally, Robby pragmatically conceives that Tom is satisfied 
by I2 at Tom’s Standard and believes that the next imitation, I3 
is not needed to take ‘Place of Existence (A01)’. 

[Robby’s Imitation_3, I3] 
    P3, Def3 , KD ⇒ I3  

I3 ↔ Null 
Finally, no more imitation is performed. 

-----End of all the sessions----- 

5 TOP-DOWN CONTROL BASED ON Lmd 

5.1 Attention mechanism 
As mentioned above, the semantic understanding of human verbal 
suggestion makes a robot abstractly (i.e., conceptually) aware 
which matters and attributes involved in human demonstration 
should be attended to, and its pragmatic understanding provides 

the robot with concrete idea of real matters with real attribute 
values significant for imitation. More exactly, semantic 
understanding in Lmd of human suggestion enables the robot to 
control its attention mechanism in such a top-down way that 
focuses the robot’s attention on the significant attributes of the 
significant matters involved in human demonstration. Successively, 
in order for pragmatic understanding in Lmd of human suggestion, 
the robot is to select the appropriate sensors corresponding with 
the suggested attributes and make them run on the suggested 
matters so as to pattern after the movements of human FAO 
implied by the locus formulas yielded in semantic understanding. 
That is to say in short, Lmd expression suggests a robot what and 
how should be attended to in human demonstration and its 
environment. 
For example, consider such a suggestion as S12 presented to a 
robot by a human. In this case, unless the robot is aware of the 
existence of a certain box between the stool and the desk, such 
semantic understanding of the underlined part as (26) and such a 
semantic definition of the word ‘box’ as (27) are very helpful for it. 
The attributes A12 (Location), A13 (Direction), A32 (Color), A11 
(Shape) and the spatial event on A12 in these Lmd expressions 
indicate that the robot has only to activate its vision system in 
order to search for the box from the stool to the desk during the 
pragmatic understanding. That is, the robot can attempt to 
understand pragmatically the words of objects and events in 
an integrated top-down way. 
(S12) Avoid the green box between the stool and the desk. 
(∃x1,x2,x3,x4,p)(L(_,x4,x1,x2,A12,Gs,_)•L((_,x4,x2,x3,A12,Gs,_))Π 
L(_,x4,p,p,A13,Gs,_)ΠL(_,x2,Green,Green,A32,Gt,_) 
∧stool(x1)∧box(x2)∧desk(x3)∧ISR(x4)  (26) 
(λx)box(x)↔(λx)L(_,x,Hexahedron,Hexahedron,A11,Gt,_) 
∧container(x)    (27) 
 

 
(1) Data at t1      (2) Data at t2      (3) Data at t3   

Figure 13. Graphical interpretations of real motion data 
 
Tom moved the right arm. 
Tom raised the right arm. 
Tom bent the right arm. 

…………… 
 (a) Text for motion data from t1 to t2. 
  …………… 
Tom lowered the right arm. 
Tom stretched the right arm and simultaneously lowered the 
right arm. 
  …………… 

(b) Text for motion data from t2 to t3. 
Figure 14. Texts generated from real motion data 



 
This top-down control of attention mechanism enables 
IMAGES-M can take in real human motion data through the 
motion capturing system in SDPU. For example, Figure 13 shows 
graphical interpretations of the real motion data taken in at the 
time point t1, t2 and t3. These real data were translated via Lmd into 
such texts as shown in Figure 14 by TPU. In this case, 
IMAGES-M’s attention was guided by the suggestion S13 below.  
(S13) Move your right arm like this. 

5.2 Utilization of domain-specific knowledge 
The linguistic knowledge KL is employed exclusively for semantic 
understanding, consisting of syntactic and semantic rules and 
dictionaries. On the other hand, the domain-specific knowledge KD 
is employed for pragmatic understanding and behaviouralization, 
containing all kinds of knowledge pieces acquired so far 
concerning the robot, the human and their environment. For 
example, the human body can be described in a computable form 
using locus formulas. That is, the structure of the human body is 
one kind of spatial event where the body parts such as head, trunk, 
and limbs extend spatially and connect with each other. The 
expressions (28) and (29) are examples of these descriptions in Lmd, 
reading that an arm extends from a hand to a shoulder and that a 
wrist connects a hand and a forearm, respectively. 
(λx)arm(x)↔(λx)(∃y1,y2)L(_,x,y1,y2,A12,Gs,_) 
∧shoulder(y1)∧hand(y2)   (28) 
(λx)wrist(x)↔(λx)(∃y1,y2,y3,y4)(L(_,y1,y2,x,A12,Gs,_)• 
L(_,y1,x,y3,A12,Gs,_))∧body-part(y1)∧forearm(y2) 
∧hand(y3)     (29) 
These descriptions are necessary for the robot to understand 
human action and text well enough to obtain an appropriate 
conception, eliminating such an anomalous one as is represented 
by S14 in a top-down way. 
(S14) The left arm moved away from the left shoulder and  

the left hand. 
Each of such human’s/robot’s motions (Mk) as ‘walk’ and ‘bow’ is 
given as an ordered set of its standardized characteristic snapshots 
(Sk) called ‘Standard Motion’ and defined by (30). In turn, a family 
(FX) of Sks is called ‘Family of Standard Motions’ and defined by 
(31), where the suffix ‘X’ refers to ‘human (X=H)’ or ‘robot 
(X=R)’. The families FH and FR are contained in KD and their 
members are employed for the default motions, namely, motions 
not specified in human suggestion or demonstration, during 
pragmatic understanding. 
  Sk={MkS, …, MkE}    (30) 

FX={S1, S2, …, MN}    (31) 
For example, the Lmd expression of human walking in default is 
given by (32), reading that a human moves by his/her legs making 
his/her shape change monotonically from WalkS to WalkE.  

(∃x,y,p1,p2,q1,q2) L(_,y,x,x,A01,Gt,_)Π 
L(y,x,q1,q2,A12,Gt,_)Π L(x,x,WalkS,WalkE,A11,Gt,FH) 
∧q1≠q2∧human(x)∧legs(y)   (32)  

For another example, the Lmd expression (33) is for the robotic 
motion of head shaking in default, reading that a robot affects its 
head in the Orientation (A14), making its shape change 
monotonically from Shake_headS to Shake_headE. The shape 
values are given in a computable form general enough to 
reconstruct any human/robot motion in 3D graphics or so. Figure 
15 shows an example of its interpretation in 3D graphics by PPU 

in IMAGES-M, which is also an example of cross-media 
translation from the text ‘The robot shakes its head’ into the 
animation. 

(∃x,y,p1,p2)L(_,y,x,x,A01,Gt,_)ΠL(x,y,p1,p2,A14,Gt,_)Π 
L(x,x,Shake_headS,Shake_headE,A11,Gt,FR) 
∧robot(x)∧head(y)    (33)  

 

 
Figure 15. 3D animation of ‘The robot shakes its head.’ 

5.3 Behaviouralization 
The process for behaviouralization is to translate a conception (i.e., 
Ci) into an imitation (i.e., Ii) as a appropriate sequence of control 
codes for certain sensors or actuators in the robot to be decoded 
into a real behaviour by SDPU or ADPU in IMAGES-M. For this 
purpose, there are needed two kinds of core procedures so called 
‘Locus formula paraphrasing’ and ‘Behaviour chain alignment’ as 
detailed below. 

5.3.1 Locus formula paraphrasing 
The attributes listed in Table 1 are essentially for human sensors or 
actuators and therefore the locus formula as Ci should be translated 
into its equivalent concerning the attributes specific to the robot’s. 
For example, an atomic locus of the robot’s ‘Shape (A11)’ 
specified by the human should be paraphrased into a set of atomic 
loci of the ‘Angularity (A45)’ of each joint in the robot. For another 
example, ‘Velocity (A16)’ for the human into a set of change rates 
in ‘Angularity (A45)’ over ‘Duration (A35)’ (i.e., A45/A35) of the 
robot’s joints involved. These knowledge pieces are called 
‘Attribute Paraphrasing Rules (APRs)’ [10] and contained in KD. 

5.3.2 Behaviour chain alignment 
Ideally, the atomic loci in the conception Ci (original or 
paraphrased) should be realized as the imitation Ii in a perfect 
correspondence with an appropriate chain of sensor or actuator 
deployments. Actually, however, such a chain as a direct 
translation of Ci must often be aligned to be feasible for the robot 
due to the situational, structural or functional differences between 
the human and the robot. For example of situational difference, in 
the simulation above, the robot must interpolate the travel from its 
initial location to the green box and the action to pick up the box. 
On the other hand, for example of structural or functional 
difference, consider the case of imitation by a non-humanoid robot. 
Figure 16 shows the action by a dog-shaped robot (SONY) to the 
suggestion ‘Walk and wave your left hand.’ The robot 
pragmatically understood the suggestion as ‘I walk and wave my 
left foreleg’ based on the knowledge piece that only forelegs can 
be waved’ and behaviouralized its conception as ‘I walk BEFORE 
sitting down BEFORE waving my left foreleg’ but not as ‘I walk, 



SIMULTANEOUSLY waving my left foreleg’, in order not to fall 
down. 
The procedure here [6, 12] is based on the conventional AI, where 
a problem is defined as the difference or gap between a ‘Current 
State’ and a ‘Goal State’ and a task as its cancellation. Here, the 
term ‘Event’ is preferred to the term ‘State’ and ‘State’ is defined 
as static ‘Event’ which corresponds to a level locus. On this line, 
the robot needs to interpolate some transit event XT between the 
two events, ‘Current Event (XC)’ and ‘Goal Event (XG)’ as (34). 

XC•XT•XG     (34) 
According to this formalization, a problem XP can be defined as 
XT•XG and a task can be defined as its realization and any problem 
is to be detected by the unit of atomic locus. For example, 
employing such a postulate as (35) implying ‘Continuity in 
attribute values’, the event X in (36) is to be inferred as (37). 

L(x,y,p1,p2,a,g,k)•L(z,y,p3,p4,a,g,k).⊃.p3=p2 (35) 
L(x,y,q1,q2,a,g,k)•X•L(z,y,q3,q4,a,g,k)  (36) 
L(z’,y,q2,q3,a,g,k)    (37) 

 

 
Figure 16. Robot’s action to ‘Walk and wave your left hand’ 

6 DISCUSSION AND CONCLUSION 
The key contribution of this paper is the proposal of a novel idea 
of robotic imitation driven by semantic representation of human 
suggestion, where are hinted in the formal language Lmd what and 
how should be attended to in human action as analogy of human 
FAO movement and thereby the robotic attention can be controlled 
in a top-down way. Without such a control, a robot is to 
simultaneously attend to tens of attributes of every matter involved 
in human action as shown in Table 1. This is not realistic, 
considering the difficulties in autonomous robotic vision 
understanding today. The author has a good perspective for the 
proposed theory of robotic imitation based on his previous work 
utilizing Lmd for robot manipulation by text [6, 12]. This is one 
kind of cross-media operation via intermediate Lmd representation 
[e.g., 6, 10, 12]. At my best knowledge, there is no other theory or 
system that can perform cross-media operations in such a seamless 
way as ours. This is due to the descriptive power of Lmd enabling 
systematic organization and computation of spatiotemporal 
knowledge including sensation and action. Our future work will 
include establishment of learning facilities for automatic 
acquisition of word concepts from sensory data and multimodal 
interaction between humans and robots under real environments in 
order to realize the robotic imitation proposed here. 
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Imitation in animals in lack of causal understanding? 
 
Zsófia Virányi 
Konrad Lorenz Institute for Evolution & Cognition Research, Altenberg, Austria 
 
Various experimental results have shown that when causal information is available 
about a problem and a demonstrator’s method to solve it chimpanzees prefer 
emulation and try to find their own (more efficient) method when presented with the 
same problem. At the same time it has also been suggested that they switch to 
imitation when causal structure of the problem and its demonstrated solution is 
unclear. It is questionable, however, whether more precise copying of the 
demonstrated actions in lack of knowledge about their relevance can be considered as 
imitation, or rather reflects emulation in animals which expect others’ behaviour be 
efficient in lack of contradictory information.  
In the present literature on human and non-human imitation two phenomena are 
described as unclear causal structure without clear differentiation between them: 1) in 
case of the above mentioned lack of full information of the observed action and its 
constraints efficiency of the action cannot be evaluated but can be assumed; 2) full 
information is available about the physical constraints and effects of the observed 
action, but they are in contradiction with the action itself (choice of the action cannot 
be explained by them). 
Purpose of the poster is to draw attention to the need of differentiating between these 
two kinds of lack of causal understanding of social learning situations in order to 
avoid possible false comparisons between species and to make viable theoretical 
interpretations. 



 
Selective imitation in dogs 
 
F Range+, Zs Viranyi* §, L Huber+ 
+ Department for Behaviour, Neurobiology and Cognition, University of Vienna, 
Austria 
§ Department of Ethology, Eötvös University, Budapest, Hungary 
* Konrad Lorenz Institute for Evolution & Cognition Research, Altenberg, Austria 
 
The transmission of cultural knowledge requires learners to identify what relevant 
information to retain and selectively imitate when observing other’s skills. By one 
year of age human infants - without relying on language or theory of mind – already 
show evidence of this ability. They are able to interpret others’ behavior as goal-
directed, and as a result predict the most efficient action to achieve a goal within the 
constraints of a given situation. One situation in which human infants are thought to 
manifest this non-mentalistic inferential process is their selective imitation of goal-
directed actions. For example, if a model demonstrates a head action when a hand 
action would be more efficient to turn on a light, infants imitate the head action only 
if its use during the demonstration cannot be explained by their hands being occupied, 
suggesting imitation by preverbal infants to be a selective, interpretative process 
(Gergely, Bekkering, Kiraly, 2002). However, the less effective action is only copied 
if the demonstration is accompanied by communicative cues targeted at the infants. 
Thus, early sensitivity to ostensive-communicative cues and the efficiency of goal-
directed actions seem to be crucial prerequisites for such relevance-guided selective 
imitation (Csibra & Gergely, 2006). While this competence has been thought to be 
human-specific, here we show an analogue capacity in a non-human species, the 
domestic dog (Canis familiaris). In our experimental set-up, subjects watched a 
demonstrator dog pulling a wooden rod using an ‘ineffective’ paw action instead of 
using a mouth action usually preferred by dogs as was shown in a control group. In 
one group, using the ‘ineffective’ action was justified by the constraints of the 
situation e.g. the mouth of the model dog was occupied with a ball, whereas in the 
second group no constraints were present to explain the demonstrator’s choice. In the 
first trial after observing the trained conspecific model, dogs imitated the non-
preferred action only in the group where no constraints were present that could have 
explained the model’s paw use. Consequently, dogs did not blindly copy the 
ineffective method, but demonstrated relevance-guided selective imitation like the 
infants in a comparable task.  
 



Robotic Locust: who is my friend? 
Shigang Yue 
Brain Mapping Unit, Downing Site 
 
To make a robot interact with human effectively, one important thing is to make sure 
it is able to recognise friendly and aggressive behaviours against it.  
 
In this movie, we showed that it is possible for a robot to recognise these two different 
things around it. We equipted a khepera II robot with a pair of locust's inspired  visual 
neural systems to see its surroundings, and a  motor system to interpret the outputs of 
the visual system into behaviours. 
 
The visual systems were based on lobula giant movement detector (LGMD) and 
decending contralateral movement detector (DCMD) in locusts. The visual-motor 
control was based on a motor system which may control locusts' directional jumping 
behaviours. 
 
As shown in the movie, the robotic locust can recognise movements towards it by 
comparing the spikes from its two 'eyes'- escaping if it was an aggressive one, or just 
sitting there if it was a slow and gentle one, like a friend's movements.  
 
The robotic locust always be able to run away from the fast approaching objects, 
which is often predators, regardless these objects' color, shape and materials.  
 
We hope this move brings new inspiration ... 
 



Object Affordances: Linking Sensory Motor Maps and Imitation 
 
L. Montesano,   M. Lopes,   A. Bernardino,   J. Santos-VIctor 
 
 
The concept of affordance was introduced by Gibson as relation between an agent and 
the environment based on the agent’s action capabilities. In this paper we argue that 
this concept (or knowledge representation) plays an important role as a bridge 
between sensory motor maps and higher cognitive capabilities such as imitation. 
Affordances encode relationships between actions, objects and effects and are at the 
core of basic cognitive capabilities such as prediction and planning. Within the 
framework of a general developmental architecture for social robots, we address the 
problem of learning affordances through the interaction of a robot with the 
environment as a key step to understand the world properties and interact socially. We 
present a general model for affordances using Bayesian networks. Actions, object 
features and effects form the nodes of the network and the affordances are implicitly 
encoded by the dependencies between these nodes. The amount of prior knowledge 
and the selected variables define different learning scenarios ranging from parameter 
tuning, which is the most common problem in the literature, to more general instances 
that also cope with feature selection and multiple actions. Since learning is based on a 
probabilistic model, it is able to deal with uncertainty, redundancy and irrelevant 
information present in real world. In addition to this, the model allows to directly use 
the acquired affordances to solve prediction, recognition and planning tasks. Using 
the affordances, the robot is able to imitate a human based on the perceived effects 
and its knowledge about its own action capabilities. We demonstrate successful 
affordance learning on a humanoid robot interacting with objects and apply the 
acquired knowledge in simple imitation games. 
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