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Welcome to the Symposium on Language and Robots! Welcome to the University of Aveiro! 

 
The symposium aims to explore synergies and identify areas of collaboration between robotics and the 
language sciences. As starting point for the discussions, a perspective is proposed in which language is seen as 
a dynamic and distributed cognitive process. 
 
The origins, evolution and acquisition of language and its role in human societies have long been studied by 
philosophers, linguists, psychologists, neuroscientists and cognitive scientists. In recent years, a distributed 
view of cognition and language has emerged. Control of embodied action is now seen as an emergent property 
of a distributed system composed of brain, body and environment. Language ceases to be seen as a formal 
underlying system and, instead, becomes a heterogeneous set of culturally distributed processes. Language is a 
cultural product, perpetually open-ended and incomplete, and partly ambiguous. Both learning to talk and 
language evolution involve not only internal, but also cultural, social and affective processes. 
 
In this context, many research questions open up: How does language transform human cognitive processes? 
How is language grounded in perception and action? In what ways does human phenomenology depend on 
linguistic experience? Can a distributed perspective on language clarify the nature of silent rehearsal (internal 
thought processes)? How does this relate to consciousness? How is language used to achieve joint experience? 
What is the embodied basis of cognition and social semiosis? 

 
While the language sciences have, until now, focused on language in human societies, the robotics and 
artificial intelligence communities are increasingly developing user-friendly robots, that is, robots that are 
flexible, adaptable and easy to command and instruct. These artificial agents need to cognitively interpret 
perception and action, accumulate and manipulate semantic information for decision-making and interact with 
human subjects using natural language. 
 
There are two obvious contact areas between robotics and the language sciences. In the first, robots can be 
used as simulation models for the empirical study of language origins, evolution and acquisition. This is an 
extension of the computational modeling approach to language. In the second area, current knowledge about 
language as a cultural product can be used to design and develop robots for practical applications. 
 
The symposium is therefore intended for exploring the following issues: 
 

• How can robots ground and use language for practical applications?  
• How can robots be used for empirical work in the language sciences?  
• How can robots acquire language when language is distributed?  
• What does robotics imply for the language sciences?  
• What questions do roboticists want to ask the language sciences?  
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• How can the language sciences contribute to the theoretical and practical study of  
how humans interact with robots?  

• How can the language sciences evolve to address societies that include robots?  
 

An open call for papers invited papers to address these issues, welcoming speakers from a wide range of 
disciplines and backgrounds. The proceedings include a total of 22 high quality contributions submitted to the 
open call. Due to the high number of good quality papers, some of them could not be accepted for oral 
presentation, so authors were invited to present them in a poster session. The program thus includes 17 oral 
presentations and 5 poster presentations. The symposium format also includes 5 Invited Talks, by prominent 
researchers in robotics, language sciences and related fields. The whole event will extend to two and half days. 

 
After the symposium, participants will be invited to submit a paper to a special issue of the journal 
“Connection Science” on language and robots. 

  
The workshop is kindly sponsored by the euCognition network (European Network for the Advancement of 
Artificial Cognitive Systems) and by FCT (Fundação para a Ciência e a Tecnologia, Lisbon, Portugal). We 
thank and appreciate very much the collaboration of Nautília Maia, from the Department of Electronics, 
Telecommunications and Informatics of the University of Aveiro, in managing registrations and some other 
local arrangements. 

 
We hope you enjoy the workshop, and trust it will be a highly productive and sociable event. 

 
Luís Seabra Lopes 
Tony Belpaeme 
Stephen J. Cowley 
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Circuit sharing for action-grounded meaning 

Michael L. Anderson 

Department of Psychology, Franklin & Marshall College, Lancaster, PA USA 
and 

Institute for Advanced Computer Studies, University of Maryland, College Park, MD USA  
michael.anderson@fandm.edu 

 
 
 

Extended Abstract 
In this talk I will review some of the interesting 
behavioral evidence that human language and motor 
systems are deeply intertwined—such as the action 
sentence compatibility effect (Glenberg & Kaschak, 
2002); linguistic and spatio-motor disfluency effects 
(Casasanto & Lozano, 2007); and various conceptual-
motor simulation theories (Barsalou, 1999; Richardson, 
et al., 2003).  I will then try to place these findings in the 
context of a novel theory of the evolution and 
organization of the human cortex, the massive 
redeployment hypothesis (Anderson, 2007a; 2007b). 

The massive redeployment hypothesis (MRH) is a 
theory about the functional organization of the human 
cortex, offering a middle course between strict 
localization on the one hand, and holism on the other. 
Central to MRH is the claim that cognitive evolution 
proceeded in a way analogous to component reuse in 
software engineering, whereby existing components—
originally developed to serve some specific purpose—
were used for new purposes and combined to support 
new capacities, without disrupting their participation in 
existing programs. If the evolution of cognition was 
indeed driven by such exaptation, then we should be able 
to make some specific empirical predictions regarding 
the resulting functional topography of the brain. This talk 
outlines three such predictions, and some of the evidence 
supporting them. First, any given brain area is typically 
redeployed in support of many cognitive functions, and 
such redeployment will not respect traditional domain 
boundaries (that is, brain areas are not domain-restricted 
entities) Second, more recently evolved cognitive 
functions will utilize more, and more widely scattered 
brain areas, and third, evolutionarily older brain areas 
will be deployed in more cognitive functions. 

Having provided some support for the plausibility of 
MRH as a general theory of cortical organization, my 
suggestion will be that the best way to understand the 
apparent interrelations between language and motor 
control is in terms of the activation of shared brain 
regions not due to real-time perceptual-motor 
simulations of conceptual structures, but rather due to the 
literal sharing of the same neural circuits by different 
functional complexes.  This, I will argue, has significant 
implications for our understanding of both motor control 
and of language, and for what it might take to build 
“meaning machines”, implications somewhat different 

from those that have generally been taken to follow from 
the prevailing simulation-based theories. 

For instance, something of the character of the 
perceptual and motor systems is evident in the language 
understanding system—putting linguistic elements 
together in a meaningful sentence is like putting motor 
primitives together in an executable motor plan.  

Moreover, there is a reverse implication that is worth 
considering: what does the fact that language is built in 
part on motor-control circuits tell us about motor 
control? Since affordances, the perceived availability of 
objects for certain kinds of interaction, aren’t just motor 
programs, but features of the environment with specific 
significance for the organism, this opens the possibility 
that the motor control system is also, already, a primitive 
meaning processor (Gorniak & Roy, 2006). This would 
offer one explanation of how it is even possible to 
leverage motor control to support and constrain higher-
order processes like language understanding.  After all, 
on a more mechanistic understanding of the nature of 
motor control, it would be nearly impossible to say why 
a motor-control system would have any of the right basic 
elements for building a language understanding system. 

References 
Anderson, M.L. (2007a). Evolution of cognitive function 
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Towards a Mechanistic Model of Referential Semantics 

Deb Roy 

MIT Media Lab 
Massachusetts Institute of Technology 

Cambridge, MA,USA 
  

dkroy@media.mit.edu 
 
 
 

Abstract 
Based on experiments in building conversational 

robots (Roy 2003; Roy et al. 2004; Hsiao, 2007), a new 
framework for grounding semantics in sensory-motor 
interaction is emerging (Roy 2005; Roy in press). In this 
talk I will focus on a mechanistic (physical-
computational) model of reference within this 
framework. The basic building blocks of the model are 
interactive sensory-motor processes which couple an 
embodied system’s external physical environment to its 
internal information structures and processes. The 
presence of an instantiated interactive process within the 
system is treated as a persistent representational element 
that stands for the environmental object to which it is 
actively coupled. The translation of sensory-motor 
activity to stable internal representational elements 
provides the basis for symbolic communication. 

References 
Deb Roy. (2003). Grounded Spoken Language 

Acquisition: Experiments in Word Learning. 
IEEE Transactions on Multimedia, 5(2): 197-209. 

Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis. 
(2004). Mental Imagery for a Conversational 
Robot. IEEE Transactions on Systems, Man, and 
Cybernetics, Part B, Volume 34 , Issue 3, pages 
1374-1383. 

Kai-yuh Hsiao. (2007) Embodied Object Schemas for 
Grounding Language Use. Ph.D. in Media Arts 
and Sciences, Massachusetts Institute of 
Technology. 

Deb Roy. (2005). Semiotic Schemas: A Framework for 
Grounding Language in the Action and 
Perception. Artificial Intelligence, 167(1-2): 170-
205. 

Deb Roy. (in press). A Mechanistic Model of Three 
Facets of Meaning. Chapter to appear in Symbols, 
Embodiment, and Meaning, de Vega, Glenberg, 
and Graesser, eds. 
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Towards Learning by Interacting 

Gerhard Sagerer 

Bielefeld University, Germany  
sagerer@techfak.uni-bielefeld.de 

 
 
 

Abstract 
In natural tutoring situations, recent developmental 
research has revealed that the way knowledge is 
transferred differs from the implicit traditional 
assumption of robotics within learning by demonstrating 
scenarios. While learning by watching implied analyses 
of the ongoing situation, a modified situation is 
presented to infants. For example, when talking to 
infants, adults modify their speech, known as Motherese. 
Regarding other modalities, it has been suggested that 
when introducing novel words for objects and their 
functions, parents move differently towards children (i.e. 
they move new objects in temporal synchrony to the 
novel label) than towards adults. Analyzing these 
behavior modifications using objective measurement 
techniques, we showed that behavior in parents (fathers 
and mothers) is modified multimodally also for familiar 
actions.  
 
What advantages does this behavior bring for robots? 
We know so far that external real-world situations are 
rich and complex. Maybe far too rich to be captured 
accurately by a robot's internal models. Infants do not 
have to cope with the complexity by their own. Instead, 
the way adults present the world to them seems to 
facilitate both information registration and encoding. 
Simulating child’s attention, we noticed that modified 
actions can help infants to detect the initial and goal 
states of actions. Thus, infants do not have to discover 
the meaning of a movement by themselves. Instead, 
adults seem to provide some structure. 
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Fluid Language Games and the Emergence of Grammar 

Luc Steels 

University of Brussels (VUB) and Sony Computer Science Laboratory - Paris 
   

steels@arti.vub.ac.be 
 
 
 

Abstract 
The past decade has seen increasingly more 

sophisticated experiments to orchestrate the self-
organisation of symbolic communication systems on 
autonomous robots. This is partly due to robots 
becoming more robust and versatile, thanks to enormous 
advances in the relevant technologies, and richer in 
sensory-motor behavior, thanks to the flourishing of the 
behavior-based approach to robotics. Progress is also due 
to a  much deeper understanding of the issues and 
mechanisms governing the emergence of language. This 
talk surveys first the history and state of the art in the 
field. Language games have turned out to be an 
enormously fruitful paradigm to frame investigations. 
The self-organisation of lexicons for naming objects or 
referring to objects with single or multiple categories is 
now routinely achieved. The interaction between an 
emergent lexicon and an emergent repertoire of 
perceptually grounded categories such as colors has now 
been clearly demonstrated. We understand how and why 
a compositional language may arise and how and why 
words may become structured into syntactic patterns and 
then into hierarchical structures. Despite all this, real 
progress in the emergence of natural language like 
grammars on autonomous robots is still forthcoming. 
The second part of the talk identifies the issues and what 
it would take to resolve them. 
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Grammar as System of Second-order Cultural Constraints on Action 
and Perception: intrinsic functional constraints on language as system 

of action and representation 

Paul J. Thibault 

University of Agder, Kristiansand, Norway 
 

pauljthibault@gmail.com 
 
 
 

Extended Abstract 
Utterances are always context-dependent. This is often 

taken to mean that utterances stand in some kind of 
referential or encoded correspondence relationship to 
whatever it is they refer to in the world ‘out there’. Such 
a view, which typically takes the sentence as its upper 
level unit of analysis, fails to account for grammar as a 
system of intrinsic functional constraints on language as 
a form of social action that is embedded in what 
Goffman called the ‘interaction order’. I take the view, 
along with Stephen Cowley, that ‘grammar’ is a virtual 
system of second-order cultural patterns and digitalized 
semantic categories. When coupled to the micro-
temporal bodily dynamics of first-order languaging in 
the ‘real time’ of face-to-face interactive encounters, 
grammar has the power to guide and modulate the 
behavioural dynamics of first-order languaging. But it 
does more than this. It does this job of constraining in 
ways that shape not only our perceptions and 
understandings of the behavioural event qua bodily 
activity (e.g. a vocalization), but also how the action-
perception potential of the vocalization links interactants 
to each other and to their shared worlds in ways that can 
cognitively transform the agents’ relationships to each 
other and to their worlds. Moreover, this happens in 
ways that are motivated by the seeking of values on the 
part of the participants in interaction (Thibault 2004, 
Hodges 2007). Grammar is therefore normative and 
suffused with cultural values. It is in many respects a 
conventionalized system of constraints and patterned 
regularities, but it is not a fixed and static system which 
serves to encode meanings (semantics) in grammatical 
forms. Instead, it is better to think in terms of 
grammaticalization as emergent and dynamical processes 
of constraints on diverse time scales in ways partly 
suggested by Hopper’s construction grammar (1987). 

The intrinsic functional linguistic organization of 
utterances and the constraints that such organization 
entails mean that languaging activity is constrained and 
guided by the intrinsic constraints on language and other 
action systems rather than exclusively by constraints that 
are extrinsic to its mode of organization. Intrinsic 
constraints are constraints that are intrinsic to the 
ontology of the system in question and the given 

system’s modes of organization. The ontology of 
language is that of an action system that is able to act 
upon and transform both social situations and the 
cognitive dynamics of the individuals who participate in 
these situations. Its inherently recursive character 
furthermore means that language qua conventionalized 
action system also has the power to act upon and 
transform itself qua metalanguage. 

Grammatical structures are functionally organized 
structures of action which indicate by virtue of their 
intrinsic organization how underlying relational 
networks of representations are to be acted upon and 
transformed in the course of dialogically grounded and 
coordinated interaction. Grammatical structures also 
function to differentiate or partition the world in 
semiotically and cognitively salient ways on the basis of 
systems of digitalized semantic categories and systems of 
classification. To develop this thesis, I shall take one 
important contemporary functional theory of (second-
order) language, viz. systemic-functional linguistics, as 
pioneered by Michael Halliday (e.g. 1979, 1994 [1985], 
2004), and show how some of its core theoretical 
constructs can be reconstituted in ways that are helpful 
for explaining grammar as a distributed system of 
second-order cultural patterns and conventions that 
constrain action and representation by virtue of 
grammar’s own intrinsically functional organization. I 
will focus in particular on two functional domains in the 
grammar of the clause that are postulated by systemic-
functional grammar, i.e. the ideational function of 
transitivity structure (argument structure or case 
grammar in some other traditions) and the interpersonal-
interactive function of mood (declarative, interrogative 
imperative, etc). Systemic-functional grammar is one of 
a family of current functional theories – e.g. the west 
coast functionalism of Thompson and Mann and Dik’s 
functionalism – that see grammar as motivated by and 
interfacing with discourse or activity levels of 
organization that go beyond the sentence. Indeed, I will 
suggest the need to ground grammar in dialogical units 
rather than in the formalism of abstract sentence-types. 
This perspective also provides a framework for showing 
how grammar is embedded in and functional in the large-
scale activity structures and genres of a given interaction 
order. 
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The grammatical structures of linguistic propositions 
and proposals qua modes of action (cf. discourse moves) 
are not encodings of representations of something 
external to them to which they correspond. Instead, they 
are modes of action for operating on representations and 
for transforming them. The Subject-Predicate mode of 
organization of the mood structure of the clause is in fact 
a functionally constrained mode of organization to serve 
that very end, i.e. for acting on and transforming 
underlying networks of representations and the ways in 
which interactants orient to and evaluate these. 
Representations are functional networks of terms (nodes) 
and the connections between these. Connections between 
terms construct functional relationships of representation 
that have the form of a network topology.  

Linguistic utterances are operations on these 
representations and their associated values and value 
stances. They can add to or modify the representations or 
provide indications to others as to how to modify them. 
The intrinsic functional organization of utterances qua 
forms of action or operations (not representations) is, 
however, necessary for indicating how relational 
networks of underlying representations can be acted on 
and modified. We will see in my presentation how the 
ideational and interpersonal dimensions of the 
grammar’s intrinsic functional organization work 
together as a set of grammaticalized resources that 
enable agents-in-interaction to operate on representations 
and to coordinate both the actions and the viewpoints of 
the diverse selves-in-interaction. 

The solution I will put forward is that locations within 
this topological relational network of representations can 
be specified by differentiating or partitioning them with 
the overall topology by means of the digitalized semantic 
categories of natural languages. The transitivity or 
ideational categories of clause grammar – e.g. transitivity 
selections in the clause such as, for instance, the 
semantic constructions [Actor-Process: Action-Goal] or 
[Agent-Process: Event-Affected] - are differentiations in 
this sense. A given selection is a semantic differentiator 
that zeroes in on some aspect of the overall network 
organization as the current focus of attention or the 
current concern of the activity. The connections that are 
made between nodes in the network of representations 
are therefore activated in ways that correspond to a 
currently active state of the topology in the form of what 
Lemke (1983, 1985) and Thibault (1986, 1989) have 
called networks of thematic relations that are activated 
and instantiated in discourse. The connections between 
nodes are functional relationships of particular 
representations. Grammar plays a pivotal role in 
organizing these relations, which are primarily 
grammatical rather than lexical per se. Networks of 
representations are not simply stored in the heads of 
individuals, but are distributed and external 
representational resources; they are cultural affordances 
that represent and mediate opportunities for acting and 
perceiving in ways that extend the cognitive and 
interactive reach of individuals and cultural groups. 

P.S. I have no expertise in or knowledge of robotics. 
However, I will seek in my lecture to show how the 
kinds of functional constraints intrinsic to grammar as 
action system should have things to say that are of 

interest to and of relevance to those interested in 
designing robots that can participate in languaging 
activities with humans. 
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Allow me to pick your brain:  
how language and thought can be shared between robots 

Tony Belpaeme
 

University of Plymouth, UK 

  

tony.belpaeme@plymouth.ac.uk 
 
 

Language and thought are mutually supportive 

In recent years, through experimental studies, it has 
become clear that language has a definite influence on 
cognition, and specifically on the use and interpretation 
of conceptual knowledge (cf. Davidoff, Davies and 
Roberson 1999; Roberson, Davidoff, Davies and Shapiro 
2005; Gilbert, Regier, Kay and Ivry 2006).  Many, 
including me, support a view where language not only 
has an impact on cognition, but where thought and 
language are mutually supportive.  
The focus of the talk will be the interplay between 
language and category acquisition. We start from the 
premise that intelligent systems will need representations 
which resonate with human representations in order for 
human-machine interaction to succeed (Steels and 
Belpaeme 2005; Belpaeme and Cowley 2007). Recent 
psychological evidence has demonstrated that thought 
and language are mutually supportive and impact on each 
other. Category acquisition is facilitated by linguistic 
interaction, both in infants (Xu 2002; O'Hanlon and 
Roberson 2007) and adults (Lupyan 2006). This 
resonates with memetics in the sense that knowledge, 
present in categories and concepts, is propagated through 
culture. We believe that cognitive systems should be 
sensitive to culture and language (with language being 
the prime medium for memetic propagation) in order to 
acquire human-like semantic representations. 
We will argue that language is not contained within the 
individual, but is the amalgamated result of producing 
and interpreting communicative expressions in a 
population of language users. No single individual has 
access to the entire language, but has its own 
interpretation of the population's language. By 
implication, if we accept that language has an influence 
on concept formation, concepts are subject to the same 
constraints: each individual holds an interpretation of a 
concept. These concepts are private, but are similar 
enough to concepts of other individuals to allow 
communication; concepts of individuals are coordinated 
(Steels and Belpaeme 2005). There are several 
mechanisms through which concepts can become 
coordinated. Some concepts might be native and as such 
do not need to be acquired and coordinated. Others, such 
as perceptual categories, can be acquired by the 
individual through interacting with the environment. 
However, acquiring concepts through interaction with 
the environment does not guarantee the concepts to be 
sufficiently coordinated to allow communication (for an 
example on colour see Belpaeme and Bleys 2004). A 
third mechanism is cultural acquisition of concepts: here 

concepts are acquired by interaction with one’s peers, 
with language being the most important medium of 
transmitting conceptual knowledge. It is obvious why 
this is necessary for abstract concepts, such as 
DEMOCRACY, but it has been argued that language is 
also crucial in acquiring perceptual concepts, such as 
RED, EMPTY or ANGRY. Among others, language 
helps a developing individual to indirectly access 
concepts of others — obviously, one does not have direct 
access to others’ concepts. It also allows the learner to 
access different hypothesis maintained by a range of 
individuals. This aids learning, and specifically 
generalisation during learning (cf. machine learning 
techniques where a large training set supports learning). 
Finally, language also serves to delimit or constrain 
conceptual representations, and during concept 
development linguistic labels act as anchors that prevent 
concepts from drifting in a semantic sea (cf. Belpaeme 
and Bleys 2006). 

Robots acquiring human concepts 

If robots are to interact, communicate and reason with us, 
they will need conceptual representations which resonate 
with ours. A straightforward approach is to specify the 
semantics of internal representation in a machine, but as 
robots are expected to accrue large amounts of 
information it will be unlikely that conceptual 
information can provided through pre-programming 
semantics.  
It has been suggested that a developmental approach 
could provide a successful approach to achieving 
artificial intelligence (e.g. Weng, McClelland, Pentland, 
Sporns, Stockman, Sur and Thelen 2001), and we would 
like to argue that a developmental trajectory will be 
needed for robots to acquire grounding language. 
When building a robot that acquires the meaning of 
words, several elements can be shortcut. We are for 
example not interested in auditory perception or vocal 
production; instead we will focus on elements that are 
part of a semiotic schema: perception of external stimuli, 
mental representations, and the association between 
mental representations and linguistic labels and 
structures.  
A first requirement is an understanding of learning 
mechanisms involved. Infants employ a number of 
biases, constraints or preconceptions which aid in 
language and meaning acquisition. Several of these have 
already been uncovered in developmental psychology 
and linguistics, such as mutual exclusivity constraint 
(Markman 1989) or novel name-nameless category 
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(N3C) constraint (Mervis and Bertrand 1994). Some 
constraints require a deeper understanding to allow an 
implementation on a robot. Others are not understood 
well enough: for example, the amount of feedback given 
by the teacher to the learner. The balance between 
receiving no feedback, receiving implicit feedback or 
receiving explicit feedback is still not well understood 
and will be crucial in constructing artificial systems 
which acquire semantic through human-robot interaction. 

Telepathic robots 

While humans are not able to access each others’ brains 
to extract knowledge and have to rely on communication 
to do so, robots do not have this limitation. A robot could 
easily request information from others robots through 
channels other than gestural or linguistic channels. If a 
robot does not know what “dog” is, it could request a 
human to explain what dog is or it could request for it to 
be shown a dog. However, it might be more effective to 
request the meaning of dog from other robots connected 
through the internet. Such “telepathic” concept 
acquisition poses a number of opportunities and 
challenges.  
Concept acquisition could be sped up enormously: while 
children take years to crystallise certain concepts (for 
example, colour categories are only a mastered around 
the age of 3 or 4), a robot could download the meaning 
of certain words from another robot or from several 
robots, unconstrained by the noisy media of linguistic 
communication and perception. A robot which did not 
know the meaning of “dog” could, without ever being 
shown a dog, learn what a dog is from another robot that 
has sensory access to dogs. 
However, this poses a number of challenges for the 
learning algorithms. They should be geared towards 
acquiring and adapting semantic representations 
according to linguistic interaction with humans, but at 
the same time should allow semantic information to be 
injected from other robots. Another issue concerns 
embodiment: the conceptual representations of a robot 
will be tightly coupled to its embodiment, i.e. its sensors 
and actuators. However, how does one integrate concepts 
from a robot with a different embodiment? Embodiment 
can vary radically, such a robot having a different type of 
camera or a different mode of moving through its 
environment, but even robots which are identical will 
have slight variations in embodiment due to noise on 
sensors and actuators which might have far reaching 
implications for its semantic concepts. 
We wish to study these and related issues in a number of 
project, most notably the ITALK project sponsored by 
Europe under the 7

th
 framework programme; of which a 

brief overview will be given. 
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Abstract 
This paper explores the thesis embraced by authors such 
as Vygotksy and Clark that considers public language to 
be an external cognitive resource that may be internalised. 
We conceive such a process as involving the immersion 
of a developing agent in a language mediated leaning 
task. The internalisation of language can thus be 
explained in the context of substituting external 
instructions with auto-generated ones for self-guidance. 
The experiments reported aim to help build an 
understanding of the nature of this process within the 
framework of an embodied and embedded approach to 
mind.  
 

1. Ways of understanding the cognitive 
conception of language 

 
Vygotsky argued that language was internalised and thus 
came to play a pivotal role in constructing mind. While 
this idea lay dormant in cognitive science for a long time, 
it has recently started to be treated much more seriously 
both theoretically (Clowes, 2007a, 2007b), and also by 
robotic modellers (Lindblom & Ziemke, 2003; Mirolli & 
Parisi, in press) as a way of explaining the emergence of 
complex cognitive architectures.  
 
There is some persuasive evidence that language does 
indeed play some cognitive role i.e. (Hermer-Vazquez, 
Spelke, & Katnelson, 1999). In Hermer-Vasquez et al’s 
study children are placed in a room where they attempt 
to find treats. The task involves the children needing to 
combine geometric and colour information, which is 
quite a hard task for them. In Hermer-Vasquez et al’s 
study talking-to-oneself appears to be the only indicator 
of whether children are able to solve the task is they talk 
to themselves about it. In many ways this task seems to 
confirm Vygotsky’s theory that self-directed, though 
ultimately sub-vocal, speech can play a central role both 
synchronically and diachronically (developmentally) in 
higher cognition. While many theorists now agree that 
there is some cognitive role for natural language there is 
considerably less agreement on either how it works or 
how the role is taken up.  
 
There are some interesting debates between (Carruthers, 
2002) and (Clark, 2006b) about how language comes to 
play its cognitive role, especially around whether it 
might be best conceived of as facilitating or transforming 
our native or pre-linguistic information processing 

architecture or mainly seen as playing a role in extending 
and re-using that architecture in a novel way. 
 
According to Carruthers (2002) the role of language is to 
translate information between otherwise encapsulated 
modules. Carruthers argues for a view he calls ‘Central-
Process Modularism’ or CPM. Conceived against the 
background of the idea of massively modular minds  and 
evolutionary psychology CPM is the idea that the mind is 
modular not only in its input systems1 but also in its 
central conceptual capabilities; the mind is a Swiss-army 
knife all the way up. On this view each central 
conceptual systems has its own proprietary 
representational code and, at least for the main 
conceptual modules, these rely on propositional 
encodings. For Carruthers the cognitive role of language 
can be regarded as a sort of lingua franca for 
communication amongst modules. Modal quasi-thoughts 
come to be integrated by the use of the language module 
recruited to a new cognitive role. 
 
Andy Clark offers a different view on how to understand 
the role of language. For him the brain is a connectionist 
pattern completion device embedded in a structuring 
body and world. Cognitive capabilities are probably not 
strongly modularised, and cognition in any case extends 
beyond the body and brain (Clark & Chalmers, 1998).  
Much cognitive activity, needs to be understood as tool-
using and world-involving (Clark, 2003). Amongst the 
most important of tools is language and the roles it plays 
are multiform (Clark, 1998). Playing these roles hinges 
upon the way that language can provide a better 
‘material’ environment for thinking in (Clark, 2006a), as 
much as providing an ‘internal’ environment to think 
with.  
 
The basic problem with the Clark approach is that it 
becomes difficult to conceptualise how language makes 
the move beyond being an external tool to an ‘internal’2 
self-regulatory device. Indeed as is foregrounded in 
Clark’s debate with Wheeler (cf. Clark, 2004; Wheeler, 
                                                           
1 As argued for instance by (Fodor, 1983). 
2 The very word internal here can be somewhat tricky. In the 
Vygotskian tradition there are two distinct phases of 
internalisation. The first, where language takes on a 
psychological role for the child in virtue of being used in ego-
centric speech to play a role in the self-control of the child, and 
the second where language becomes interiorized and fused with 
thought. For some further analysis of this notion see (Wertsch 
& Addison Stone, 1985) 
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2004) it becomes something of a problem as to what it 
might mean to internalise language on this account. In 
part this paper will attempt to bridge this gap by a 
detailed a discussion of some robotic experiments that 
seek to explore how the process of internalisation might 
get underway. 
 
The robotic simulation experiments described below 
constitute some first steps towards investigating this 
issue computationally. Using these minimal simulations, 
we hope to gain a better conceptual grasp on how it 
might be possible for language to take up a cognitive role 
in mind if our brains start out as the sorts of embodied 
and distributed pattern completers we find in much 
contemporary theorizing.  

2 Language as cognitive niche 

2.1 Learning an inherited task 
Vygotsky understood the exposure of the child to 
existing linguistic forms of communication as mediators 
of action and mediators that can ultimately be 
appropriated to self-control. As these regimes are 
internalised they can come to be recalled without any 
external linguistic input. Clark summarises Vygotsky 
observations as follows: 
 
“When the child, confronted by a tricky challenge, is 
`talked through' the problem by a more experienced 
agent, the child can often succeed at tasks which would 
otherwise prove impossible (think of learning to tie your 
shoelaces). Later on, when the adult is absent, the child 
can conduct a similar dialogue, but this time with herself. 
But even in this latter case, it is argued, the speech (be it 
vocal or `internalized') functions so as to guide behavior, 
to focus attention, and to guard against common errors. 
In such cases, the role of language is to guide and shape 
our own behavior -- it is a tool for structuring and 
controlling action and not merely a medium of 
information transfer between agents.” (Clark, 1998)  
 
 This role of ‘internalised’ language emerges as a logical 
consequence of the properties of public language in 
structuring behaviour. In other words, if public language 
is an external scaffolding for structuring behaviour, 
internal language may play the same role. The idea is not 
far from the classic cognitive science approach of 
explaining intelligence as the product of building models 
of the world. But the main difference is that now the 
mental models that allow us to imagine or anticipate 
external resources are rooted in a externally aided and 
language mediated learning process. “We can be 
instructed to behave in a particular way. Responding to 
instructions in this way can be viewed simply as 
responding to some environmental event. We can also 
remember such an instruction and tell ourselves what to 
do. We have, in this way, internalized the instruction. 
We believe that the process of following instructions is 
essentially the same whether we have told ourselves or 
have been told what to do. Thus even here we have a 

kind of internalization of an external representational 
format.“ 
(Rumelhart, Smolensky, McClelland, & Hinton, 1986 p. 
43) 
 
The focus of this approach is therefore not in revealing 
the inner architecture of the biological mind, but to 
understand an adaptive process that involves a social 
structure that remains across generations. Several aspects 
of this process can be stressed across different time-
scales: 
 

• This is a process of ontogenetic learning, or 
more properly epigenesis, in which the 
embodied agent’s ability to learn and develop 
involves the deep interaction of biologically 
specified tendencies, and environmental 
structures and scaffolding. 

• At a larger time-scale (across a few generations) 
this is a process in which each agent inherits a 
structure of cognitive scaffolding through 
public language. 

• At a phylogenetic level, the species evolves the 
ability to be integrated in a linguistic niche. 

 
It is these conditions that we attempt to replicate, in order 
to investigate whether it is plausible to suggest that such 
learning process would converge on a strategy that 
allows the agent to replace external guidance by internal 
language. In order to remove designer bias from the 
experimental design, we use self-organising techniques, 
combining evolutionary robotics with learning in neural 
networks. 
 
One essential aspect of language lies, as Vygotsky 
suggested, in how it must be learned before it can be 
mastered. For this reason, the study of the relationship 
between learning and evolution provides an interesting 
background for the emergence of linguistic forms, such 
as internal language. An embodied agent needs to adapt 
both to persistent features of the environment (through 
evolution) and changing patterns in its interaction with 
the environment (through learning). Species can be 
differentiated as of the degree of learning that individuals 
go through to shape their adaptive features. The need for 
learning can be seen as corresponding to the richness and 
variability of the species niche or Umwelt (Uexküll, 
1957; Tom  Ziemke & Sharkey, 2001). The concept of 
Umwelt refers to the environment insofar it is cognized 
by the inhabiting agent. On one side of the scale, we find 
micro organisms and even insects, flexibly adapted to 
persistent niches. Their Umwelt is simple and specific, 
and it is comprehended within basic sensory-motor 
coordination patterns or functional circles. On the other 
hand, we find humans, whose Umwelt is not restricted to 
such fixed patterns. The niche, for a human, does not 
only consist of environmental features, but includes rich 
changing social structures, such as language (Clark, 
2006a). The need for language can therefore be 
understood, not only, and perhaps not even primarily for 
communication, but as the carrier of mechanisms 
involved in behavioural and cognitive control; a property 
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of the defining niche (cf: Laland, Odling-Smee, & 
Feldman, 2000; Sinha, 2006). 
 
It is, in part, the variability of language that makes 
learning an essential feature. As any social structure, 
language survives in the shared use individuals make of 
it, and it is “handed” from generation to generation. 
Inevitably, languages change, die or emerge. Although 
languages and the capacity to learn them probably co-
evolve, cf (Deacon, 1997), every newly born baby is “a 
blank sheet” at least to the extent that it is ready to learn 
any language. Being embedded in a linguistic world is 
therefore tied to having the ability to learn forms of 
linguistic acts beyond what can be achieved with innate 
behaviours.  
 
It is therefore possible to assume that an agent learns a 
language through being embedded in different forms of 
communication within different social structures. For 
instance, a series of actions following linguistic input 
may need to provide some form of replacement (internal 
language) in order to carry out the same actions. That 
would imply that, if a robot is to inhabit a human niche, 
and thus frame its actions in a linguistic environment, it 
may need to develop the ability to internally replace, 
simulate or imagine the linguistic environment. 

3 – Experimental background 
 
Evolution and learning are also major design techniques 
for highly distributed artificial systems, and have been 
widely applied in the fields of neural networks and 
neuro-robotics. Artificial neural networks are often 
defined by a network architecture, weighted connections 
between neurons and neuron activation. A neural 
network may use different rules, such as the Hebbian 
rule or back-propagation, to alter the weights between 
different neurons, depending on the current activation of 
the network. This method has proven extremely 
successful in adjusting the network functionality to 
different patterns of stimulation, and, in the case of 
robots and embodied networks, interaction with the 
environment. 
  
Artificial evolution of neural networks, on the other 
hand, often assumes that weights between neurons are 
fixed during lifetime, and selects the weights that 
produce best overall results, given some criteria, through 
a selection mechanism. Artificial evolution, nevertheless, 
is not restricted to the selection of weights. It could be 
applied to the selection of any relevant parameter, for 
instance the network architecture, embodiment in the 
case of robots, or learning rules in the case of plastic 
neurocontrollers. 
 
It would be a mistake to conflate artificial evolution and 
learning with the phenomena as present in biological 
systems. Yamauchi and Beer (1994), for example, have 
shown how evolved non-plastic controllers can appear to 
perform reinforcement learning. Neural plasticity, on the 
other hand, can be used to shape the overall features of 
an agent, based on patterns of sensory-motor 

coordination with no fitness evaluation or genetic 
mutation (as in e.g. Morse, submitted). Even though 
some important features are present, the natural 
phenomena are still vaguely understood. One of the 
differences is that, in natural agents, evolution and 
learning are not two competing adaptive mechanisms, 
but necessarily co-occurring phenomena. The distinction 
between mechanisms responsible for generating 
behaviour and those responsible for learning “… is 
difficult to defend biologically, because many of the 
same biochemical processes are in involved in both 
processes” (Yamauchi and Beer 1994, p.243). 
 
The relationship between evolution and learning in 
neuro-robotics has been investigated by several 
researchers. For instance, (Nolfi, Elman, & Parisi, 1994) 
demonstrates how a population selected on one task may 
increase their performance when, at an individual level, 
an individual learns a task differently to the one it is 
selected for. The experimental setup in this paper follows 
up the one described in Floreano and Mondada 1996. 
Rather than evolving the weights of a neural network, 
the authors evolve a genotype that encodes how the 
network (with a fixed architecture) should modify its 
weights during lifetime. Concretely, they allow evolution 
to mutate the learning properties of each individual 
synapse, as what type of Hebbian learning rule it uses 
and what is the learning rate.  

3.1 Robot and architecture 
 
The following experiments were carried out in a 
modified version of Evorobot, developed by Stefano 
Nolfi. Evorobot is a Khepera simulator that incorporates 
a genetic algorithm and neural networks.  
 
The agent’s controller has the following structure. The 
network receives sensory inputs from infrared (8 
sensors) and light (front and rear) sensors. The network 
has a number of internal neurons (8 or 12), and two 
motor outputs (left and right motors). The network also 
receives three extra inputs (intended to represent 
linguistic instructions from an external agent, in this case 
the experimenter), and produces three extra outputs, 
which can be used to replace the external instructions. 
The linguistic inputs can take the values of either 0 or 1. 

 
The method 

employed in the following experiments replicates the one 
reported in (Floreano and Mondada 1996), where the 
authors investigate how neural mechanisms underlying 

Figure 1 - Neural Architecture 
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ontogenetic learning are themselves developed and 
shaped by the evolutionary process.  
 
A simple genetic algorithm is used to generate new 
genotypes. At the beginning of each epoch a 
chromosome is decoded into the corresponding neural 
controller, and its performance evaluated. Each of the 
genotypes contains enough information to generate a 
controller, given the architecture represented in fig 1. 
Where in many experiments this is achieved by encoding 
in the chromosome the weight that defines each synapse, 
this method the genotype encodes the neural architecture 
and learning rules of each of the 144 synapses.  
 
The four allowed learning rules were: pure Hebbian, 
Postsynaptic, Presynaptic and Covariance (based on 
Willshaw & Dayan, 1990). The learning rate could take 
four different values {0.0, 0.3, 0.7, 1.0}. The two other 
properties are whether each synapse is excitatory or 
inhibitory and whether it drives or modulates the 
postsynaptic neuron., and the weights of the network 
synapses are initialised to small random values. A 
chromosome would therefore contain 6 bits per synapse 
(2 for rule, 2 for rate, and 2 more for the other 2 
properties) 
 
Given the initial random weight, each synapse changes 
its weight according to the conditions specified in the 
chromosome (with the exception that weights are 
constrained to a maximum of 1). More details on the 
method can be found in (Floreano & Mondada, 1996) 

 

3.2 Environment and task 
 
The environment consists of a plus maze; four corridors 
that converge to a central area illuminated by a light 
bulb, as represented in the Fig 2. In the simulated 
environment, the end of the corridors are blocked with 
obstacles. The robot is, at the beginning of its lifetime, 
placed at the end of the west corridors, and the task it 
must achieve is to navigate the corridor towards the 
central area, and then turn to the left towards the end of 
the north corridor. Once this is achieved, the robot is 
“transported” to the end of the south corridor, where it 

needs to achieve the same task, go to the centre, but now 
turn right to arrive at the end of the east corridor. 
 
During the training phase, individuals are rewarded for 
their ability to perform both tasks (go north from west, 
the east from south). During this phase, in addition to the 
inputs from the sensors embodied in the robot, the robot 
receives three signals (either 0 of 1 for three extra input 
nodes), which are intended to represent three commands 
(go_to_light, turn_left, turn_right). As received for the 
robot, they are simply three signals with no significance. 
The ascription of meaning rests on the potential 
grounding for the meaning of these symbols in the action 
repertoire of the agent. We expect evolution to find a 
grounding for such symbols insofar as instructions will 
be given when required in skilled interaction.  
 
We call this phase the training phase because during its 
course the network weights are updated following some 
evolved learning rules and rates, given some initial 
random weights. If the robot has completed the learning 
phase, it enters the trial phase, where weights are 
“frozen” to their values after the learning phase, i.e. they 
are not allowed to change. Instructions cease, and as an 
alternative the state of the internal outputs (normalised to 
0 or 1) takes their place in the network structure. We call 
this the trial phase. The tasks are carried out in exactly 
the same manner as in the trial phase, and extra time is 
awarded to individuals that complete the trial phase, in 
order to repeat the task. 
 
The fitness function is given in the following table 
 

 Learning 
phase 

Trial phase 

Go north 
from west 

1 5 

Go east 
from south 

2 6 

 
The rationale behind this fitness function is to allow the 
tracking of what tasks have been achieved, and to 
encourage agents to perform well on the trial phase. 
After several hundred generations, evolution consistently 
found genotypes that allowed for the learning task to be 
completed, as well as the first task of the trial phase, 
scoring a total of 8. In several occasions we found robots 
that completed the task several times, scoring up to one 
hundred points, but these were not robust (they did not 
allow replication, possibly because they could not 
overcome the randomisation of  initial weights). 
Nevertheless, the experimental results show some 
interesting points that can inform current debates about 
how language takes up its cognitive role. In what follows 
we show graphical depictions of the robot in several 
trials as these help illuminate one possibility for this 
discussion. 

Figure 2 - The Environment 
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Figure 3.  Agent begins movement through maze, 
receiving instruction ‘go_to_centre’. Once in the 
central area veers left in response to the command 
‘turn left’. 

 

4. Results 

4.1 Learning phase: grounding instructions in 
embodied interaction 
 
Here a simulated Khepera begins the cycle of its 
behaviour where it has external commands fed to it. The 
Khepera is moving from left to right toward the bulb at 
the centre of the arena and it receives an externally 
generated (to the agent) signal in the input labelled 
centre. This signal is given in the learning phase 
whenever we intend the robot to navigate to the light. As 
the Khepera encounters the object in the centre of the 
maze, it receives a new instruction represented in left that 
can be glossed as turn left. The Khepera responds to this 
instruction (and the other data about the situation in 
which it is embedded) and turns left (see Fig 3). 

 

Next (Fig 4) the Khepera has been transported to the 
bottom end of the maze, gets an input once more in I10, 
signalling the robot to movement forward toward the top 
of the maze. The robot moves forward and, as it 
approaches again the centre area, receives an instruction 
in right (the last externally generated signal it received), 
and it successfully responds to this by turning to the 
right.  
 
As explained before, any Khepera that has successively 
managed to run the maze now receives a total of 3 points 
and enters the trial phase. 

4.2 Trial phase: Re-using commands to scaffold 
one’s own behaviour 
 
 
 
As we mentioned above, the main differences between 
the learning phase and the trial phase are that during the 
latter weights are fixed to the last value of the training 
phase and that instructions are not given thereafter, 
instead replaced by an internal stream. During the 
learning phase, the weights of the neural network 
(initialised to random numbers between 0 and 1), are 
changed given the learning type and rate. Once the agent 
has performed the task once  
 
(i.e it has gone to the light, if the instruction was 0, to the 
area if the instruction was 1), there is no more learning or 
instructions. The weights are fixed and the instructions 
are replaced by the internal output, or self-directed 
“language for thought”. 
 
In the next diagram (fig 5) we can note that the robot 
navigates to the centre of the maze without producing the 
signal go_to_light. It completes the whole task producing 
a self-directed signal that replaces the external command 
turn_left, that allows it to turn left at the appropriate 
moment.  
 
Unfortunately, controllers could not consistently solve 
the go_east task. The robots continue delivering the same 
instruction (go_left) at the next stage of its task and 
merely crashes into the wall to its left. At least on this 
run the Khepera is unfortunately only able to keep 
producing the turn left instruction and does indeed 

Figure 4. The robot receives the ‘veer 
right’ signal and proceeds to do so. 
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“obey” this self-directed instruction and crash into the 
wall.3 
 

 
 
 
 

 
The thing which is interesting about this work is that it 
opens the possibility that systems which have developed 
the capability to respond to commands come to, rather 
easily, pre-produce virtual commands that help them 
tackle refined versions of the problem. This would be 
similar to the experiments of Ziemke, Jirenhed and 
Hesslow (2005) in which simulated robots were evolved 
to navigate ‘blindly’ in a simple environment, i.e. based 
on internally generated rather external sensory input. So 
on this account, there is not much difference between the 
capacity to re-use fragments of language to re-structure 
behaviour, and the capacity to bring to mind other 
environmental encounters that are of use  
 
Once the capacity to respond to commands is developed 
it seems only a small step to re-using them in other 
contexts, at least in a rather basic way4. It is at least 
plausible that words once internalised into ongoing 
                                                           
3 This is not to say however that it could not in a different 
learning regime manage this. In fact, we have observed that 
changes in number of sensory inputs or internal neurons can 
have local effects on the evolutionary space. Given the 
conditions of the experiment, we found that 8 or 12 internal 
neurons were “good numbers”, and that networks with 9 or 11 
internal neurons would hardly evolve individuals capable of 
solving even the first task. 
 
4 This raises the question of why we do not find dogs and other 
pets and domesticated animals re-using commands to self-
trigger toward a useful behaviour. It is of course possible that 
they do, remembering the command of their owner to “stay off 
the table” and do in fact bring this to mind when the master is 
no longer there. Such entry-level internalisation is then perhaps 
open to many trained and social animals 

cognitive activity in this way, could begin to play 
increasingly sophisticated roles in mediating many new 
forms of online cognitive activity. 
 

Provisional Conclusions and Future Work 
Cognitive and evolutionary robotics has for some time 
attempted to understand the way that an agent adapts to a 
cognitive niche. It has recently begun to investigate ways 
that an agent might adapt its ecological niche as a route 
to self-control (Tom Ziemke, Bergfeldt, Buason, Susi, & 
Svensson, 2004). Here we have attempted to investigate 
another departure in this line of thinking, i.e. to 
understand how simplified language-like activity can be 
appropriated from the cognitive niche for self control; or 
to put this in a slightly more Vygotskian language, the 
internalisation of the social means of self-control. 
 
We demonstrate how in a minimal robotic environment it 
is possible to model the way that language might move 
from an inter-cognitive to an intra-cognitive role. An 
idea that was central to Vygotsky’s understanding of the 
role of language in thinking (Vygotsky, [1934] 1986). 
This work can also be understood as showing how 
simple languages can play a role in cognition even in the 
absence of any supposed internal languages of thought 
(Fodor, 1975) or indeed the sort of modularist languages 
of thought proposed by Peter Carruthers (Carruthers, 
2002). Perhaps, as Andy Clark writes 

 
“recalled words and sentences […] act […] less 
like inner data structures, replete with slots and 
apt for combinatoric action, and more like 
cheap ways of adding task-simplifying structure 
to the perceptual scene. Words and sentences, in 
this view, act as stable anchor points around 
which complex neural dynamics swirl and 
coalesce." (Clark, 2002) (p25) 

 
Within the context of the current theoretical debate 
(along with work already presented in Clowes & Morse, 
2005) this work offers something new. It is as an 
existence proof of something very interesting, namely 
the possibility that language can play a role in the 
building of and sequencing of cognition and of 
transferring external scaffolding into internal use. While 
they certainly cannot be taken as deciding this question 
conclusively one way or another, they can be taken as 
opaque thought experiments (Di Paolo, Noble, & 
Bullock, 2002), i.e. a means of rendering more apparent 
the implication and possibilities of certain conceptual 
models; in this case how language can play a role in 
thought without assuming anything like the classical 
view of cognitive architecture. 
 
These minimal simulations start to indicate one way that 
these words can start to act in a cognitive  role. Moerover 
they indicate how this process can get started without a 
commitment to a pre-existent propositional Language of 
Thought (even the modular version favoured by 
Carruthers), or nativism about language. This is of 
course not proof that humans do not do things very 
differently, nor does it demonstrate by itself how 

Figure 5. Trial phase 
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language would take thought much beyond the here-and-
now of direct cognitive engagement. But it does help 
develop an alternative way of understanding the way 
language enters cognition and perhaps provides a bridge 
to understanding the more elaborate forms of language-
involving thought to which human beings seem to owe 
so much. That is, if you are not already committed to the 
strong nativist assumptions about propositional 
languages of thought and indeed the cognitive role of 
language itself.  
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Extended Abstract 
Let’s ask how world-models give thoughts objective 
validity. Playing down symbols, we can aim to simulate 
how co-action routines emerge from making use of 
symbolic material (dynamic patterns). Given action-
guidance representations (Anderson & Rosenberg, 
2007), social robots could mimic children by co-
constructing such routines. To sketch the process, I 
consider how children react when a robot is introduced 
to their ecology. They link circumstances to extra-
somatic markers such as words, nonverbal expression 
and robot behaviour and, over time, develop congruent 
ways of co-acting. Linking their inner motivations to the 
local norms, they develop manifest shared values (e.g. 
showing interest; teasing). 
 
Given the distributed view of language, robots can be 
used to set a new agenda for cognitive science. We can 
model persons as bio-robots who integrate their own 
motivations with local norms in ways that lead to the rise 
of co-action. To become persons, we use local values to 
control our actions. In MacDorman’s (2007) terms, 
cognitive science can pose the person problem: “How 
can robot bodies construct themselves into quasi-persons 
by attuning to norms in the environment?”  
 
To illustrate how persons develop shared values, I 
consider a longitudinal study of a social robot in a 
classroom. The machine changes the local ecology in 
that, in spite of disappointments, the children learn to 
value the robot. They develop shared perspectives 
manifest in co-actional routines. The machine functions 
as a social mediator (Nabe et al., 2006). It permits 
children to use full-bodied languaging to enact 
relationships based on recurrent social routines. Not only 
does this show why children are receptive to social 
robots, but it suggests that, if robots are to be truly social, 
they must (at least) simulate construction of co-action 
routines. Robots need to build motive systems by 
mimicking how children use actions to establish norms 
and values that link their needs with the cultural setting. 
 
Cowley (2007) describes human symbol grounding in 
analogous terms. As part of a distributed cognitive 
system, the child uses extra-somatic markers in aligning 
to what others want. By the second year, these markers 
map onto words (e.g. ‘more’ or ‘phu’). Later, the 

patterns contribute to routines that give rise to adult-like 
hearing. Eventually, the child uses these valued patterns 
to listen to and, eventually, regulate co-action. As 
persons, we believe in words: we come to take a 
language stance. This happens as language is grounded 
into: (a) brains, (b) a changing grasp of practices; and (c) 
first-person experience. Humans, as MacDorman (2007) 
suggests, neither are nor embody physical symbol 
systems. Rather, we gain control over own actions as we 
self-construct action-guidance representations. Later, we 
use our experience of hearing to monitor what we both 
do and say while inhibiting action tendencies. Given 
(inner) models of interaction-models (sic), we learn to 
anticipate speaking and, thus, guide our own action. 
While Vygosky suggests that what goes underground is 
language, Clowes (2007) shows that higher-level control 
can arise from the monitoring of real-time action and 
speech.  
 
Can robots use rewards to interact in ways that sensitise 
them to the physical words or extra-somatic cues that 
mark local values? Can they be used –not just in routine 
interaction but to set up congruent forms of co-action? In 
pursuing this ambitious goal, we can learn from Rodney 
Brooks and his collaborators. Just as they put the mind 
back into the body, bodies can be built to engage with 
human practices. Robot designers can simulate use of the 
cultural ecology. 
 
Distributed systems (both robots and multi-agent 
simulations) can be used to simulate aspects of culturally 
embedded intelligence. Above all, they can be used to 
generate and test hypotheses about the rise of congruent 
co-action.  
(1) Multi-agent systems can simulate how congruent 

and valued co-action derives from integrating 
symbolic material with routine interaction. 

(2) Non-social robots can use perception and action to 
correlate interactional (and phonetic) patterns with 
real-world invariances. 

(3) Social robots can be designed to interface with 
humans as action-guided representations serve in 
tracking how, in some circumstances, co-action is 
shaped to symbolic constraints. 

 
Instead of positing that mind is machine-like, we can 
take it that bio-systems interact with world by building 
interaction models (action guidance representations). 
However, persons also learn to act in accord with 
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reasons. Given skills in using social norms to monitor 
and motivate action, we develop models of interaction-
models (we speak and imagine speaking). These skills 
arise from co-action based in shared experience of 
valued markers. In Craik’s (1943) terms, ‘external 
processes’ enable us to come up with ‘symbols’ (extra-
somatic markers) that can be construed in ways that, at 
times, have ‘objective validity’. To pursue this insight, 
robots can be built to develop control systems as they 
gain from exploiting distributed language.  By using 
interactional history, they would learn to act more as we 
do. Like persons, they might even discover the power of 
the language stance. 
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Abstract

Spoken dialog allows for natural human-robot interac-
tion, but ambiguous phrases or noisy speech recognition
can lead to considerable uncertainty during the conversa-
tion. Planning algorithms such as the Partially Observ-
able Markov Decision Process (POMDP) have successfully
overcome this uncertainty and generated reasonable inter-
actions during natural dialogs between people and mobile
robots. However, like all dialog systems, a POMDP is de-
fined by a large number of parameters that may be difficult
to specify a priori from domain knowledge. Even with an
online adaptive system, learning these parameters may re-
quire a tedious training period from the user.

In this paper, we present an approach which lets the agent
decide when it needs more information to be an effective
dialog manager. If the agent feels that it is familiar with a
situation, it acts based on its current understanding of the
dialog. When faced with an unfamiliar scenario, the agent
asks its human user what he or she would do in the agent’s
situation—advice that we believe is relatively easy for hu-
mans to give. Our approach both avoids a training period
of constant questioning and allows the agent to discover the
consequences of a poor decision without actually making
mistakes. We demonstrate our approach both in simulation
and on a dialog manager for a robotic wheelchair applica-
tion.

Introduction
Spoken language allows for natural human-robot interac-
tion, and the ability for a robot to take verbal commands
can be especially useful when interacting with those who
have limited mobility. The role of a dialog management
system is to take dialog from a user—in our case, output
from a voice recognition system—and interpret it to deter-
mine what action (if any) to take in response. In our work,
we focus on a dialog manager for a robotic wheelchair (see
Figure 1). The dialog manager’s goal is to discover where
the user wishes to go and command the wheelchair’s navi-
gation software to take the wheelchair to the desired loca-
tion.

While navigating to a given location may seem to be a
well-defined task, several factors make the dialog manage-
ment challenging. First, the voice recognition system is
often noisy—for example, the system may hear the words
“coffee machine” when the user asks to go to “copy ma-
chine”. Even with perfect voice recognition, ambiguities
may occur when people use different names for the same

Figure 1: Our dialog manager allows for more natural hu-
mancommunication with a robotic wheelchair.

location (such as “my desk” and “my office”). Users may
also use the same word to refer to multiple locations (such
as “elevator” when there are multiple elevators). Finally,
to make decisions under uncertainty, the dialog manager
must understand the user’s preferences: How tolerant is
the user of mistakes? How likely is the user to be frus-
trated by additional questions?

A good dialog manager must trade between asking
questions to reduce its uncertainty (thus avoiding er-
rors), and fulfilling the user’s request within a reasonable
amount of time. Partially Observable Markov Decision
Processes (POMDPs) provide a theoretical framework for
making decisions under uncertainty and have been suc-
cessfully applied to dialog management situations. The
ability to manage dialog uncertainty has made POMDPs
attractive in assistive health-care (Roy et al., 2000; Hoey
et al., 2005) and dialog management domains (Williams
and Young, 2005; Litman et al., 2000), where the agent
must reason about how to respond to user requests. Un-
fortunately, such real-world problems typically require a
large number of parameters that are difficult to specifya
priori.

One way to handle the problem of specifying the param-
eters corresponding to vocabulary, word error rate, user
preference, etc. is to learn the model parameters online. In
particular, we have shown previously that reinforcement
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learning can be an effective way to learn dialog models on-
line while interacting with users (Doshi and Roy, 2007a).
Reinforcement learning is a form of learning in which the
agent receives numeric feedback (or “reward”) after every
action. The agent adjusts its actions based on the feed-
back, and, over time, it learns how to maximize the reward
it expects to receive.

While the reinforcement learning approach has been
demonstrated in a wide variety of problems, including
human-robot interaction (Litman et al., 2000), it has not
met with widespread adoption in dialog management sys-
tems for several reasons. First, requiring the user to supply
reward feedback after each action may be tedious, leading
to frustration and inaccurate results. Second, in the re-
inforcement learning framework, the dialog manager will
only learn about the consequences of a poor decision after
making a mistake and experiencing a large negative re-
ward. Experiencing a large penalty allows for rapid learn-
ing but can quickly lead to user dissatisfaction with the
overall system. Finally, humans are notoriously bad at
giving accurate numerical feedback which can cause the
system to learn to do the wrong thing.

In this work, we present an alternative approach to on-
line learning in human-robot interaction in which we learn
a POMDP model online from data and use that model to
derive a correct interaction strategy. By building an ex-
plicit model, the interaction agent can both assess its con-
fidence in its own decision making and decide when addi-
tional training is needed. Instead of a reward signal after
each interaction, we propose the concept of a meta-query,
that is, a question about an action that the agent should
take. These meta-queries take an intuitive form:

“I think you definitely want me to go to the printer.
Should I go to the printer?”

The agent uses these queries to learn about the user’s pref-
erences (for example, risk aversion) as well as discover
information about their word choice and voice recognition
noise. The agent asks a meta-query only if it is sufficiently
confused about what action to take next. This active learn-
ing scheme limits the amount of feedback that is required,
easing the training burden on the user. We show that such
a system can adapt to users in a real robotic wheelchair
application.

The remaining sections are organized as follows: Sec-
tion I describes the basic POMDP dialog model and Sec-
tion II describes how we incorporate the unknown model
parameters into a larger POMDP. We present our algo-
rithm in Section III and results in Section IV. Sections
V and VI summarize our results and relate them to other
work in POMDP model learning.

I. The POMDP Model

Formally, a POMDP consists of the n-tuple{S, A, O, T,
Ω, R, γ}. S, A, andO are sets of states, actions, and ob-
servations. In our wheelchair command-and-control sce-
nario, the states represent locations to which the user may

wish to go. The user’s desired location cannot be di-
rectly observed and must be inferred from a set of noisy
observations—in our case, keywords from a voice recog-
nition system. The actions represent physical locations to
which the wheelchair may drive, as well as questions that
the wheelchair may ask the user. Figure 2 shows a cartoon
of a simple dialog model.

start

Go to
Kitchen

Go to
Elevator

Go to
Office

...

done

reset

Figure 2: A toy example of a dialog POMDP. The nodes
in the graph are different states of the dialog (i.e., user in-
tents). Solid lines indicate likely transitions; we assume
that the user is unlikely to change their intent before their
original request is fulfilled. The system automatically re-
sets once we reach the end state.

The transition functionT(s′|s,a) is a distribution over
the states to which the agent may transition after taking
actiona from states. Similarly, the observation function
Ω(o|s,a) is a distribution over observationso that may be
seen in statesafter taking actiona. If the observations are
keywords, for example, the observation model might en-
code that the keyword “coffee” is commonly heard when
the user wishes to go to the coffee machine. The reward
function R(s,a) specifies the agent’s immediate reward
for each state-action pair. In the wheelchair scenario, the
agent may incur a small negative reward for asking a clar-
ification question about where the user wishes to go. Sim-
ilarly, it may incur a large penalty for taking the user to
an incorrect location. Finally, the discount factorγ ∈ [0,1)
measures the relative importance of current and future re-
wards.

Since the true state—the user’s intent—is hidden from
the agent, it must choose actions based only on past ac-
tions and observations. In general, the optimal action to
take now will depend onall prior actions and observa-
tions; however, keeping a history of the entire dialog to
date can become quite cumbersome. Fortunately, it is
sufficient to store only a distribution over possible user
intents—known as a belief—as a sufficient statistic for the
past history of actions and observations. If the agent takes
actiona and hears observationo from an initial beliefb,
we can easily update the belief using Bayes rule:

ba,o(s) =
Ω(o|s′,a)

∑
s∈ST(s′|s,a)b(s)∑

σ∈SΩ(o|σ,a)
∑

s∈ST(σ|s,a)b(s)
(1)

If the agent has a set of POMDP model parameters that
accurately describe the user, then it can simply solve the
POMDP for the dialog management policy. The solution
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(a) Standard POMDP model
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(b) Model-Uncertainty POMDP

Figure3: (a) The standard POMDP model. (b) The extended POMDP model. In both cases, the arrows show which parts
of the model are affected by each other from timet to t +1. Not drawn are the dependencies from timet +1 onwards, such
as the user state and user model’s effect on the recognized keyword at timet +1.

to a dialog POMDP model is a policy that maps beliefs to
actions. If the goal is to maximize the expected discounted
reward, then the optimal policy can be found by solving
the Bellman equations:

V∗(b) = max
a∈A

Q∗(b,a), (2)

Q∗(b,a) = R(b,a)+γ
∑
o∈O

Ω(o|b,a)V∗(ba,o), (3)

where the optimal value functionV∗(b) is the expected
discounted reward that an agent will receive if its current
belief isb andQ∗(b,a) is the value of taking actiona in be-
lief b. The optimal policyπ∗ : P(S) → A can be extracted
from the value function using

π∗ = max
a∈A

Q∗(b,a). (4)

The exact solution to equation 3 is PSPACE-hard but
point-based approximations (Pineau et al., 2003) can be
used to find high quality solutions efficiently.

II. Modeling POMDP Uncertainty
The problem with using a POMDP to compute a dialog
policy is that some of the individual model parameters{S,
A, O, T, Ω, R, γ} are difficult to specify. It is reasonable
to assume that the parameter setsS, A, andO are fixed
and known beforehand. For example, in our dialog man-
agement task,S could represent all the places that a user
may wish to go based on some map initially provided to
the robot. The actionsA can be pre-specified clarification
questions or movements the wheelchair may take, and the
observationsO the keywords received from a voice recog-
nition system. However, determining the parameters inT,
Ω, andR is more difficult, as these parameters describe
the user’s preferences and the noise in voice recognition
system.

However, just as the user’s true intent is hidden from
the agent, we can also represent the true parameters of the

dialog model as hidden variables. We can therefore extend
our basic dialog model by including the model parameters
as part of the hidden state. We call this new represen-
tation a “model-uncertainty” POMDP in which the state
space consists of both the user’s intent and the true dialog
parameters. In this new POMDP model, the state space
becomes the set̃S= S×M, whereS is the user space as
before, andM is the space of dialog models as described
by all valid values for the model parameters. We note that
the new state spacẽS is continuous and high dimensional.

Each state ˜s therefore describes a particular user intent
s and a particular user modelm. The model componentm
of the state contains the probability distribution describing
how the user states changes, as in the standard POMDP.
The observations and rewards received for taking a par-
ticular action for a particular user intent now also depend
on the hidden dialog model state. To generate policies
tractably, we assume that the model componentm itself
is fixed, that is, the parameters of the user model do not
change over time.

Figure 3(a) shows the standard POMDP process. The
arrows in the graph show which parts of the model are af-
fected by each other from timet to t +1, for instance, the
reward at timet is a function of the state at the previous
time and the action chosen by the dialog manager. The
parameters defining this function are knowna priori al-
though every part of the model below the “hidden” line is
not directly observed by the dialog manager and must be
estimated on-line. In contrast, figure 3(b) shows the ex-
tended model. The reward at timet is still a function of
the state at the previous time and the action chosen by the
dialog manager, but the parameters are not knowna pri-
ori and are therefore hidden model variables that must be
estimated along with the user state.

Transition and Observation Uncertainty In the previ-
ous section, we introduced the belief as a distribution over
possible user states. In the model-uncertainty representa-
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tion, our belief is now a joint distribution over both the
possible user states and the possible user model parame-
ters. Just as we must specify an initial belief over user
intents (for example, in Figure 2 we assume that we begin
in a “start” state before the user has any intent), we must
now specify an initial distribution over possible dialog
models—a Bayesian prior on the models. The Bayesian
approach is attractive in the dialog setting because we may
have strong notions regarding certain parameters, but the
exact values for the full set of parameters is typically dif-
ficult to specify. For example, we may not know the exact
probability of hearing the word “coffee” if the user wants
to go to the coffee machine, but we can guess it is proba-
bly high. Similarly, we can guess that there is a significant
positive reward for driving to the right location and a sig-
nificant negative reward for driving to the wrong location.
We establish a prior distribution over the model parame-
ters to express our domain knowledge, and improve the
prior distribution with experience.

The need to represent the prior belief over models raises
the question of how to represent this belief. The user state
space is a discrete state space, so a standard histogram or
multinomial distribution can be used. However, the model
parameters such as the transition functionsT are continu-
ous parameters of distributions themselves; a distribution
overT is effectively a distribution over distributions.

SinceT and Ω are collections of multinomial distri-
butions, the Dirichlet distribution is a natural choice of
prior. The Dirichlet distribution places a probability mea-
sure over the “simplex” of valid multinomials. Figure 4
shows an example of such a simplex for a discrete random
variableX whereX can have three different outcomes with
different probabilities, e.g.,p(X) = [0.25,0.25,0.5]. Each
value of p(X) is a different point on the triangular sim-
plex shown in figure 4 and the Dirichlet gives a measure
of the likelihood of each such distribution. Ifp(X) is in
fact a transition probability distributionp(X) = p(·|s,a),
then each possible transition probability distribution (i.e.,
each possible user model) is also some point on this sim-
plex, with probability also described by the Dirichlet. As
the agent’s confidence in a particular model of user behav-
ior increases, the probability mass of the Dirichlet distri-
bution becomes increasingly concentrated around a single
point.

Given a set of parametersα1...αm, the likelihood of the
discrete probability distributionp1...pm is given by

P(p;α) = η(α)
m∏
i

pαi−1
i δ(1−

m∑
i

pi),

whereη is a normalizing constant. The process for up-
dating Dirichlet estimate of the multinomial given addi-
tional data is straight-forward. For example, suppose we
are given a set of observation parametersα1...α|O| cor-
responding to a particulars,a. If we observe observa-
tion oi , then a Bayesian update produces new parameters
(α1, . . . ,αi+1, . . . ,α|O|). Thus, we can think of quantity
αi − 1 as a count of how many times observationoi has

a

b

c

.5

.2
.3

P(a) = .2
P(b) = .3
P(c) = .5

Figure 4: An example simplex for a multinomial that can
take three different values (a,b,c). Each point on the sim-
plex corresponds to a valid multinomial distribution; the
Dirichlet distribution places a probability measure over
this simplex.

been seen for the (s,a) pair. Initially, the expert can spec-
ify an educated guess of the distribution—which we take
to be the mode of the distribution—and a pre-observation
total that represents the expert’s confidence in his guess.

Reward Uncertainty Next, we must specify a distribu-
tion over rewards. We fix a large positive reward value for
driving the user to the correct location, and a small penalty
for confirming the correct location with the user (for the
minor inconvenience of having to communicate with the
robot). These two reward values set a scale for the remain-
ing reward values. We assume that the reward values are
uniformly distributed between these ranges. The ranges
are expert-specified initially, but the range shrinks as the
model of user preferences becomes increasingly certain.

Passive Model Learning The Dirichlet transition, ob-
servation and uniform reward priors together specify a dis-
tribution over possible POMDP models. The agent can
learn some information about the model through user in-
teractions and improve the certainty of the model distribu-
tion. For example, suppose that the agent initially hears
the word “printer,” and user responds to the affirmative
when the agent asks if the user wishes to go to printer.
Then the agent can increase the probability that word
“printer” is associated with the printer location. However,
if the user responds to the negative, then the agent can in-
fer that either the word “printer” is not associated with the
location printer, or that printer is a commonly the output of
a voice recognition error. Likewise, the agent can discover
what are the most popular places where the user wishes to
go (information about the transition model).

Active Model Learning Other information cannot be
learned through user interactions. If the agent is only
listening for location keywords, it cannot determine the
user’s frustration due to a poor action or repeated ques-
tions. One option would for the user to input such feed-
back into the agent; however, even from a small set of user
tests in our lab, we found that it was often difficult to ex-
plain to users how to input reward values that would lead
to the desired behavior from the wheelchair. Such training
was also tedious. Thus, we introduced an additional ac-
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tion to the dialog manager’s options: the meta-query. For
example,if the wheelchair is fairly certain that the user
wishes to go to the printer, it might ask:

“I think you definitely want me to go to the printer.
Should I go to the printer?”

On the contrary, if the wheelchair thinks that the user may
want to go to the printer but is not very certain, it might
ask:

“I think you may want me to go to the printer. Should
I go to the printer?”

The choice of adverb gives the user an intuitive sense of
the agent’s uncertainty. Thus, the user can advise the
robotic wheelchair based on their internal preferences. For
example, if the user is risk averse, they may respond “yes”
to the first question but “no” to the second question. If
the user answers a question to the negative, the wheelchair
might follow up with further questions such as,

“In that case, I think I should confirm that you want
to go to printer first. Is that correct?”

until it receives an affirmative response (assuming that the
observation space has been augmented with yes/no key-
words)1. These meta-queries are not perfect, since the
user cannot know the true source of the wheelchair’s con-
fusion, but we believe they can provide a more natural way
for the human to instruct the robot. We therefore add a set
of meta-queries to the action set of the extended POMDP.
Each meta-query has a fixed probability of a “yes” or “no”
response for each model, which has the effect of changing
the model component of the current belief. For simplicity,
we fix the cost of each meta-query across all models.

III. Solving the Model-Uncertainty POMDP
Augmenting the original state space with the model pa-
rameters provides a principled way of thinking about the
actions that result from uncertain dialog models. In Sec-
tion IIIA, we validate our approach in simulation by solv-
ing this model-uncertainty dialog model directly when
only a few discrete parameters are unknown. Unfortu-
nately, the increase in the size of the state space also leads
to computational intractability; in Section IIIB, we present
an approximation that allows us to scale to real-world
problems.

IIIA. Solving the Model-Uncertainty POMDP
directly
In general, the parameters transition, observation, and
reward functions are continuous-valued, with an infi-
nite number of possible models. As such, the model-
uncertainty POMDP is especially difficult to solve using
standard methods. In special situations, however, uncer-
tainty in the dialog model may be expressed as a small,
discrete set of possible models rather than a continuous

1In our tests, we used an abbreviated form of the meta-queries
for simulation speed.
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Figure 5: Boxplot of dialog manager performance with a
discreteset of four possible models. In this case, the user
is very intolerant to errors, but the learner does not ini-
tially know this. Although the medians of the two policies
are not so different, the active learner (right) makes fewer
mistakes than the passive learner (left), leading to overall
much less user-annoying behavior.

distribution, making the model-uncertainty POMDP much
easier to solve.

For example, consider a scenario where we already
have accurate transition and observation models (say, from
some prior work with the voice recognition system), but a
new user’s preference model is unknown. The user’s ex-
act preference model may not matter as long as the dia-
log manager has roughly the appropriate pattern of behav-
ior. In an extreme case, we may decide to only charac-
terize the user’s frustration with an incorrect movement as
low or high, and similarly characterize the user’s frustra-
tion with an incorrect confirmation aslow or high. The
user model can be described by two variablesWrong-
MovePenalty WrongQuestionPenalty. The two variables
WrongMovePenaltyandWrongQuestionPenaltycan each
take either values ofhigh or low, so that the model for
a particular user might bem =< WrongMovePenalty=
high,WrongQuestionPenalty= low >. This particular
user would be conservative, with a preference to be asked
questions repeatedly rather than risk being taken to the
wrong location. With only four possible dialog models,
the state space is still discrete and small, and we can now
solve the model-uncertainty POMDP using a standard al-
gorithm (Pineau et al., 2003).

We show simulated results with this very simple sce-
nario of only four possible preference models in Figure 52.
The figure compares the performance of the policy with-
out using meta-queries (left column) to the performance
of the policywith meta-queries. As expected, the system
which has the ability to ask meta-queries can use the ques-
tions to gain information about the user’s internal prefer-
ence model. It is able to discern that the user is very sensi-
tive about incorrect movements, and therefore it asks more
confirmation questions before taking an action. While the

2Thiswork previously appeared in (Doshi and Roy, 2007b).
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Figure 6: Boxplot of dialog manager performance with
a discrete set of four possible models, lenient user. The
effect is not as dramatic, but again, the learning dialog
manager is able to adapt to the user’s preferences and out-
perform the non-learner, especially in avoiding large mis-
takes.

difference in medians is not extreme, the reduction in large
negative mistakes is substantial—which is particularly im-
portant in dialog management, where users will likely find
a system that regularly makes mistakes annoying.

In Figure 6, we see similar improvements for the sce-
nario where the user is fairly tolerant to mistakes. Again,
the learning dialog manager outperforms the non-learner
because it is able to determine the user’s internal prefer-
ence model and therefore ask fewer confirmation ques-
tions before acting.

Unfortunately, our approach of representing the user
model as discrete values (such asWrongQuestion-
Penalty= low) does not scale well. Experimentally we
found that even a modest increase in the number of pos-
sible user models from 4 to 48 meant that the model-
uncertainty POMDP could no longer be solved using stan-
dard solution techniques. While it may be possible to
group the possible combinations of user preferences into
a few representative models (since the effects of small
changes to the preference model may not be apparent to
the user), discretizing other parts of the user model such as
vocabulary choices quickly produces an exponential num-
ber of states. For example, for each keyword the user
might utter, we have to consider how likely it is to be heard
in each goal location. We therefore turn to approximation
techniques which will allow us to represent a larger class
of models with continuous parameters.

IIIB. Approximately Solving for a Dialog Policy

Instead of trying to solve for a dialog policy that incorpo-
rates both the uncertainty of the user model and the un-
certainty of the user state, we separate the problem into
two parts: first, we use the current belief over models to
establish a representative set of candidate dialog models,
and we solve for the optimal policy in each model. We
then use these models to choose an action that has mini-
mal risk; if the risk of all other actions is greater than the
cost of asking a question for all possible models, we ask a

Table 1: Dialog model learning approach using Bayes risk
and meta-queries.

DIALOG MODEL LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution over dia-
log models.

• Interact with the user:

– Use the dialog model samples to compute the ac-
tion with (approximately) minimum Bayes risk.

– If the risk is larger than a givenε, perform a meta-
query.

– Update each dialog model sample’s belief based
on the observation received from the user.

• Periodically resample from an updated prior over di-
alog models.

meta-query to improve our estimate of the true user model
and reduce the risk of errors. As we interact with the user,
we update our collection of possible dialog models to re-
flect our changing belief about the user model. Table 1
outlines our approach for the continuous dialog parameter
case.

Minimum Risk Action Selection If we know the cor-
rect user modelm, then the optimal action to take (either
confirming the user intent, or executing an action) isaopt.
Let us define a loss functionL(a,aopt), which describes
the cost of taking a different actiona. If we know the cor-
rect modelm, we can solve the model and compute the
value of each actiona using a standard POMDP solution
algorithm to solve equation 2. The loss function of can
then be calculated asQ(b,a)−Q(b,aopt), whereaopt is
the optimal action.

We cannot calculateL(a,aopt) since we do not knowm,
but we do have a beliefpM(m)over models that allows us
to calculate the expected lossEM[L]. This expected loss is
also known as the “Bayes risk”:

BR(a) =

∫
M

(Qm(bm,a)−Qm(bm,aopt,m))pM(m), (5)

whereM is the space of dialog models,bm is the current
belief over possible user intents according to dialog model
m, andaopt,m is the optimal action for the current beliefbm

according to dialog modelm. Leta∗ = argmaxa∈ABR(a)
be the action with the least risk. If the riskBR(a∗) is less
than fixed cost of a meta-query, that is, if the least expected
loss is still more than a certain threshold, we perform the
meta-query, otherwise we choose the actiona∗.

Intuitively, equation 5 computes the potential loss due
to taking actiona instead of the optimal actionaopt ac-
cording to dialog modelm and weights that loss by the
probability of modelm. When we are sufficiently sure
about the model, the risk will be low; when we are unsure
about the model, the risk may be high but the series of
meta-queries will lead us to choose the correct action and
avoid the risk. We unfortunately cannot solve equation 5
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exactly because the integral is over the model parameters,
and the solution would require us to solve for the value
functions of an infinite number of POMDPs. However,
we can use numerical techniques to find an approxima-
tion. Our belief over user states and user models gives us
the probability of each modelp(m); if we draw sample
models from this distribution, we will draw many sam-
ples in regions wherep(m) is high and few samples from
wherep(m) is low. The more samples we draw, the better
the densities of the samples will represent the distribution
from which they were drawn. Thus, we can approximate
equation 5 with the sum:

BR(a) =
∑

i

(Qi(bi ,a)−Qi(bi ,aopt,i))wi , (6)

whereQi provides the value of taking actions from belief
states according to dialog samplei.

By drawing samples from the distributionp(m), we
are using the samples to approximate this distribution.
However, the distribution over models will change as the
wheelchair interacts with the user. The wheelchair must
therefore periodically update the sample of dialog mod-
els that it is using to approximate its belief over models.
If model samples are drawn from the current distribution
over models, the weightwi of each model is simply1

N ,
whereN is the number of samples. However, for compu-
tational reasons—since we must solve every dialog model
that we sample—it may be undesirable to resample mod-
els every time some new information changes our belief
over possible models. In this case, the original sample set
of models can be re-used by changing the weight of each
model and representing the distributionp(m) as a set of
weighted samples. At each time step, the weight of each
model should be adjusted to be proportional to the ratio
of the previous likelihood of the sample and its likelihood
given new information. While it is possible to provide for-
mal bounds on the number of samples needed to approxi-
mate the Bayes risk to a specified degree of accuracy, these
bounds are loose and in practice we found that fifteen sam-
ples sufficed for our dialog management application.

POMDP Resampling In some cases, the set of
weighted samples may no longer accurately represent the
true distribution over models, requiring a new set of sam-
ple models to be generated. The need for resampling may
arise because one of the models becomes far more likely
than the other dialog models in our sample set. If one
model’s weightwi is close to 1, and the rest are close to 0,
then the risk will appear to be quite small. This approxi-
mation is reasonable when the risk is truly small, but we
do not want the dialog manager to become over-confident
due to a poor set of candidate models. Another reason to
resample models is that an interaction may have provided
information that made all of the models in our current set
very unlikely, and we would like our sample set to reflect
our current belief over the dialog parameters.

We have two sources of information when it is time to
update our sample set of dialog models. One source is the
history of the most recent dialog, which consists of action-

observation pairsh = {a,o}. Another source is the set of
meta-queriesQ= {(q,r,h′)}, whereh′ is the history of the
dialog from the initial belief to the query,q is the query,
andr is the user’s response to the query. Givenh andQ,
the posterior probabilitypM|h,Q over models is:

pM|h,Q(m|h,Q) = ηp(Q|m)p(h|m)pM(m), (7)

where η is a normalizing constant. Note that ifpM is
a Dirichlet distribution, thenη′p(h|m)pM(m) is also a
Dirichlet distribution since the likelihoodp(h|m) is prod-
uct of multinomials. Recall that updating the Dirichlet dis-
tribution corresponded to adding counts—for example, if
wheelchair observed the word “printer” after asking the
user where he wished to go when the user truly wished
to go to the printer, then we would add 1 to the Dirichlet
parameter for hearing “printer” given a general query, true
user goal is printer. The trouble is that we never know the
true user state—we only have actions and observations.

Given a complete dialog, however, and assuming that it
is unlikely that the user switched their objective in mid-
dialog, it is possible to accurately infer the most likely
underlying states from a history of actions and obser-
vations using the standard forward-backward algorithm.
We can use the output of this algorithm to update the
Dirichlet counts. This is a modified form of the standard
Expectation-Maximization algorithm, and thus the prior
will converge to some local optimal dialog model.

Incorporating meta-query information requires a dif-
ferent approach, since each specific meta-query response
provides information about the dialog policy, not the di-
alog model parameters. We do not have a closed-form
expression forpM|h,Q, so we must use sampling to draw
dialog model samples that are consistent with all of the
meta-queries that have been asked so far. Each query in
the setQ provides a constraint on the feasible set of dia-
log modelsM. Dialog models are feasible if their policy
is consistent with the responses in the meta-query.

Computing this feasible set directly is intractable, how-
ever, given the setQ, we can check if a sampled dialog
POMDP is consistent with the previous meta-query re-
sponses stored inQ. Thus, to sample POMDPs, we first
sample dialog POMDPs from the updated Dirichlet pri-
ors. Next, we solve for the optimal policy of each model
(which can be done quickly, since each dialog model sam-
ple is discrete and relatively small) and check if each di-
alog model’s policy is consistent with the previous meta-
query responses stored inQ.

IV. Results
Simulation Figure 7 shows results from a simulated di-
alog manager for our wheelchair application. The states
consisted of locations where the user wanted to go, and
the observations consisted of keywords extracted from ut-
terances. Actions included open-ended questions, con-
firming a particular state, and driving to a particular lo-
cation. Above, we see the usefulness of the Bayes-risk
approach (compared to stochastic actions selection based
on the weights of the sampled models) when the reward
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Figure 7: Dialog manager simulation results. Top: results
from learning only the observation model. Bottom: bene-
fits of active learning when learning both the observation
and reward model.

model is known. In this case, the Bayes risk action selec-
tion allows us to choose non-risky actions.

The usefulness of our approach is even more dramatic
when the reward prior is uninformative (below). In this
case, the dialog manager can improve somewhat by pas-
sively updating its priors based on what it has heard (solid
gray line). However, simply listening cannot provide the
dialog manager information about the user’s preferences.
Moreover, since the active learning system asks the user
for help whenever it is confused, this system does not suf-
fer from an initial dip in performance before the model
estimate converges to the true model. The meta-queries
allow the active learner to learn while avoiding mistakes,
thus maintaining a high level of performance.

Robotic Wheelchair We also validated our approach on
a dialog manager for a robotic wheelchair with a sim-
ple user study. The underlying POMDP, with 10 states,
38 observations, and 21 actions, used keywords from a
voice recognition system output as observations. Initially,
each state had one strongly mapped observation (such as
‘printer’ for the printer location). The remaining observa-
tions received uniform initial priors. Four users conducted
12-15 interactions (20-25 minutes) with the system.

By asking meta-queries, the dialog manager was able to
successfully complete all 57 interactions without making
a serious error, that is, trying to drive the user to an in-
correct location. Table 2 shows that the proportion of di-
alogs with meta-queries decreased significantly from the

Table 2: Proportion of dialogs with meta-queries by lo-
cation. The decrease in the number of meta-queries from
the second to the third time the location was asked for is
statistically significant at thep = 0.05 level.

First half of interactions .79
Second half of interactions .48

Table 3: Proportion of dialogs with meta-queries. The
decrease in the proportion of queries is significant at the
p = 0.05 level.
How often place was re-
quested

First
time

Second
time

Third
Time

Total number of requests 29 15 8
Number of requests with
meta-queries

22 11 2

Proportion of requests with
meta-queries

.76 .73 .25

user’s initial interactions with the system to his or her fi-
nal interactions with the system. The proportions are rela-
tively high because the users, being new with the system,
asked for a variety of locations or experimented with dif-
ferent vocabulary. In Table 3, we see that the system often
asked a meta-query the first or second time a user asked
to go to a particular location, but there was a significant
drop in the number of meta-queries after the third time
the user requested to go to the same place. We note that
our active-learning approach allowed our dialog manager
to automatically determine the length of its training phase.
Our trials were too small to draw strong conclusions from
these results (especially since we were unable to account
for the effect of the novelty factor in the interactions), but
our quantitative analysis does show statistically significant
decreases in the number of meta-queries asked as the dia-
log manager adapts to each user.

Next we present some sample dialogs to illustrate our
system’s learning. Table 4 contains a sample dialog where
the system used a meta-query to establish the meaning of a
new word. In the initial dialog, the word ‘forecast’ is new
to the system, that is, it has no prior on what that word may
mean. The system determines that the Bayes risk is great
enough to warrant asking for a policy clarification. As a
result, future dialogs are biased toward choosing POMDP
samples that satisfy the initial policy query request, which
allows later dialogs to avoid the same kind of training.

In Table 5, the system adapts to a situation where two
words, ‘coffee’ and ‘copy’ are often mistaken for each
other in the voice recognition system. We stress that at
the beginning of the dialog, the system was initialized to
believe that the word ‘coffee’ was most likely if the user
wished to go to the coffee machine, while the word ‘copy’
was most likely if the user wished to go to the copy ma-
chine. The other key words—“tea” and “kitchen”—-in
this segment began with uniform priors.

During the first conversation, the agent is confused by
the many new words. Even after asking a meta-query,
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Early Conversation
ROBOT: How can I help you?
USER: Give me the forecast.
ROBOT: I’m confused. What action should I take
now?
The system pops up a meta-query window, and user
indicatesaction “show weather” is correct.
ROBOT: Showers.
Later Conversation (with the same user)
ROBOT: How can I help you?
USER: What’s the forecast for today?
ROBOT: Do you want the weather?
The system has partially the word “forecast” and con-
firmsthe correct state.
USER: Yup.
ROBOT: Showers.

Table 4: Learning a new word: The system learns the
meaningof a new word through a meta-query.

it is confused by hearing the word “copy” since the user
seems to want to go to the kitchen. After several interac-
tions, the agent goes to the correct location. We note that
even in this tricky scenario, the use of the meta-queries
helped the agent focus on to the kitchen when the only
word it recognized—“copy”—seemed to indicate that the
user wished to go to another location. In the later dialog,
we see the effect of the learning: upon hearing the words
“kitchen” and “copy,” the agent correctly infers that the
user wishes to drive to the kitchen.

V. Discussion and Related Work

Prior work in POMDP learning has also considered in-
corporating the parameters of the POMDP as additional
hidden states into a larger model-uncertainty POMDP.
One approach, the Beetle algorithm (Poupart et al., 2006)
solves the problem analytically by casting an MDP with
unknown parameters as a POMDP. However, this ap-
proach would be difficult to extend to the POMDP case as
the state space would now be doubly continuous and very
high dimensional. Note that our goal is policy learning,
rather than explicitly learning a vocabulary as in (Lopes
and Teixeira, 2000; Lopes and Chauhan, 2007). We learn
additional word models only as a function of how they af-
fect the policy.

An approach that is closer to ours is the Medusa algo-
rithm (Jaulmes et al., 2005). The Medusa algorithm also
samples POMDPs from a prior over model parameters,
but the actions are chosen stochastically and queries are
made to a state oracle, not for policy information. While
the Medusa approach can allow for faster learning, our ac-
tion selection criterion is more robust (something valuable
for dialog management applications with a robotic wheel-
chair) and our queries provide a more natural way for the
user to provide feedback to the robot. To our knowledge,
this is the first example of using Bayesian reinforcement
learning on a real-world application.

Early Conversation
ROBOT: How can I help you?
USER: I want some tea from the kitchen.
ROBOT: How can I help you?
USER: The tea is in the kitchen near the coffee machine.
The system heard “copy” instead of “coffee” and is confused
aboutthe new word “kitchen.”
ROBOT: How can I help you?
USER: Go to the kitchen.
ROBOT: I’m confused. What action should I take now?
The user indicates “Confirm the coffee machine area” is the
correct action.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
... The system asks a few more (non-meta) questions before
re-confirming the coffee machine state.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.
Later Conversation (with same user)
ROBOT: How can I help you?
USER: Take me to the kitchen.
The system hears a noisy combination of “nick” and
“kitc hen” (mostly “kitchen”).
ROBOT: How can I help you?
USER: I want some coffee.
The system hears “copy” instead of “coffee,” but with its
learnedobservation model, it confirms correctly.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.

Table 5: Learning about observation noise: the system
learnsnew words for a noisy pair of states.

VI. Conclusion
We developed an approach for active learning for dialog
managers that robustly adapts to different users. Meta-
queries—questions about actions that the agent is think-
ing of taking—and a risk-averse action selection criterion
allowed our agent to behave robustly even when its knowl-
edge of the POMDP model was uncertain. Moreover, we
demonstrated that this model could be successfully trans-
ferred to a dialog manager on a robotic wheelchair.
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Abstract 

Recent trends in cognitive science stress situatedness and 
adaptivity as fundamental characteristics of autonomous 
embodied agents. Largely steaming from the critique to 
classical AI and notions of representation, these new 
trends often ignore the cultural environment, including 
articulated language, assuming the continuity between 
animal and human forms of cognition. Nevertheless, if 
robots are to inhabit a human world, they need to be 
situated in such a linguistic environment in a way that 
surpasses animal forms of cognition. This pressing 
requirement may in turn have consequences in the 
development of how we understand autonomy and the 
self. 

1. Introduction    
 

In this paper, we investigate theoretically what it means 
for robot developers to integrate robots in a linguistic 
human niche. We consider language to be an existing 
social structure – therefore a human niche is an 
environment which includes a social structure articulated 
as a public language. To be situated in such an 
environment is to have the cognitive capacity to 
understand other’s utterances, communicate one’s beliefs 
about oneself and the world, respond to imperatives and 
motivate actions in others, etc …  
 
Traditionally, cognitive science has considered language 
as a tool for communication between fully-fledged 
cognitive systems. On this view, ‘private language’ is the 
privileged internal representational structure in which 
mental processes are carried out. Public language is the 
imperfect translation of what goes on inside. 
Supracommunicative theories (Clark, 1998) on the other 
hand, consider the existence of public language to be an 
essential configuration of the niche an agent needs to 
adapt to, and which may shape functional aspects of such 
‘cognitive machinery’. In other words, it may play a role 
in shaping and distributing cognitive problems among 
individuals in a social environment and within the agent 
itself.  
 
Even though language processing was one of the major 
topics in the so called traditional Artificial Intelligence, 
emphasis on adaptation and sensory-motor coordination 
has driven the focus of research into the challenges of 
embodied action. Nevertheless, most robotic applications 
envisioned for the near future involve linguistic 
interaction with humans. Understanding how being 

embedded in a linguistic environment modifies the 
cognitive problems a robot faces is a path this kind of 
robotic technologies will have to walk down sooner or 
later. 
 
The need for robots that could potentially cohabit with us 
is argued by some to be pressing (Brooks, 2002). This is 
the case, for instance, in assistive robotics, in which 
robots are imagined as valid tools to assist handicapped 
and elderly people in everyday life. Such robots would 
need to maintain complex and potentially open-ended 
interactions with the human-beings and would ideally be 
able to use language to communicate. One basic feature 
of an assistant is that it must be able to accept 
descriptions, commands and instructions. Of course, we 
cannot disregard the possibility that robots may need to 
inhabit even more complex socio-linguistic niches 
narrative niches1, and perhaps in the process escape their 
condition as machines.  

2. Cognitive linguistic agents  
There are a few hints on how cognitive problems are 
shaped by the existence of a linguistic niche. Clark, for 
instance, offers a number of potential ways in which 
public linguistic artefacts can transform cognitive 
problems, such as memory augmentation, environmental 
simplification, coordination and the reduction of on-line 
deliberation, taming path-dependent learning, attention 
and resource allocation or data manipulation and 
representation (cf Clark, 1998). Arguably, the 
consideration of public language can also help us better 
understand important issues such as the symbol-
grounding problem. 
 
The consequences being embedded in a linguistic 
environment have for an adaptive agent are ultimately 
dependant on how behaviour is controlled and organised. 
We consider the framework of neuro-robotics. In classic 
AI, control is conceived as intrinsically semantic. Public 
language only emerged as the externalization of internal 
control. Neural controllers, on the other hand, are 
naturally subsymbolic and the patterns of activity are 
defined by dynamic rather than semantic rules. Andy 
Clark view the brain as an organ engaging in 
environmental interactions through an iterated series of 
simple pattern-completing computations (associative 
engine). As language becomes part of the world out there 
                                                           
1 A distinction between narrative vs. mere linguistic 
niches will be discussed further in the full paper. 
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for the agent, the brain’s task is not to store a system of 
representations and to translate them into public 
language, but to situate the agent in such a linguistic 
framework.  
 
Ultimately, the problem of linguistic artefacts such as 
cognitive assistants is one of design requirements: how 
socialised do robots need to be? It may be unrealistic, 
unnecessary and even undesirable to consider the 
possibility of a robot that can develop a complete 
understanding of the human niche. Nevertheless some 
language mediated interactions seem necessary if we are 
to have useful cognitive assistants. Thus, we propose an 
incremental approach based on the concept of language 
games, conceptualised by Wittgenstein (1953, p. 3) 
 
We should consider the robot to be a minimally 
embedded in the linguistic niche if it is able to participate 
in some of the number of available language games. The 
benefit of this approach is that linguistic capabilities are 
not studied in isolation, but within the embodied practice 
made available by a social environment. This may help 
us in posing certain questions on the relationship 
between language and the human niche. Dreyfus, for 
instance, argues that “To learn a natural language a 
computer has to have a body; it must be embodied if it is 
to be embedded” (Dreyfus, 1996,p. 181). Dreyfus has 
also argued that an emotional background is also 
required “the socializable entity will have to be self-
moving, have feelings and emotions, be able to detect 
and care about approval and disapproval, and lot more” 
(Dreyfus, 2000, p. 346). 
 
Language internalisation and cognitive construction may 
be important here. The use of language to perturb / or 
construct an ongoing action, and replace scaffolding 
might be important not just so that a robot comes to share 
our life-world, but such that it is able to develop its own 
flexible modes of cognition. It may also transform how 
we face classical robotic problems, such as attention, 
control and the structure of memory.  
 
An interesting further angle would be to examine what 
new questions would emerge as a result of robots that 
might substantially internalise language games or cohabit 
in our niche. Especially if they could use advanced 
socio-linguistic modes such as narrative2. Dennett 
(1992) suggests that the self is a centre of narrative 
gravity. If selves are complex narrative posits, as this 
idea suggests, it is reasonable to suspect interesting 
moral and practical questions to arise as agents are able 
to participate in and internalise more complex language 
games.  
 
If we are to build robots that can more capaciously 
inhabit the human cognitive niche then it seems 
appropriate to consider these questions in more detail. 
                                                           
2 And there are reasons to suspect that a valuable care-
giving robot might need at least some minimal 
recognition of narrative. 
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Abstract

In this work we show how a humanoid robot can learn to
produce and recognise both vowels and consonants using a
unified method for speech production and recognition. The
method is inspired by the motor theory and the discovery
of mirror neurons. Both auditory and visual information is
used and mapped to the robot’s articulatory space where the
recognition and speech production is performed. A combi-
nation of babbling and imitation is used to learn the maps.
We find that the visual information can be useful not only
to increase the recognition rate of already learnt phonemes,
but also to drive the learning of new phonemes.

INTRODUCTION
Language acquisition is a complex and highly social pro-
cess. To interact with humans using speech a robot need
to be able both to produce and to recognize a number of
phonemes. Speech production, speech recognition, and
learning of phonemes are usually handled by different pro-
cesses, but here we handle these tasks with a unified ap-
proach. This approach is based on our earlier work (Hörn-
stein and Santos-Victor, 2007), where we map the speech
signal to motor representations in the robot’s vocal tract
and perform both speech planning and speech recognition
in motor space. A similar approach is taken in (Kanda and
Ogata, 2007). The idea to use motor space rather than
directly using the speech signal comes from the Motor
Theory (Liberman and Mattingly, 1985). They found that
being able to produce a certain sound also increased the
possibility to recognize the same sound. In an other work
it has been found that there is an increased activity in the
tongue muscles when listening to words that requires large
tongue movements (Fadiga et al., 2002). Both these works
lead us to believe that the motor area is involved not only
in speech production, but also in speech recognition.

In this work we further extend and develop our uni-
fied approach by including visual input in the form of a
lip tracker and a self clustering algorithm that automati-
cally groups learned motor positions into phonemes. We
also show how a humanoid robot can use the described
approach to learn both vowels and simple consonants dur-
ing its early speech development. The robot used in this
work is the iCub, Figure 1. The iCub is equipped with
sensors in the form of microphones and cameras, and can
produce sound through a simulated vocal tract. It has no

preprogrammed knowledge about language. Instead it has
to learn how to speak by exploring its vocal tract and learn
its initial sensory-motor maps using babbling. It also has
to learn which sounds are useful for communication with
humans, group these sounds into phonemes, and to rec-
ognize the same phonemes when pronounced by different
speakers. The set of sounds considered as useful depend
on the cultural environment in which the robot is placed
and therefore has to be learned through the interaction
with humans. Here we use different types of imitation
games to allow the robot to learn new phonemes and gain
speaker invariance.

The rest of the paper is organized as follows. In sec-
tion 2 we give an overview of the architecture used and
especially focus on the new parts like the lip tracker and
the clustering algorithm. In section 3 we describe the bab-
bling and imitation behavior that the robot uses to develop
its speech. In section 4 we show some experimental results
and conclusions are given in section 5.

Figure 1: iCub robot learning to speak

System architecture
The architecture used in this work is an extension of the
architecture described in (Hörnstein and Santos-Victor,
2007). As in the previous work the architecture consists
of a speech production unit, a sensor unit, a sensor-motor
map and a speech recognition unit, Figure 2. The main
difference compared to the older version is the addition of
a visual sensor in the sensor unit and a vision-motor map
in the sensor-motor map unit. We have also done some
modifications in the position generator that drives the bab-
bling and added a self clustering algorithm in the motor
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Figure 2: Speech architecture

cluster. In this section we give a short overview of each
unit and explain the differences between the current and
the previous version in more detail.

Speech production unit
The speech production unit is responsible for moving the
lips and producing sound. As in the previous version we
do not use a physical model of the human vocal tract, but
simulates the vocal tract in a computer model. The model
used is vtcalcs developed by Maeda (Maeda, 1990). This
model has six parameters that can be used to control the
movements of the vocal tract. One parameter is used for
the controlling the position of the yaw, one for the protru-
sion of the lips, one for lip opening, and three parameters
for controlling the position of the tongue. A synthesizer
converts the vocal tract positions into sound. While the
synthesizer works well for vowel-like sounds, it is unable
to produce fricatives sounds and can hence only produce a
limited set of consonants.

In the new architecture the vocal tract position is also
used to control the shape of the robot’s lips. Our robot
has a very simple lip model consisting of a number of leds
that can either show a closed or an open mouth. A simple
threshold is used to decide whether the mouth should be
shown as open or closed. Examples of the mouth positions
are shown in Figure 1.

The most important difference in the speech produc-
tion unit is the new position generator. While the previ-
ous version only created random positions for the vocal
tract the new unit offers more advanced babbling behav-
ior. One of the problems with the random position gener-
ator was that it created lots of non-humanlike sounds that
aren’t useful for human-robot interaction and slows down
the learning process. In (Soares and Bernadino, 2007), it
has been shown that a convex combination of three cor-
ner vowels [i], [a] and [u] is able to produce the complete
vowel space. The corner vowels represent extreme place-

ments of the tongue and can therefore be considered as
known stable points when starting the exploration of the
articulatory space.

Thus, in this work we include these corner vowels as
starting points in the motor cluster, even though we have
previously shown that it is possible to learn those using
random babbling. The position generator creates a new
sound by picking two positions in the motor cluster and
creating a trajectory between those. As shown in (Soares
and Bernadino, 2007) we always create tangible speech
as long as we stay within the convex envelope of the cor-
ner vowels. However, as this would also restrict us to the
vowel space we add some noise to the positions before cre-
ating the trajectory. This way we allow the robot to also
explore the articulatory space beyond the vowel space.

Sensor units
We use two sensors, an auditory sensor unit and a vi-
sual sensor unit that extract features from the acoustic and
visual spaces respectively. The auditory sensor remains
unchanged. A microphone is used to record the sound.
The sound is windowed into 30 ms frames and Mel fre-
quency cepstral coefficients (MFCC) (Davis and Mermel-
stein, 1980) are calculated for each frame. The visual sen-
sor unit is, on the other hand, a complete new unit that has
not been presented in the previous work. In the following
we explain this sensor unit in more detail.

The purpose of the visual sensor is to provide visual
clues on the position of the vocal tract. While there are
methods to find the exact contour of the lips, like the usage
of snakes or active contour methods (Kass et al., 1987),
these methods are typically too complex to use in speech
recognition. With no a priori assumption of the shape
of the lips the estimation becomes slow and more error
prone. Further more, the complexity of the final descrip-
tion makes further data processing costly. For practical
applications where we need to track the movements of the
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lips in real-time, and are interested in some simple feature
like the area of the mouth opening rather than the exact
contour, we need a compact representation of the lips. In
this work we have chosen to represent the lips by an el-
lipse, which is fitted to the pixels that belong to the lips.
The pixels that belong to the lips are found by using color
segmentation. The color segmentation can be done in sev-
eral different ways. It is usual to extract the color from the
first frame using the initial position of the lips. In (Tian
et al., 1999) the whole color distribution of the lip region
is calculated and modelled as a Gaussian mixture and the
EM method is used to estimate both the mixture weights
and the underlying Gaussian parameters. Here we use a
much simpler method and simply model a lip by its red-
ness, where we define the redness as:

Redness = R2
/(R2 +G2 +B2)

whereR, G, andB are the red, green, and blue value of
an RGB-image. If the redness of a pixel is above some
threshold we define the pixel as a lip. The threshold can
be calculated from the initial frame, but we have chosen a
fixed threshold of 0.9. As shown in Figure 3, the threshold
seems to work well even for different persons. Of course
there are other pixels apart from the lip pixels that are clas-
sified as red so we need to know the approximate position
of the lips and only use those pixels to fit the ellipse. Here
we use a face detection algotithm, based on (Viola and
Jones, 2001) and (Lienhart and Maydt, 2002). The face
detection algorithm not only gives us an initial estimate
for the position of the lips, but also gives us the size of
the face which is later used to normalize the area of the
mouth opening. However, the face detection algorithm is
rather slow so the position and size of the head is therefore
only calculated once in the beginning of every experiment
and the subject with which the robot interacts is assumed
to maintain approximately the same distance to the robot
during each experiment.

To fit the ellipse to the lip pixels we use a least square
method described in (Fitzgibbon et al., 1999). The result is
shown in figure 4. We then use the ellipse to calculate the
area of the mouth opening. The ratio between the area of
the mouth opening, given by the lip tracker, and the area
of the face given by the face tracker, is used as a visual
feature and is sent to the vision-motor map.

As said before, the face detection is too slow to be
useful for tracking the movements of the lips between
two frames in the video stream. We therefore use the
method suggested by Lien et. al (Lien et al., 1999). They
use Lucas-Kanade tracking algorithm (Lucas and Kanade,
1981) to track the movements of the lips between adja-
cent frames. One problem with the tracking algorithms
is that it is sensitive to the initial feature point selection
as most points on the lips have ambiguities around the lip
edges. Here we solve this by looking for Harris features
(Harris and Stephens, 1988) around the lips and use these
as initial points that will be tracked. The result gives us
a sufficiently good estimate to maintain an initial estimate
of the lip position over the video sequences used in our

experiments.

Figure 3: Color segmentation

Figure 4: Lip tracking

Sensor-motor maps

The sensor-motor maps are responsible for retrieving the
vocal tract position from the given auditory and visual
features. We use two separate neural networks to map
sound-motor map and the vision-motor map respectively.
The sound-motor map is the more complicated of the two,
mapping the 12 cepstral coefficients back to the 6 parame-
ters of the vocal tract model. The problem is extra difficult
since several positions of the vocal tract results in the same
sound, giving several possible solutions for a given set of
features. While the position generator described above re-
duces the risk of producing the same sound from two dif-
ferent positions, we still get some ambiguities that have to
be solved through the interaction with a caregiver. For the
sound-motor map we use an artificial neural network with
20 hidden neurons.

The vision-motor map is a very simple unit, doing a
linear mapping from the mouth opening to the lip height
parameter of the synthesizer.

Since the output from both the sound-motor map and
the vision-motor map consist of vocal tract positions, the
integration of those sensor outputs becomes very simple.
Here we simply use a weighted average of the lip height
calculated from the two maps. The weight is currently
set by hand, but should preferable be set automatically ac-
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cording to the quality and intensity of the visual and audi-
tory stimula.

Speech recognition unit

The speech recognition unit contains a motor cluster and
a classifier. In our previous version of the architecture the
classifier was a simple dictionary that stored motor po-
sitions that were considered useful for the communica-
tion with the caregiver. In this new version we have im-
plemented an hierarchical clustering algorithm based on
(Hastie, 2001), which starts with creating one cluster for
each stored position and then iteratively joins the two clus-
ters with the minimum euclidean distance until we only
have one single cluster containing all stored positions.

For each level of the clustering process, we have differ-
ent relationships between data groupings. So, the question
is: what is the "natural" grouping for this dataset? To es-
timate the number of clusters in a data set we used Gap
statistic (Tibshirani et al., 2001). This function compares
the within-cluster dispersion of our data with that obtained
by clustering a reference uniform distribution. This is to
compare the gain of raising the cluster number in a struc-
tured data with that arising from adding another cluster to
a non-informative and not structured set of points.

We choose the first maximum in the Gap statistic as the
optimal number of clusters. Each position within the same
cluster is considered to be part of the same phoneme or
pseudo-phoneme.

The recognition task is handled by the classifier that
compares positions given from the sound motor map with
the mean positions of each pseudo-phoneme in the mo-
tor cluster and can be configured to use either Euclidean
distance or the Mahalanobis distance to find the nearest
neighbor.

Babbling and imitation
In this this section we describe the mechanisms used by
the robot to learn to vocalize vowels and simple con-
sonants. The methods are inspired by the way chil-
dren develop their speech through a combination of self-
exploration in the form of babbling and through interac-
tion with a caregiver. We separate between two types of
interactions, the robot imitating a caregiver, and the care-
giver imitating the robot. Both these behaviors can be
found in the interaction between a child and its parents.

Here we first describe what happens during babbling,
then we explain which maps that are updated as the care-
giver imitates the robot, and finally what happens when
the robot imitates the caregiver. However, we would like
to point out that these activities should be seen as paral-
lel rather than sequencial and that all behaviors are active
during the whole development.

Babbling

The babbling behavior is realised by the position genera-
tor. As explained in the previous section the position gen-
erator randomly takes two positions from the cluster, add

some noise to the positions, and then create linear trajec-
tory between the two points. In the beginning the noise
level is set relatively high in order to explore as much as
possible of the articulatory space. With time, and as more
positions are stored in the cluster, the noise level in the
babbling is gradually reduced and the babbling is focused
on the trajectories between the learnt positions.

Each position in the generated trajectory consists of the
6 parameters in Maeda’s model. These are then passed
on to the speech production unit that calculates the result-
ing sound. The sound is then fed into the auditory sen-
sor unit that calculates the MFCC and passes these to the
sound-motor-map. The sound-motor-map finally tries to
map the MFCC back to the original articulator position
vector and compares the result with the output from the
position generator. The error between the mapped and
the correct positions is the used to update the map using a
back-propagation algorithm.

There is no update of the vision-motor map during bab-
bling since the robot does not get any visual feedback of
its lip position.

Caregiver imitating robot

Having the caregiver imitating the robot is arguable the
most important factor in learning both the sound-motor
map and the vision-motor map. While the robot can easily
learn the map between its own sound and motor positions
through babbling, there is a large difference between the
speech produced by the robot and normal human speech.
The same can be said about a child whose vocal tract is
significantly different to that of an adult. Add to that the
fact that the sound produced by ourselves is transmitted
not only through the air, but also through bone structures
in the head which make our own voice sound significantly
different compared to the sound produced by others even
if we would have exactly the same vocal tract. To compen-
sate for those things we have to interact with other people
in our environment and tune the maps according to their
voices.

This interaction starts with the robot creating a trajec-
tory in the same way as for the babbling and sending the
sound to the speaker. The caregiver then tries to repeat the
same utterance with its own voice. It is important that the
caregiver repeats the perceived utterance rather than the
exact sound produced by the robot. Here we do not handle
the problem of deciding whether the person with whom
the robot interacts is actually imitating what the robot said
or not, but simply assumes that the received response is
the same utterance. We also make sure that the utterance
has the same length and that it is correctly aligned in time
with the utterance of the robot. This is done manually at
the moment by selecting some keypoints along the trajec-
tory and finding the same key points in the response of the
caregiver. We also extract images from the video stream
that match each of the key points.

The maps are then trained using the vocal tract positions
of the robot together with the auditory and visual response
from the caregiver. The sound from the caregiver is fed
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into the auditory sensor and the corresponding MFCC are
calculatedand sent to the sound-motor map. The mapped
position is compared to the vocal tract position used by
the robot and the map is updated to compensate for the
error. In the same way the image of the caregiver is fed
into the visual sensor which calculates the mouth open-
ing and sends the result to the vision-motor map. Again
the mapped position, this time of the lip height only, is
compared to the original position and the map is updated
according to the error.

This is repeated for various utterances and preferably
with several different caregivers in order to increase the
robots posibility to correctly map utterances from other
persons to its own vocal tract in order to reproduce the
same sound or to recognize what the other person actually
said.

Robot imitating caregiver

One problem having the caregiver imitate the robot is that
the robot is not very likely to say something meaningful by
just doing babbling. In order to get the robot to actually
learn some useful phonemes it is better to have the human
to make the utterance and let the robot try to imitate. How
well the robot will be able to repeat the same utterance
depends on how well it has learnt the sensor-motor maps.

If the robot has mostly used babbling and had little or
no previous interaction with its caregiver it is not likely to
correctly map the sound of the caregiver when the care-
giver uses his or her normal voice. In order to direct the
robot to the correct utterance the caregiver may therefore
need to adapt his or her own voice. This behavior can also
be found in the interaction between a child and its parents
and has been studied in (de Boer, 2005). When the robot
answers with the intended utterance we give the robot pos-
itive feedback which causes the robot to store the current
articulator positions in its cluster. This reinforcement was
given through the keyboard in the current implementation,
but more sophisticated methods could be used.

This step is only used insert new positions in the cluster
and no training is going on in this step.

Experimental results

We performed three experiments using the architecture
with babbling and imitation as described above. In the
first experiment we test if the clustering algorithm is able
to correctly group the positions it learns for 9 portuguese
vowels. In the second experiment we use the learnt vowels
and see how well the robot can recognize the same vow-
els when pronounced by different human speakers. Es-
pecially we look at the effect the visual features have on
vowel recognition. In the third experiment we teach the
robot some simple consonants and again look at the effect
of using vision for recognition by studying the well know
McGurk effect (McGurk and MacDonald, 1976) which
can be expected when combining visual and auditory fea-
tures.

Figure 5: Dendrogram depicting the hierarchical cluster-
ing performed by the robot.
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Figure 6: Gap statistic versus number of clusters. The
growth of the curve stops at nine clusters.
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Learning vowels
To create a sufficient number of valid training vowels for
the robot, we created a dataset with 900 vowels, and then
submitted them to the evaluation of 16 native speakers,
so that they rejected or approved each vowel as a valid
portuguese vowel and — for those that were approved —
agreed or not in their phonological classification. From
these 900 vowels, 281 were considered appropriated.

The original dataset was generated from nine prototype
vowels in the 6D articulatory space, added with 10% of
white noise.

Applying agglomerative hierarchical clustering to the
present vowel dataset originated some good results, as we
can see in figure 5. The nine vowel groupings depicted in
different colors are clearly visible.

The dendrogram shown can be seen as a summary of the
data structure that was detected by our simple dissimilar-
ity measure: euclidean distance between 6D vectors and
average dissimilarity between groups.

In ten performed trials, the Gap statistic consistently
pointed to nine as the most natural number of clusters.
One example of this result is presented in figure 6.

Vowel recognition
To be able to compare the results obtained in this work
with the results obtained in (Hörnstein and Santos-Victor,
2007), we actually do not use the vowels positions learned
by the cluster above, but instead use the positions learnt
in the referred work. There the robot first learned its
own sound-motor map by doing a completely random bab-
bling. A caregiver then taught the robot nine Portuguese
vowels by having the robot imitate the vowels and storing
those that were successfully pronounced. As seen in Fig-
ure 7 the articulator positions used by the robot are similar
to those used by a human speaker.

Next, the 14 speakers (seven males and seven females)
were recorded while reading words that included the same
nine Portuguese vowels. Each speaker read the words sev-
eral times, and the vowels were hand labeled with a num-
ber 1 to 9. The amplitude of the sound was normalized
and each vowel was then divided into 30 ms windows with
50% overlap. Each window was then treated as individual
data which resulted in a training set of 2428 samples, and
a test set of 1694 samples.

In addition to the original data we also extracted im-
ages from the video sequences that corresponded to each
person pronouncing the vowels. Only one image for each
person and vowel was extracted creating a training and test
set of 63 images each. The images were then processed by
the visual sensor in order to calculate the mouth opening
in each image.

After the learning of the maps using random babbling
the recognition rate for the human vowels in the test set
were as low as 17.5%. We then used the data from the
seven persons in the training set to imitate the robot’s vow-
els to allow the robot to further train both the auditory-
motor and the visual-motor maps. After the interaction
with the persons in the training set, the recognition rate for

the persons in the test set became 63.3%. If the robot was
just presented with auditory input and was not allowed to
see the person the recognition rate became 57.7%.

Learning consonants
We have also done some initial experiments with teaching
the robot consonants using the methods described above.
Each consonant is here modelled with a single target point
in the articulatory space. It should be noted that the point
by itself cannot reproduce the consonant. To reproduce
the consonant we create a trajectory between two vowels
that passes through the target point.

For this experiment the robot started with the three cor-
ner vowels [i], [a] and [u], and did an initial babbling by
creating 1000 trajectories with 10 points along each tra-
jectory.

In the second step we let the caregiver imitate the robot.
We only created the straight trajectories [i] to [a], [a] to
[u] and [u] to [a] as the alignment between the robot and
the human utterances had to be made by hand, but these
were sufficient to give the robot initial sensor-motor maps
for the auditory and visual features of the caregiver.

The last step was to let the robot imitate the caregiver.
We wanted to teach the robot three new phonemes /b/, /d/,
and /g/ by having it imitating the utterances ba-ba, da-
da, and ga-ga. This was done by feeding the last hear-
able sound before reaching the goal position of the con-
sonant to the auditory sensor along with an image of the
lip position at the goal position. The sound and the image
were extracted automatically when the sound got below a
threshold.

Teaching the robot a /b/ was pretty straight forward as
it the robot could easily extract the main position from the
visual feature. The latter two demanded a little more pa-
tience from the caregiver. The task got extra difficult since
the synthesizer used does not create any clear consonants
so we actually needed to inspect the resulting vocal tract
position of the robot in order to decide if we were happy
or not with the result. As we got happy with an utterance
we stored the position in the motor cluster. The learnt po-
sitions can be seen in Figure 8.

Once the robot had learnt the positions we again
switched roles and let the caregiver imitate the robot. After
doing that the robot could easily recognise and reproduce
the correct consonant. However we only did this experi-
ment with a single caregiver so we do not expect the robot
to generalize and correctly classify the same consonants
when uttered by another speaker.

Finally we did a simple experiment were we tried to re-
produce the McGurk effect by feeding the auditory sensor
with ba-ba while feeding the visual sensor with ga-ga. De-
pending on the weight we put on the visual sensor relative
to the auditory sensor the robot classify the utterance as
either a ba-ba or da-da.

Conclusions
We have demonstrated how a humanoid robot can develop
speech by using a combination of babbling and imitation.
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Figure 7: Articulator positions used by the robot for the Portuguesevowels. In the center we show the positions of the
vowels in the International Phonetic Alphabet (IPA). The vertical axis in the IPA corresponds to the vertical position of
the tongue and the horisontal axis to the front-back position when the vowel is pronounced by a human speaker. For the
simulated articulator positions used by the robot the upper line corresponds to the soft palate and the lower line to the
tongue. There is a good correlation between how the robot and a human articulate the vowels.

Figure 8: Learnt positions for the consonants /b/, /d/ and /g/.
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While babbling make it possible for the robot to learn the
map between its own sound and motor positions, interac-
tion with a caregiver is more important for learning to map
and understand human speech.

By letting the robot and the caregiver take turn in imitat-
ing each other it is possible both to teach the robot repro-
duce utterances made by the caregiver and learning which
utterances that are useful for communication.

We have also shown that visual features can be helpful
both to increase the recognizion rate of already learned
phonemes and for learning new phonemes.
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Abstract

Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine in-
formation from its different sensors to form a representa-
tion of the environment that is more complete than any
of its sensors on its own could provide. Second, it needs
to combine high-level representations (such as those for
planning and dialogue) with its sensory information, to en-
sure that the interpretations of these symbolic representa-
tions are grounded in the situated context. Previous ap-
proaches to this problem have used techniques such as
(low-level) information fusion, ontological reasoning, and
(high-level) concept learning. This paper presents a frame-
work in which these, and other approaches, can be com-
bined to form a shared representation of the current state
of the robot in relation to its environment and other agents.
Preliminary results from an implemented system are pre-
sented to illustrate how the framework supports behaviours
commonly required of an intelligent robot.

Introduction
An information-processing architecture for robotics is typ-
ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
computer vision, motoric skills, and various deliberative
processes such as symbolic planners. The challenge ad-
dressed in this paper is the production and maintenance of
a model of the world for a robot situated in “everyday”
scenarios involving human interaction. This requires a
method forbindingrepresentations across the subsystems.
This world model should adequately reflect the aspects of
the world that are stable in the medium term, whilst incor-
porating more dynamic aspects.

Throughout this paper we will primarily consider a
robot that can interact with a human and a set of objects
on a tabletop. For example, when faced with a scene con-
taining a red mug, a blue cup and a blue bowl, the robot
may be asked to “put the blue things to the left of the
red thing”. For a system to be able to perform such a
task effectively, it must be able to build a representation
that connects the (low-level and modality specific) infor-
mation about the world and the (high-level and amodal)

0This work was supported by the EU FP6 IST Cognitive Sys-
tems Integrated Project “CoSy” FP6-004250-IP.

0This paper is an extended version of a paper submitted to
HRI 2008.

representations that can be used to interpret the utterance,
determine the desired world state, and plan behaviour. As
resulting actions must be executed in the world, the rep-
resentation must allow the robot to ultimately access the
low-level (i.e. metric) information from which its higher-
level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it
in the environment of the robot. In addition to this, the
engineering effort of integrating the various information-
processing subsystems with the representation must be
considered. After all, since the robot is an engineered sys-
tem, every component must be put there by means of hu-
man effort.

The grounding problem is entangled with the engineer-
ing problem of subsystem integration and cannot be con-
sidered in isolation. Grounding can generally be seen as
the process of establishing the relation between a repre-
sentation in one domain with that of another. One special
case is is when one of the domains is the external world,
i.e. “reality”:

The term grounding [denotes] the processes by which
an agent relates beliefs to external physical objects.
Agents use grounding processes to construct mod-
els of, predict, and react to, their external environ-
ment. Language grounding refers to processes spe-
cialised for relating words and speech acts to a lan-
guage user’s environment via grounded beliefs. (Roy,
2005b) p. 8

In this paper we do actually not explicitly deal with real-
ity. We will assume that, among the perceptual subsys-
tem, some may have representations that more or less co-
incide with the aspects of reality of relevance for the tasks
at hand. We also do not consider grounding of only lin-
guistic symbols, nor to physical objects alone, and we do
not assume that all representations must be grounded.

In the remainder of this paper we present a design
for a subsystem of an information-processing architec-
ture that is able to bind together subsystem-specific rep-
resentations into a representation shared by the entire sys-
tem. This binding system, henceforth thebinder, tackles
the problem of creating high-level shared representations
that relate back to low-level subsystem-specific represen-
tations, as well as addressing the engineering issue of non-
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intrusively integrating such representations into a real sys-
tem.

The following section will discuss related approaches to
similar problems, and identify requirements imposed by
the task of creating a situated represention of the world.
Following this, the information-processing architecture
upon which the binder operates is presented. The binder
will then be described, and this description will be fol-
lowed by discussion about its properties, examples of its
application and finally a concluding discussion relating to
earlier work in the field.

Background and Motivation
Rather than attempt to address the complete spectrum of
problems related to building and grounding representa-
tions, we will narrow the problem space by addressing the
requirements for asituatedrepresentation of thecurrent
state that is able to supportdeliberative processesfor a
specific set ofscenarios. These restrictions allow us to
focus on particular properties of representations that are
appropriate for our task domain, i.e. human-robot interac-
tion linked to object manipulation (Hawes et al., 2007a)
and human augmented mapping of an office environment
(Zender et al., ). In particular, we are interested in bind-
ing together content from separate information-processing
subsystems to provide symbols that can be used for delib-
eration and then action. By deliberation we mean pro-
cesses that explicitly represent and reason about hypothet-
ical world states, such as a possible interpretation of an
utterance or a possible course of action. Such processes
would be found in the deliberative layer of the CogAff
schema (Sloman, 2001).

We can specify a number of requirements that for sym-
bols. First, these symbols must be likely to be stable for
the duration of the deliberative processes that they will be
involved in. For example, a representation of an object
from vision should remain stable across multiple image
frames if that object is to be involved in a planning pro-
cess. Second, these symbols must be represented at a level
of abstraction appropriate for the processing they will be
involved in. For example, a number of objects on a table-
top could be represented in a metric coordinate frame or as
an abstracted symbolic representation. Each of these rep-
resentations would be appropriate for reasoning at a par-
ticular level of detail. These two requirements are closely
linked, so that the level of detail of a particular representa-
tion influences its temporal stability. These requirements
have been directly informed by the requirements on rep-
resentations for planning and acting in dynamic, uncertain
worlds (Wood, 1993).

Furthermore, since these symbols must be produced by
binding content across arbitrary information-processing
subsystems that are operating on different data in parallel,
it is unlikely that the binding of content can happen in a
synchronous manner. Perceptual subsystems are typically
event driven and to keep a representation of the current
state as current as possible (especially in terms of real time
constraints), it is important that perceptual information is

processed as soon as it is generated. For example, in order
to take into account and advantage of, perceptual priming
in the system, then asynchronous crossmodal processing
is essential. Incremental parsing of natural language is a
good example of this. In (Brick and Scheutz, 2007), for
example, the search for possible parses of an utterance was
pruned through the context of the current scene. There-
fore it is important that any representation of the current
state can be incrementally and asynchronously extended
as soon as data can be gathered and information can be
processed (i.e. our binding process must be anytime).

Previous robotic systems which are able to bind infor-
mation from one subsystem to another typically limit this
kind of binding to linking linguistic references to objects
created from vision. The first system that might even have
conceivably encountered the problem was the Shakey sys-
tem (Nilsson, 1984). This translated a constrained set of
English language sentences into first order predicate cal-
culus goal statements for the robot. Reference here was ei-
ther non-specific (i.e. “move any box”), or non-ambiguous
(each referent that needed to be specifically identified was
given a unique name, e.g. “door D”). In making bind-
ings of referents in the goal statement to the objects in the
world the non-specific referents allowed lazy binding, so
that binding was executed using a unification mechanism
at plan execution time. This very late binding was only
made feasible by the assumption of perceptual reliability,
and by the other restrictions given above. However, later
systems mostly follow Shakey in their choice of a parsi-
monious internal language that is essentially a direct map-
ping onto the qualities of objects that we express relatively
straightforwardly in language, and which are naturally sta-
ble.

Current approaches, while following this choice of fea-
tures on which to bind, attempt to bind referents from vi-
sion with language using a mixture of deterministic and
probabilistic representations, and employing varying lev-
els of abstraction. Mavridis and Roy (Mavridis and Roy,
2006) for example, have a single amodal world model,
but one which contains linked deterministic continuous,
stochastic qualitative, and stochastic continuous represen-
tations. They refer to these as being part of what they
call a grounded situation model. In this case the linking
is thus essentially not between pairs of properties in vi-
sion and language, but between all pairs properties of the
same type (colour, position) by using a probability dis-
tribution over the bindings between. It is, at the time of
writing, not yet fully implemented in a robot, and as far as
specified makes no attempt to deal with the asynchronous
change of representations in different parts of the system.
In other systems (Roy and Mukherjee, 2005; Brick and
Scheutz, 2007) binding can occur at a very early stage in
processing, with information even from the speech signal
influencing visual hypotheses as to the object being refer-
enced, and vice-versa.

Engel and Pfleger (Engel and Pfleger, 2006) build more
on the notion of gathering all data first, then generating a
binding with the highest possible quality. For perceptual
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priming, this approach may not be very fruitful. We would
however argue that it would be a grave mistake to not be
able to utilise information from, and thereby build upon
earlier work on symbol grounding. If, for example, the
systems of (Roy, 2005b; Steels, 2006; Engel and Pfleger,
2006; Kruijff et al., 2006; Fransen et al., ), at least in prin-
ciple, could be utilised in one and the same system, we
would truly be able to take a step forward together as a
community. Thereforenon-intrusivenessis an important
requirement on any binding system we build. In other
words, it is important to make it straight-forward to inte-
grate existing systems into any binding approach we take.
This requirement also holds for the integration of existing
perceptual and other subsystems. This is in part a require-
ment on the interfaces to a binding system, they must be
kept simple and generic.

To summarise, the main requirements we have on our
binder are:

• The symbols produced should be stable,
• they should have the appropriate level of abstraction

(i.e. amodalandmodal),
• they must be generated in an asynchronous, incremen-

tal, anytime manner,
• their production must be non-intrusive with respect to

existing systems.

The Architecture

To demonstrate our approach to binding in practice, we
have built an integrated robotic system to perform tasks
in our tabletop HRI domain. The system has been pre-
sented in previous work (e.g. (Hawes et al., 2007a)), so
we will only give a brief overview here. The design of
the system is based on the CoSy Architecture Schema
(CAS), a set of rules for designing architecture instanti-
ations in a principled manner. The schema allows a col-
lection of interconnectedsubarchitectures(SA), each con-
taining a collection of processing components that can be
connected to sensors and effectors. Each subarchitecture
also contains aworking memory(WM), which the compo-
nents use to share information. Only components within
a subarchitecture can write to the subarchitecture working
memory, but all components can read from any working
memory. We also allow for privileged components that
can write to any working memory (thus supporting cross-
architecture control mechanisms). The schema is imple-
mented in our code using the CoSy Architecture Schema
Toolkit (CAST), an open-source, multi-language imple-
mentation of CAS (Hawes et al., 2007b).

In our implementation we have subarchitectures for vi-
sion, communication, manipulation, planning, spatial rea-
soning, coordination and binding. Together they create a
system that can learn and describe object properties in di-
alogue with a tutor, and also carry out manipulation com-
mands that feature object descriptions based on the learnt
visual properties. Each subarchitecture working mem-
ory contains specialised representations of the information
processed by the attached components. For example, the

visual working memory contains regions of interest gener-
ated by a segmentor and proto-objects generated by inter-
preting these regions, the communication subarchitecture
contains logical forms generated from parsing utterances,
and the spatial reasoning subarchitecture contains abstrac-
tions of physical objects with qualitative spatial relation-
ships between them.

The Binder
Overview

The CAS-based architecture provides an ideal test case for
the development of a situated representation. Each subar-
chitecture working memory contains specialised represen-
tations, and a subset of these could in principle contribute
towards a general representation of the current state. In
brief, our approach to tackling this problem has two parts:
mapping from specific to general representations, and fu-
sion of general representations. To enable specialised rep-
resentations to contribute to the representation of the cur-
rent state, each subarchitecture must provide a process that
maps from the specialised representations into the more
general ones (a process of abstraction). Each subarchitec-
ture provides items of information to the binder (i.e. a sep-
arate binding subarchitecture) asbinding proxies. A proxy
is essentially a bundle of subarchitecture-specific (modal)
information about, e.g., an object, a relationship, a col-
lection of objects etc. The main constituent of a proxy
is a set of attribute-value pairs, calledfeatures(such as
colour, ontological category, connections to other proxies
etc.). The proxies are essentially broadcast to the rest of
the subarchitectures via the binder which attempts tobind
proxies together based on whether their defining features
agree on a common description. The structures that result
from binding proxies are calledunions, as they essentially
contain the union of the features of the bound proxies. The
set of unions represents the current bestarchitecture wide
hypothesis of the world state of the robot. This is based
on the assumption that the underlying proxies and features
are also the best hypotheses from the underlying subarchi-
tectures.

The levels of abstraction of the binder and the other
subarchitectures are conceptually illustrated in Figure 1.
We will now describe in detail how the above is actually
achieved.

Implementation

Our approach to generating a shared representation should
not limit what SAs can express (based on the the non-
intrusiveness requirement). Therefore the set of possible
features is very broad:

Definition 1 A feature spaceΦx ∈ Φ is any data format
in the space of all possible data formats,Φ. φx

i ∈ Φx

denotes an instantiation of a particular representation
wherex should be interpreted as any feature space name.
�

For example,φColourLabel
red ∈ ΦColour denotes the colour

“red” in the representation space of colours (the exact
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Representation

Subarchitecture Internal Data

Binding Unions

Binding Proxies

Binding Features

Shared

State

Figure 1: An illustration of how the binder mediates low-
level and modality specific features from the SAs to form
a common amodal representation of the world. The SAs
are only involved in generation of features and proxies.
Everything else is handled by the binder processes. SAs
may take into account (or ignore) the common represen-
tation formed by the set of unified proxies. Conceptually,
the top of the pyramid contains less, and more abstract, in-
formation than the base. The top level of the pyramid rests
solidly on this base, since the features are always referred
to from the unified abstracted data.

implementation of this representation is of no relevance
here). In our CAST instantiation,Φ corresponds to any-
thing that can be represented by IDL-defined structs (in-
cluding nested ones).

Information from the SAs is shared as a collection of
proxies:

Definition 2 A binding proxy is a structurep = 〈Fp, up〉
whereFp is a set of instantiated features of different types
(i.e.Fp = {φx1

1 , φx2
2 . . . φxn

n }) andup refers to a binding
union with which the proxy is bound (see below).�

The unions should express information from proxies that,
by all accounts (cf. Algorithm 1), refer to the same entity.
Unions simply inherit the features of the bound proxies
and are defined as:

Definition 3 A binding union is a structure
u = 〈Fu,Pu〉 wherePu refers to the subset of proxies
unified by the unionu andFu is defined as the union of
the features in all proxies inPu. �

The relationship between features, proxies and unions is
illustrated in figure 2.

The problem for the binder is to assess whether two
proxies are matching or not. By matching we mean that
they should refer to the same thing. To do this, all new or
updated proxies are compared to all unions on the basis of
their respective features. The basis of this comparison is
that each pair of feature types has an associated compara-
tor function:

Definition 4 A feature comparator is a function
∆ : Φx × Φy → {true, false, indeterminate}

returning a value corresponding to whether a pair of
feature instances are equivalent (or similar enough) or
not. The comparator can also choose to not return a
definite answer if the answer is undefined, or the
uncertainty is too big (i.e.indeterminate). �

Obviously, indeterminate is the only answer most
such comparators can return, e.g. the comparison of a
ΦColour and aΦPosition is likely undefined1. For many
pairs of features, however, there exist informative com-
parators. For example, features such as linguistic con-
cepts can be compared to other concepts (with ontological
reasoning (Engel and Pfleger, 2006)) or physical positions
can be compared to areas.

Definition 5 A pair of feature spaces(Φx,Φy) is
comparableiff ∃(φx

i , φy
j ) ∈ (Φx,Φy) such that

∆(φx
i , φy

j ) 6= indeterminate. �

The more pairs of features from different SAs that are
comparable, the more likely it is that proxies from these
SAs will be accurately matched.

To compare a proxy and a union, the corresponding fea-
ture sets are the basis for scoring:

Definition 6 The binding scorer is a functionS+ : P ×
U → N whereP andU denote the set of all proxies and
unions respectively and

S+(p, u) =
∑

φx
i ∈Fp

∑
φy

j∈Fu

{
1 if ∆(φx

i , φy
j ) = true ∧ φx

i 6= φy
j

0 otherwise

whereFp andFu are the feature sets ofp andu
respectively.�

Note that identical features are not counted. This to pre-
vent a union getting a higher score just because it is com-
pared to one of its member proxies (this would sometimes
prevent a proxy switching to a better union). The number
of feature mismatches is also counted (i.e. withtrue re-
placed withfalse in S+). That function is here denoted
S− : P × U → N.

It is important to state thatS+ andS− are implemented
asynchronouslywith respect to the comparators. Until a
comparator has returned an answer,S+ andS− will sim-
ply assume that the answer is neithertrue or false, i.e.
indeterminate.

S+ andS− are the basis for selecting the best among all
unions for each new or updated proxy. This is conducted
by the functionbestUnionsforProxy described in Al-
gorithm 1. The result ofbest = bestUnionsforProxy is
a set of zero, one or more unions. Ifbest = ∅ then a new
union will be created to for the proxyp alone (i.e. with all
the features ofp). If |best| = 1, then the proxy is bound
to that union.

When |best| > 2 we are faced with adisambiguation
problem. In those cases, we currently select a random
union frombest for binding. The bindings are however

1Of course, in the implementation, such undefined compara-
tors are never invoked. Mathematically, however, this is exactly
what happens.
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bestUnionsforProxy(p,U)
Input: A proxy, p, and the set of all unions,U .
Output: Best union(s) with which a proxy should bind.
begin

best := ∅;
max := 0;
for ∀u ∈ U do

if S−(p, u) = 0 ∧ S+(p, u) > max then
best := {u};
max := S+(p, u);

else ifS−(p, u) = 0 ∧ S+(p, u) = max then
best := best ∪ {u};

end
end
return best;

end
Algorithm 1. The algorithm which computes the set of best
candidate unions for being bound with a new or updated proxy.

sticky, i.e. if an already bound proxy subsequently matches
a union in a larger “best”-list, then it will not switch to
any of those unions. This to avoid excess processing in,
and signalling from, the binder. This also helps to satisfy
our requirement for symbols to be stable as far as possible.
Disambiguation problems cannot be solved by the binder
itself, but it can request help from others SAs in a general
way. This may result, for example, in the communication
SA initiating a clarification dialogue with a human tutor
(cf. Section ).

Relations and Groups
The proxies and unions described so far have been as-
sumed to roughly correspond directly to physical objects.
They may however correspond to arbitrary abstract enti-
ties as well. Two special proxies are implemented in a
slightly different manner: groups of proxies and relation-
ships between proxies.

Since proxies contain features that are of any repre-
sentable type, proxies can also have features attributable
to groups and relations, e.g. cardinality and relative metric
information respectively and explicit references to relat-
ing proxies. Currently we handle groups in a fairly simple
but effective way: a special kind of “group proxy” is cre-
ated exactly like an ordinary binding proxy with all the
features that the members of the group have in common
(e.g. “the blue balls to the left of the mug” creates a group
with featuresφConcept

ball andφColourLabel
blue and with a spatial

relationφSpatialRel
left of -proxy to theφConcept

mug -proxy. A sepa-
rate process in the binding SA (the “group manager”) then
spawns of individual proxies which inherit the features of
the group proxy. Every time an individual is bound to
something, a new proxy is spawned2. To all the other pro-
cesses, the individuals will appear as and endless supply
of normal proxies.

The implementation of the relation proxies work in
a similar way as for all other proxies. Spatial metric

2With some obvious limitations to prevent infinitely many
proxies to be generated when members of different groups
merge. Also, the number of elements in a group can be speci-
fied and used to limit the number of individuals spawned off.

features, e.g.φR3

~(x,y,z)
, could in principle be compared

to a linguistic feature describing the same relation, e.g.
φSpatialRel

left of
3. Since it has turned out that features that

link relations to normal proxies and vice versa make the
scoring inefficient, the relational structure between prox-
ies are not fully incorporated in the scoring function. We
are, however, currently reimplementing the scoring so that
proxies with no comparable features still may be bound if
they are part of matching relationships.

Examples
To illustrate how our binder supports a number of be-
haviours typically required of robots that interact with hu-
mans, the following sections present a number of exam-
ples taken from our implemented system.

Visual & Spatial Reference Resolution

Perhaps the most common use of information fusion sys-
tems is to interpret linguistic references in terms of visual
information (cf. section ). Our binder handles this task
as an instance of a more general problem of information
fusion. We will here consider the simple situation where
we have a red object and two blue objects on the table.
The objects are arranged in a straight line of alternating
colours. The human then asks the robot to “put the blue
objects to the left of the red objects”.

We will start our example in the visual subarchitecture,
where change detection, tracking and segmentation com-
ponents create representations of the objects in the scene.
These objects have 3D poses and bounding boxes and a
number of slots for visual properties such as colour, shape
and size. These slots are filled by a recogniser that has
been previously trained (see Section ) using input from a
human trainer (Skǒcaj et al., 2007). In our example we
assume the recogniser correctly extracts the colours of the
objects as red and blue. When the scene becomes stable
(determined by the change detector) the visual subarchi-
tecture binding monitor creates a proxy for each of the
currently visible objects. As the visual property recogniser
processes the objects, the monitor updates the proxies with
features reflecting these properties. This is an incremental
process, so the visual proxies are updated asynchronously
as the objects are processed. At this point only the visual
proxies are present in the binding working memory, each
one is bound to its own union.

The presence of objects in the visual working memory
is also noticed by the components in the spatial subarchi-
tecture. These abstract the objects as points on the table-
top, and the spatial binding monitor creates a proxy for
each. These proxies are tagged with the ID of the visual
proxy for the corresponding object so they are bound cor-
rectly4. Concurrently with the proxy creation, qualitative
spatial relations between the spatial objects are added to

3Of course with respect to a reference position proxy, e.g. the
position of the robot’s camera. The relations can beN -ary.

4A similar, but more general, functionality could be gener-
ated by matching location-derived features.
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Figure 2: The relationship between binding features (triangles), proxies (squares) and unions (circles) in the context of the
binder, subarchitectures and comparators. For clarity, the comparators are shown as a separate box here. They are, however,
typically residing withing the subarchitectures themelves. The proxies represent concepts, objects, actions and relations
between proxies (relations not shown here, but these are also mirrored in associated unions). Through the proxies, via the
unions, all the features of the involved subarchitectures can be accessed across the system. This is the key to the two level
representation, definitions are accessed via the proxies, shared via the unions, and described in an arbitrary level of detail
in the features.

working memory. These are generated by components us-
ing potential-field-based models of spatial relations (Bren-
ner et al., 2007). In our example the two blue objects are
to the left and to the right of the red object respectively.
They are both also near the red object (but not near each
other). As these relations are added, the spatial binding
monitor reflects them on the binding working memory as
relation proxies between the spatial proxies. The binder
uses these as the basis of relations between the unions fea-
turing the spatial proxies. This provides our basic model
of the current state.

When the human speaks to the robot, a speech recogni-
tion module in the communication subarchitecture is trig-
gered. The resulting speech string is written to the com-
munication working memory. This triggers a cycle of deep
sentence analysis and dialogue interpretation, yielding a
structured logical description of the utterance’s content.
From this structure the communication binding monitor
generates communication proxies for the discourse refer-
ents and the relations between them. These proxies in-
clude features that can match against both those attached
to visual proxies (colour, shape and size), and those at-
tached to spatial proxies (relations based on spatial prepo-
sition). In the example two proxies are generated: one nor-
mal proxy for the red object, and one group proxy for the
blue objects. The binder uses the features of these com-
munication proxies to bind them into unions with the vi-
sual and spatial proxies. In the example theφColourLabel

red -
proxy is bound together with the visual and spatial prox-
ies relating the red object, and theφColourLabel

blue -proxies
(spawned from the corresponding group proxy, see sec-
tion ) bound with the remaining proxies for the blue ob-
jects. This provides the system with an interpretation of
the utterance in terms of the visual scene.

For our system the process of reference resolution in-
volves simply ensuring that the communication proxies
referring to visual entities (i.e. those referring to objects
in the tabletop scenario) are bound to unions that have a
visual component. If the utterance contains spatial lan-
guage, then relation proxies are generated by the commu-
nication binding monitor. This causes the binding process
to bind proxies via the relations between proxies as well
as the features of single proxies. Failure to bind proxies
can trigger a number of different processes, as described
in .

Planning and Execution
Once the system has successfully interpreted the utterance
in the previous example, it must now generate some be-
haviour. In addition to creating proxies, the interpretation
of the utterance also produces information about the pur-
pose of the utterance. In this case the utterance is deter-
mined to be an instruction, and this causes the mediation
subarchitecture to generate a motive to act on the instruc-
tion. This process involves re-interpreting the utterance as
a planning goal in MAPL, the multi-agent planning lan-
guage used by the system. This interpretation is carried
out by a general-purpose process that maps between verbs
and planning operators (Brenner et al., 2007). Once the
system has this goal, the planning subarchitecture is used
to generate and execute a plan to satisfy it.

To create a plan, the planning subarchitecture needs to
generate a description of the initial state for the planner
to operate on. This is done by translating directly from
the binding unions (accessed through the communication
proxies stemming from the utterance) and their features
into objects and fact descriptions in MAPL. Once a plan
has been created, the execution components in the plan-
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ning subarchitecture start working through the plan trig-
gering execution steps followed by execution monitoring
steps.

In our current system we only have actions related to
manipulation (pick up and put down), so all plan actions
are forwarded to the manipulation subarchitecture. As the
planning process used binding unions as input, the plan
actions are also expressed in terms of these unions. The
manipulation subarchitecture cannot operate on the sym-
bolic representation used by the planner, but requires the
detailed metric information generated by processes in the
visual subarchitecture to support grasping. By following
links from the unions in the planning action via the vi-
sual proxy to the object information in the visual subar-
chitecture, the manipulation processes get access to the
necessary metric data. As the processes in the visual sub-
architecture run constantly, this metric information is al-
ways kept consistent with the world. The binding struc-
tures, however, remain stable across these changes (un-
less they are significant enough to alter the spatial rela-
tions). Support for access to low-level information via
high-level symbols, and support for concurrent updates to
this low-level information whilst keeping the symbols sta-
ble, demonstrate two of the benefits of our two-level ap-
proach to represent the current state of the world.

In our example, the plan involves a single pair of pick
and put actions. The blue object on the right of the scene
is moved to the left of the red object. The other object
is already to the left of it so it is not moved. After each
object is moved the planning subarchitecture triggers an
execution monitoring step. This step involves creating a
new representation of the current state from the unions
on binding working memory, and comparing them to state
predicted by the plan. For the monitoring step in the exam-
ple to complete successfully the unions must reflect that
the moved blue object is now at a position to the left of
the red object. Being able to monitor for such abstractly-
specified conditions demonstrates the benefit of generat-
ing symbolic states on demand from a dynamically up-
dated representation of the current state.

An Example of Interactive Learning
Our example system learns the visual properties of objects
through dialogue with a human tutor (an interaction that
can take many forms (Thomaz, 2006)). The tutor trains
the system with sentences such as “this is a red thing” and
“this is a small blue thing”. The visual properties are ul-
timately learnt by a continuous learning system (Skočaj
et al., 2007). Our approach to binding naturally supports
the creation of training examples for this learning system.
When an object is placed in front of the robot, the visual
subarchitecture processes the object as described previ-
ously, ultimately creating a visual proxy for it. When the
tutor makes an assertion about the object, we use recency
information to bind the communication proxy for the de-
ictic reference to the newest visual proxy5. The communi-

5In this instance we are using recency as a substitute for a
more complex process of reference resolution.

cation proxy contains binding features for all of the adjec-
tives used in the utterance. When the visual subarchitec-
ture binding monitor is informed its proxy has been bound
into a union (via CAST change events), it inspects the
union to see what features are present that it didn’t add
itself. These features represent information about the ob-
ject from other modalities that the visual (learning) subar-
chitecture can choose to learn. Currently, we take a fixed
subset of features present in the union and use them to gen-
erate input to for our learner. In theory these restrictions
could be removed and features provided by other modali-
ties could be used by any subarchitecture to learn cross-
modal information. This simple way of driving cross-
modal learning systems demonstrates a benefit of

Generation of Clarification Events

It is not always possible for the binder to find unique bind-
ings for proxies. For example, consider a scene with two
red objects on the table which causes two visualφColour

red -
proxies to be created and bound into separate unions. The
human then asks the robot to “pick up the red thing”, cre-
ating aφColourLabel

red -proxy from the discourse. In this sit-
uationbestUnionsforProxy will return a set containing
the two visually red unions. In the near future we plan to
use situations such as this as general purpose triggers for
generatingclarification behaviour. For example, consider
the case where the visual proxies (and thus their unions)
have some mismatching features that separate them (e.g.
φShape

round andφShape
square). In this case, this could lead directly

to the system generating a goal to determine if the object
being referred to by the human has one of the mismatch-
ing features. In this example the robot could ask a ques-
tion about the distinguishing feature (e.g. “do you mean
the round red thing?”). In principle, however, the general
purpose nature of the binding system means that any sub-
architecture that can provide a particular binding feature
could satisfy such a request for information (i.e. not only
dialogue).

The situation where the ambiguous unions have match-
ing feature sets raises a different type of clarification prob-
lem. Rather than generating a need for a particular type of
feature information to clarify a binding, resolving this sit-
uation requires a direct reference to the target object to
allow binding. For example, the robot may have to ask
“which red thing do you mean?”, “do you mean this one?”
(whilst pointing), or “do you mean the one on the left?”.
Alternatively the binding system could draw on informa-
tion from other modalities to determine things such as the
likelihood of the object being involved in a pick-up action
(e.g. a featureφReachable

true ), or saliency of the object given
the human’s perspective on the scene. Building support
for the sharing of such information via proxies allows a
more general notion of saliency and attention to be built
into the system.

Discussion
In the following sections we discuss the properties of the
representation and binding system presented previously,
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including how it relates to our original requirements.

Modal and Amodal Representations
As is apparent in the planning example above (Section ),
from the point of view of a particular SA, a union is an
amodalentity. But despite this, it also contains a set of
modalproperties of which some have semantics for par-
ticular SAs. The binder mixes amodal and modal rep-
resentations such that modality-independent proxies and
unions can be used for symbolic processing while at the
same time they contain references to modal representa-
tions, i.e., via the features. Moreover, if a feature space
is used which supports the ability to refer to datainside
local SA WMs, data types that have not been declared as
features can still be shared with all other SAs if required.

Lazy Binding and Locally Stable Symbols
In our binder, the only thing an SA typically needs to keep
track of, once a binding proxy is created, is the proxy it-
self. Once created as a candidate for becoming part of a
union, the proxy indeedactsas a proxy into any other in-
formation from its union. This means that any SA-internal
symbols can be made isomorphic to the indexes of the
proxies and the SA does not need to necessarily take into
account whether the proxy is in a union or not.

This can be a very powerful simplification for many
types of SAs. For example, consider the navigation dia-
logue scenario where the user tells the robot to “go to the
kitchen” (Zender et al., ). Now, if the robot has yet to
discover the kitchen, the discourse referent proxy contain-
ing φConcept

kitchen can not really be bound to any kitchen in the
map. As soon as some other process identifies and defines
a kitchen in the map, the utterance’sφConcept

kitchen -proxy can
be bound. Whether or not this binding takes place, the
φConcept

kitchen -proxy remains intact and can still be referred to
internally the same way independently of if whether it is
bound or not.

Scalability
The theoretical properties of the binder are irrelevant if
it cannot be implemented in an effective way. Poten-
tially, the binder may become a bottleneck in the archi-
tecture since it may receive features and proxies from all
involved subarchitectures6. To overcome this, we have im-
plemented the binder as several smaller components, each
responsible for basic tasks (e.g. one component for in-
voking and collecting the results of comparators, one that
generates the unions based on the scores etc.). All these
components can be replicated and put on different physi-
cal nodes, sharing the computational load. Moreover, the
feature comparisons are made externally to the binder and
thus the computational load is further distributed7.

The problem of making the binder scalable is in part
addressed by the role of abstraction in the system. The

6This is one reason why SAs should be conservative about
generating proxies.

7In the implementation, however, some trivial comparisons
are actually handled internally in the binder.

data “closest” to the binder (i.e. the unions) are abstracted
from the much more abundant features (which are primar-
ily processed by the SAs themselves). This means the
binder only has to operate on an abstracted subset of all
of the information in the system.

Incremental Asynchronous Binding

As mentioned in Section it is desirable to do both early
and anytime binding. We achieve this in our implemen-
tation of the binder by allowing all components operate
on the data asynchronously. This makes the binding quite
efficient since any processing tasks (feature comparisons,
scorings, union creation etc), will also be carried as soon
as is possible.

For example, in the in Section , the visual and spa-
tial proxies are initially bound as basic object abstrac-
tions. Following this, SA-specific components gradually
add more information about the objects (visual properties
and spatial relations), which cause the proxies, and their
unions, to be asynchronously updated with features and
relations.

The anytime properties of the binder also mean that
any comparison that is finished early may help in forming
unions before any additional comparisons are made. Thus,
hypothetical unions may be formed in an early stage and
then refuted if conflicting information later comes in. This
may of course cause an overhead in that incorrect unions
are temporarily created, but for time critical SAs this may
be not be critical. SAs with higher quality demands can
always wait until the bindings have “settled”.

Demands on Subarchitectures

From an engineering point of view, subarchitecture de-
signers have to provide a number of things to support the
binding process: 1. the feature definitions (if not already
existing), 2. a bindingmonitor component that analyses
local SA WM content and generates and mediates proxies
onto the binding working memory, and 3. the comparators.

The comparators can be based upon any kind of compu-
tational process from simple equivalence testing like string
matching to ontological, spatial or visual reasoning etc.
The comparators may also be learnt models and can even
be learnt online, on data extracted from unions, while the
binder is operating (as presented in Section ). Moreover,
a comparator may becontext sensitive, i.e. it can take into
account all other information on the binding WM to make
its assessment (cf. (Roy, 2005a)). It is also possible that
the comparator itself triggers the SA to generate more fea-
tures to complete a proxy’s description. There are many
possibilities since few limitations are imposed by the de-
sign of the binder.

The integration with the binder is fairly non-intrusive in
the sense that none of the things that need to be provided
should have any implications on any other part of the SA.
Also, the SA only minimally needs to write features and
proxies, and does not have to process what is happening
on the binder at all (apart from the comparators that need
to be reactive, but in some cases an SA may simply use
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features for which comparators are already implemented).
A slightly deeper integration problem occurs when an SA
needs to utilise the contextual information represented by
the unions (e.g. for priming, such as for incremental pars-
ing). This is, however, arguably non-intrusive as well, as
all features that are unknown to the SA in question can
safely be ignored (cf. section ).

The feature set space is also highly open-ended. An
added feature definition will not affect, and will depend
on, the earlier features in any way. Every subarchitecture
can and will only deal with the features it knows about.
This means that it is a fairly low cost to add features into
the system.

One problem for some designers may be that expressive
models of beliefs (e.g. Bayesian) are being robbed of their
expressiveness when the comparator can only return three
values. This is however a better situation than the oppo-
site. There is also nothing that prevents a comparator to
reason about degrees of belief in the setting of the context
up to the point of the final decision.

In order for the binder to perform well, the designers
need to be conservative. For example, proxies should not
be generated excessively (for example, just to see if they
will be bound or not) since it may disturb other SAs. And
new feature types should primarily only be introduced if
also a comparator for this feature can be defined.

If conservatism is not employed, the binder will not
perform well. There are other traps too. Since features
and comparators are representable in very open-ended for-
mats, the SA designer has very few limitations in what can
be done. This is of course an advantage in many cases. But
many creative interpretations of “features”, “proxies” and
“comparators” will simply not yield desired results. For
example, conflicting features can be inserted into a proxy,
but that violates the proxy-as-best-hypothesis assumption.

Another problem is if the SAs can only provide features
that are SA specific and incomparable with most features
from other SAs. In such cases the binder would not be
able to form any unions. It is thus important to have com-
parable features in mind when integrating SAs into an ar-
chitecture.

Conclusion
In this paper we have presented a method for generating a
stable, yet asynchronously updated, model of the current
state of the world for a situated information-processing
system such as an intelligent robot. The amodal model
emerges from the incremental fusion of information ab-
stracted from model data, and satisfies the requirements
we specified for such a system. Although our system has
been fully implemented, we have yet to run an experimen-
tal evaluation on it. In place of this we illustrated our sys-
tem with a number of examples from the scenarios we are
tackling.
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Introduction
To function properly in the world, a cognitive system
should possess the ability to learn and adapt in a continu-
ous, open-ended, life-long fashion. This learning is inher-
ently cross-modal; the system should use all of its percepts
and capabilities to sense and understand the environment,
and update the current knowledge accordingly. For the
life-long learning to be effective, it is also important to be
able to incorporate knowledge from other knowledgable
cognitive systems throughinteractive learning. For this to
be “socially acceptable”, it is important to support a wide
variety of tutoring channels. For example, to treat the tutor
only as a source for linguistic labels is not a natural way of
communication and is thus not very effective from the hu-
man’s point of view. For an excellent and deep account of
proper design considerations for socially interactive learn-
ing systems see (Thomaz, 2006)

A prerequisite for interactive learning is the successful
interpretation of the meaning of references used in dia-
logue with a human. The robot must therefore be able to
form associations between information in different modal-
ities, e.g., between linguistic references and visual input
(Roy, 2005). Forming these associations is a process we
refer to ascross-modal binding. We are developing a mul-
tifaceted approach to binding, and in this extended abstract
we address the virtue of the symbiosis of binding and in-
teractive learning.

Cross-Modal Binding
We treat the binding of linguistic and visual content as
an instance of a broader cross-modal binding problem: to
enable a broad and open-ended set of modalities to con-
tribute towards a common representation of abstract con-
cepts, objects, and actions, andN-ary relations between
them. For example, for a robot to successfully determine
the correct response to the “give me the blue mug that’s to
the right of the plate” it must be able to correctly interpret
the references to the objects, the action, and the spatial
relationship.

Typical robotic systems are composed of specialised
subsystems, e.g. vision, manipulation, dialogue, reason-
ing etc. ForN subsystems there areN(N− 1)/2 poten-

∗This work was supported by the EU FP6 IST Cognitive Sys-
tems Integrated Project “CoSy” FP6-004250-IP.

tial interfaces between them. Building associations in this
manner can quickly become expensive to manage both at
design- and run-time. To avoid this, we employ a two-
level approach to binding. The bottom level corresponds
to subsystem specific representations. The second level
represents objects, actions and relations by bundling to-
gether sets offeaturesabstracted from the first level repre-
sentations. These “bundles” represent a subsystem’s best
hypotheses about the objects, actions and relations in its
modality. To build a common representation from all its
subsystems, a number ofbinding processesthen operate
on this more abstract level of information. This is illus-
trated in Figure 1. Further information is available in pre-
vious work (Hawes et al., 2007). The focus of this abstract
is that the information used to associate features across
modalities may be learned, and that this two-level system
naturally supports such learning.

Cross-Modal Learning
When the binding processes establish associations be-
tween bundles of abstracted features, these associations
implicitly link features from these modalities. Some of
these links will represent known cross-modal mappings
between features, but others may represent valid mappings
that the system does not know about. For example, in
the utterance “give me the blue mug that’s to the right of
the plate” visual colour features (blue pixels) may be im-
plicitly linked to linguistic colour features (“blue”) via an
association formed from a type description (“the mug”).
When the binding of the object descriptions succeed, the
binder can generate novel training examples for a learn-
ing module. In the case above, the binder would generate
the training examples for updating the representations of
“blue”, “the mug”, “to the right of”, and “the plate”. In
this way, the system can increase its current knowledge
without being explicitly instructed, and without training
examples being provided separately. An idealised learner
would try to use all the inferred information and data from
all modalities toco-train (cf. Levin et al., 2003) its repre-
sentations in other modalities as well.

Any learning method using binding processes for train-
ing will be thus fed by a stream of examples of cross-
modal associations. The open-ended nature of this in-
put makes it important that any learning systems used are
incremental; the learning process should continue to im-
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Figure 1: Cross-modal binding and incremental learning are tightly integrated (a) and feed each other information regarding
mappings and learning examples respectively. They are also integrated in the context of the modalities themselves as well
as other cross-modal processes that can assist the binder prior to, and in parallel with, learning (b). Clarification is one way
of explicitly establishing mappings, e.g. through dialogue. Over time, the dual interaction between these subsystems results
in increasingly informative learning examples and mapping suggestions.

prove the learned models from the incoming examples.
The learned models should also be capable of determin-
ing their own level of confidence so that they contribute to
the binder only when the representations are sufficiently
stable and confident.

Since the learners can potentially know what kind of ex-
amples will help them train, they may also trigger explicit
clarification behaviour. This will allow more focused clar-
ification behaviour than the binder could trigger on its own
(for ambiguous bindings etc.). For example, if a learned
colour classifier is uncertain about labelling a visual object
as “orange” or “red”, it could trigger a clarification be-
haviour to distinguish betweenpreciselythese labels. Or
it could even issue a command to the manipulation mod-
ule to turn the object in order to provide additional visual
information to resolve ambiguity.

Taken together, the learning, binding and clarifica-
tion behaviours of the system form a strong basis for a
wide range of tutor-robot interactions. There is poten-
tial for mixed initiative dialogue since the agent will au-
tonomously ask for information. Despite this, the learn-
ing is essentially autonomous and can passively listen
for examples in case the agent is engaged in other be-
haviours. Additionally, by using abstracted representa-
tions of subsystem-specific representations, many of the
mechanisms for reasoning and learning can be reused
across very different domains. For example, general-
purpose clarification planning mechanisms can be em-
ployed across different modalities.

Conclusion
In our approach, the binding processes and learning pro-
cesses thus form a symbiosis, where they both benefit
from the information they feed each other. The learners
benefit from helping the binder to make cross-modal as-
sociations since it will then be able to make more (and
potentially better) bindings, potentially resulting in more
training data for the learners. By supporting the learn-
ing of cross-modal associations, e.g. between colour la-

bels and visual colour representations, the binder may im-
plicitly be able to associate information from other fea-
ture spaces, e.g. about spatial relations, via these learnt
assoications. Moreover, an intelligent robot employing
this approach also benefits from the symbiosis; its primary
source of cross-modal mapping information (information
required to support linguistic interaction) can be shifted
from costly, deliberate tutoring to incrementally learned
associations.
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Abstract

The paper presents work in progress on an implemented
model of situated dialogue processing. The underlying as-
sumption is that to understand situated dialogue, commu-
nicated meaning needs to be related to the situation(s) it
refers to. The model couples incremental processing to a
notion of bidirectional connectivity, inspired by how hu-
mans process visually situated language. Analyzing an ut-
terance in a ”word-by-word, left-to-right” fashion, a repre-
sentation of possible utterance interpretations is gradually
built up. In a top-down fashion, the model tries to ground
these interpretations in situation awareness, through which
they can prime what is focused on in a situation. In a
bottom-up fashion, the (im)possibility to ground certain
interpretations primes how the analysis of the utterance
further unfolds. The paper discusses the implementation
of the model in a distributed, cognitive architecture for
human-robot interaction, and presents an evaluation on a
test suite. The evaluation quantifies the effects linguistic
interpretation has on priming utterance processing, and dis-
cusses how the evaluation can be extended to include situ-
ation context.

Introduction
The environments in which we deploy our robots pro-
vide them with rich, perceptual experiences. And lan-
guage provides a combinatoric system that enables us to
talk about those environments in a rich variety of ways.
The problem is of course then how we can figure out,
what an utterance really is supposed to mean in a given
context. From psycholinguistics and cognitive science we
know that humans use context information to do this. Hu-
mans do not wait with processing an utterance until they
have heard the end of it. On the contrary. While pro-
cessing an utterance, they link unfolding interpretations
to the dialogue- and situated-context to filter out unlikely
interpretations. They use their understanding of the situ-
ational context to disambiguate and refine how they com-
prehend an utterance, and at the same time use what is be-
ing talked about to selectively refine their situation aware-
ness. Using context, they pick those meanings out of the
myriad of possible meanings, to focus on just those that
seem most appropriate in the given context (Altmann and
Steedman, 1988; Altmann and Kamide, 2004; Knoeferle
and Crocker, 2006).

In this paper, we discuss an implemented model that en-
ables a robot to understand situated dialogue in a similar

way. The model relies on explicitly grounding dialogue
in the situated context. The main idea is to use anincre-
mentalmodel for dialogue analysis, and connect step-by-
step the unfolding possiblelinguistic interpretations of an
utterance to information about the visually situated con-
text. From this interconnection we can then derive what
visual objects are being talked about, and whether the
way these referents are referred to, and put into relation,
can be grounded in the situated context. We use insights
from psycholinguistics in postulating what factors in the
visually situated context might play a role (Altmann and
Steedman, 1988; Altmann and Kamide, 2004; Knoeferle
and Crocker, 2006), and how they affect priming of utter-
ance processing.

Our approach is related to other recent work on incre-
mental language processing for dialogue systems (Allen
et al., 1996; Mori et al., 2001; Rosé et al., 2002), and
for human-robot interaction (Brick and Scheutz, 2007)
(B&S). Like B&S we analyze an utterance for its mean-
ing, not just for syntactic structure (Allen et al., 1996;
Mori et al., 2001; Rośe et al., 2002). We make several
advances, though. The model incrementally analyzes ut-
terance meaning not only at the grammatical level, but also
at dialogue level. B&S only consider the former (pars-
ing). By interpreting an utterance also relative to the dia-
logue context, the model allows different levels of linguis-
tic description to constrain possible interpretations (Alt-
mann and Steedman, 1988; Stone and Doran, 1997). This
presents several advantages. We can (linguistically) re-
solve contextual references such as deictic pronouns and
anaphora. This resolution relates references made in the
current utterance to ones made already earlier in the dia-
logue – i.e., ultimately to visual objects that have already
been identified. Furthermore, we can use the dialogue
”move” of the utterance to determine whatneedsto be
bound. For example, in a greeting like ”Hi there!” the
model does not need to try and bind ”there” to a location.

A further advance is that we adopt a ”packed” repre-
sentation of the linguistic interpretations (Oepen and Car-
roll, 2000; Carroll and Oepen, 2005) to efficiently han-
dle alternative (i.e. ambiguous) meanings. Any gram-
mar of a reasonable size will generate multiple syntactic-
semantic analyses of an utterance. This can easily result
in hundreds of alternative analyses that would need to be
checked. A packed representation represents all the in-
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formation shared across alternative analyses onlyonce,
which greatly reduces the amount of linguistic content we
need to ground. These packed representations are subse-
quently related to information about the situation and on-
going tasks (Allen et al., 2001; DeVault and Stone, 2003;
Gorniak and Roy, 2007). This essentially comes down to
trying to resolve how a meaning refers to the current con-
text (Stone and Doran, 1997; Brick and Scheutz, 2007).
Intuitively, if a meaning presents an unresolvable refer-
ence, or an unresolvable assertion about spatial organiza-
tion, then it can be discarded.

An overview of the paper is as follows. We start by
providing a brief overview of insights of how humans pro-
cess situated utterances, and position our approach to other
work in AI and HRI. We then present our approach. We
discuss its implementation using the CoSy Architecture
Schema toolkit (Hawes et al., 2007a; Hawes et al., 2007b).
Using a test suite with a variety of visual scenes, we evalu-
ate our approach in a systematic way on different types of
potential linguistic ambiguity. We measure the effects of
linguistic understanding on priming utterance processing.
The paper closes with conclusions.

Background
The combinatorial nature of language provides us with
virtually unlimited ways in which we can communicate
meaning. This, of course, raises the question of how pre-
cisely an utterance should then be understood as it is being
heard. Empirical studies in various branches of psycholin-
guistics and cognitive neuroscience have investigated what
information listeners use when comprehending spoken ut-
terances. An important observation across these stud-
ies is that interpretationin contextplays a crucial role in
the comprehension of utterance as it unfolds. Following
(Knoeferle and Crocker, 2006) we can identify two core
dimensions of the interaction between linguistic context
and situated context. One is thetemporal dimension. At-
tentional processes in situational perception appear to be
closely time-locked with utterance comprehension. This
can be witnessed by for example eye movements. The sec-
ond is theinformation dimension. This indicates that lis-
teners not only use linguistic information during utterance
comprehension, but also scene understanding and ”world
knowledge.” Below we discuss aspects of these dimen-
sions in more detail.

Multi-level integration in language processing

Until the early 1990s, the dominant model of language
comprehension was that of a modular, stage-like pro-
cess; see for example (Fodor, 1983). On this model, a
language user would sequentially construct each level of
linguistic comprehension – from auditory recognition all
the way to pragmatic, discourse-level interpretation. As
(Van Berkum et al., 2003) observe, two hypotheses fol-
lowed from this view. Firstly, people first construct a lo-
cal, context-independentrepresentation of the communi-
cated meaning, before this meaning is interpreted against
the preceding discourse context. Secondly, and related,

is the hypothesis that discourse context-related processing
only enters the process of language comprehension at a
relatively late stage.

Opposing these hypotheses is the view that language
comprehension is an incremental process, in which each
level of linguistic analysis is performed in parallel. Ev-
ery new word is immediately related to representations of
the preceding input, across several levels – with the pos-
sibility for using the interpretation of a word at one level
to co-constrain its interpretation at other levels. A nat-
ural prediction that follows from this view is that inter-
pretation against dialogue context can in principle affect
utterance comprehensionas the utterance is incrementally
analyzed, assisting in restricting the potential for gram-
matical forms of ambiguity. (Crain and Steedman, 1985;
Altmann and Steedman, 1988) phrased this as aprinci-
ple of parsimony: those grammatical analyses are selected
that for their reference resolution impose the least presup-
positional requirements on a dialogue context.

Since then, various studies have investigated further
possible effects of dialogue context during utterance com-
prehension. Methodologically, psycholinguistic studies
have primarily investigated the effects of dialogue context
by measuringsaccadic eye movementsin a visual scene,
based on the hypothesis that eye movements can be used
as indications of underlying cognitive processes (Tanen-
haus et al., 1994; Liversedge and Findlay, 2000). Alter-
natively, cognitive neuroscience-based studies use event-
related brain potentials (ERPs) to measure the nature and
time course of the effects of discourse context on human
sentence comprehension (Van Berkum, 2004).

Both lines of study have found that lexical, semantic
and discourse-level integrative effects occur in a closely
time-locked fashion, starting already at the phoneme or
sub-word level; (Allopenna et al., 1998), and (van Berkum
et al., 1999b; Van Berkum et al., 2003; Van Petten et al.,
1999). Particularly, a range of discourse-level integrative
effects have observed. Referential binding has been shown
to play a role in the constraining various types of local syn-
tactic ambiguities, like garden path-constructions (Crain
and Steedman, 1985; Altmann and Steedman, 1988; Alt-
mann, 1988), and relative clauses (Spivey et al., 1993;
Spivey and Tanenhaus, 1998); (van Berkum et al., 1999a;
van Berkum et al., 1999b; Van Berkum et al., 2003). These
effects primarily concern adisambiguationof already built
structures. Integrating semantic and discourse-level infor-
mation during utterance comprehension also has impor-
tant anticipatory effects. (Tanenhaus et al., 2000; Da-
han and Tanenhaus, 2004); (Van Berkum et al., 2005) ob-
serve how contextual information influences what lexical
meanings can be anticipated, priming phonological under-
standing and lexical access. (Contextual information can
even override disprefered lexical meaning (Nieuwland and
Van Berkum, 2006).)

Anticipatory effects indicate that utterance comprehen-
sion is thus not only an incremental process of con-
structing and then disambiguating. Anticipation enables
context-dependent phonological recognition, lexical re-
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trieval, and syntactic construction - without there being
a need to generate and test all combinatory possible con-
structions. Incrementality and anticipation based on multi-
level integration appears to give rise to a process in which
comprehension arises through a convergence based on
constraining and co-activation. Discourse context and
the interpretative contexts which are delineated during ut-
terance comprehension converge to become functionally
identical (Van Berkum et al., 2003). As a result, ambi-
guity need not even arise, or is at least being much more
limited a priori through context.

An important issue in all of the above remains of course
the degree to which integrative effects indeed should com-
mit to a certain understanding. Garden path sentences are
a good example. They show that overcommitment risks
the need for re-interpretation – an issue forcognitive con-
trol (Botvinick et al., 2001; Hommel et al., 2002; Novick
et al., 2005).

Language processing and situational experience

We already noted before that human language processing
integrateslinguistic andnon-linguistic information. Be-
low we discuss studies which investigate how categorical
and contextual information from situated experience can
effect utterance comprehension. These studies use eye-
trackers to monitor where people look at in a scene, and
when.

Figure 1: Mouse,
cheese, cat

(Altmann and Kamide,
1999) present a study reveal-
ing that listeners focus their
attention on objects before
these objects are referred to
in the utterance. Figure 1
illustrates the setup of the
study. When someone hears
”The cat chases the mouse”,
her gaze already moves to
the mouse in the scene be-
fore she has actually heard
that word; similarly for ”The mouse eats the cheese.”
Knowing that cats typically chase mice (not cheese), and
that the argument structure ofchasereflects this, the lis-
tenerexpectsthat the next object to be mentioned will be
the mouse, and directs gaze to that object. We thus see an
anticipatory effect arising from the online integration of
lexico-semantic information (verbal argument structure),
situational context (the present objects, and the intended
action), and categorical knowledge (prototypical object-
action relations).

Figure 2: Put, ap-
ple, towel, box

Not only world knowledge
can influence online utterance
comprehension, also scene un-
derstanding can. For example,
consider the situation in Fig-
ure 2. (Tanenhaus et al., 1994)
show that, once the listener has
heard ”Put the apple on the
towel ...” she faces the ambigu-

ity of whether to put the (lone)
apple onto the (empty) towel,
or to take the apple that is on
the towel and put it somewhere
else. The ambiguity is revealed as visual search in the
scene. Only once she has heard the continuation ”... into
the box” this ambiguity can be resolved. Interestingly, in
(Tanenhaus et al., 1994) the listener cannot directly manip-
ulate the objects. If this is possible (cf. Figure 2), (Cham-
bers et al., 2004) show that also reachability plays a role
in comprehending the utterance. Because only one apple
is reachable, this is taken as the preferred referent, and
as such receives the attention. This underlines the effect
physical embodimentmay have on language comprehen-
sion.

Scene understanding also concerns thetemporal projec-
tion towards possible future events (Endsley, 2000). (Alt-
mann and Kamide, 2004; Kamide et al., 2003) show how
such projection can also affect utterance comprehension.
These studies used a scene with a table, and besides it a
glass and a bottle of wine, as illustrated in Figure 3 (left).
Investigated was where listeners look when they hear ”The
woman will put the glass on the table. Then, she will pick
up the wine, and pour it carefully into the glass.” It turns
out that after hearing the ”pouring” phrase, listeners look
at the table, not the glass. Listeners thus explicitly project
the result of the picking action into the scene, imagining
the scene Figure 3 (right).

Figure 3: Pouring, wine, glass, table

These stud-
ies reveal that
the interac-
tion between
vision and
language is
not direct,
but mediated
(Altmann
and Kamide,
2004). Cat-
egorical understanding plays an important role in the
sensorimotoric grounding of language. This is further
underlined by studies like (Glenberg and Kaschak, 2002;
De Vega et al., 2004), following up on the idea of category
systems as mediating between perceptual modalities and
language (Glenberg, 1997; Barsalou, 1999). These studies
show how categorical understanding gives rise to expec-
tations based on affordances, influencing comprehension
of spatial or temporal aspects of action verbs.

In conversational dialogue (Hadelich and Crocker,
2006; Pickering and Garrod, 2004) gaze has been shown
to be automatically aligned in simple collaborative inter-
action. The time intervals between eye-fixations during
production and comprehension of a referring expression
are shorter than in monologue. This is further evidence
for the relevance of visual common ground of interlocu-
tors and how that accelerates the activation of jointly rele-
vant concepts.
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Situated language processing in AI/HRI
Studies on how humans process visually situated dialogue
show an important aspect of ”grounding” is based on how
we can resolve a visual referent for an object reference.
In establishing referents, listeners use visual and spatio-
temporal properties of objects, and combine these proper-
ties with various forms of salience.

Several approaches have been proposed for visual ref-
erent resolution in human-robot interaction, in relation to
language processing. Gorniak & Roy (Gorniak and Roy,
2004; Gorniak and Roy, 2005) present an approach in
which utterance meaning is probabilistically mapped to
visual and spatial aspects of objects in the current scene.
Recently, they have extended their approach to include
action-affordances (Gorniak and Roy, 2007). Their focus
has primarily been on the grounding aspect, though. Al-
though they use an incremental approach to constructing
utterance meaning, grounding meanings in the social and
physical context as they are construed, the (im)possibility
to ground alternative meanings does not feed back into the
incremental process to prune inviable analyses. This is
where they differ from e.g. Scheutz et al (Scheutz et al.,
2004; Brick and Scheutz, 2007). Scheutz et al present a
model for incremental utterance processing in which the
analyses are pruned if it is impossible to find visual refer-
ents for them.

Our approach to incremental language analysis is
closely related to that of Scheutz et al. We incrementally
build up a representation of utterance meanings, in par-
allel to syntactic analyses (Steedman, 2000). In this we
(jointly) differ from other approaches such as (Allen et al.,
1996; Mori et al., 2001; Rosé et al., 2002), who only build
syntactic analyses. We advance on Scheutz et al in several
ways, though. We analyze utterance meaning incremen-
tally not only at the level of grammar, but also relative to
the structure of the dialogue context. This allows different
levels of linguistic description to constrain possible inter-
pretations (Stone and Doran, 1997). Furthermore, we do
not deal with individual analyses, but with a ”packed” rep-
resentation (Oepen and Carroll, 2000; Carroll and Oepen,
2005) to handle linguistic ambiguity. Ambiguity is inher-
ent in natural language. Often, parts of an utterance may
be understood in different ways. Packing provides an effi-
cient way to represent ambiguity. Parts shared across dif-
ferent analyses are represented only once, and ambiguities
are reflected by different ways in which such parts can be
connected. These packed representations are subsequently
related to information about the (possibly dynamic) situa-
tion (Kruijff et al., 2006) and ongoing tasks (Allen et al.,
2001; DeVault and Stone, 2003; Brenner et al., 2007; Gor-
niak and Roy, 2007). Should a possible meaning turn out
to present an unresolvable reference, we discard it from
the set of analyses the parser maintains.

Approach
Our approach has been implemented as part of an artifi-
cial cognitive architecture, built using the CoSy Architec-
ture Schema Toolkit (CAST) (Hawes et al., 2007a; Hawes

et al., 2007b). For the purpose of this paper, we fo-
cus on an architecture consisting of subsystems for visual
and spatial processing of the situation, for interconnect-
ing (”grounding”) content across subsystems, and for dia-
logue processing.

In CAST, we conceive of a cognitive architecture as a
distributed collection of subsystems for information pro-
cessing (Hawes et al., 2007a; Hawes et al., 2007b). Each
subsystem consists of one or more processes, and a work-
ing memory. The processes can access sensors, effectors,
and the working memory to share information within the
subsystem. We divide processes into unmanaged, data-
driven and managed, goal-driven processes. A data-driven
process writes information onto the working memory in an
”unmanaged” fashion, typically whenever that informa-
tion becomes available (e.g. from a sensor). A goal-driven
process performs a specific type of interpretation of infor-
mation available in working memory. This is a ”managed”
process controlled by the subarchitecture’s task manager.
The task manager decides when a goal process may, or
may not, carry out its processing. This enables the sub-
architecture to synchronize various forms of information
processing.

Figure 4: Abstract organization of a subarchitecture

Subsystems can also share information with other sub-
systems. We do this by monitoring a working memory of
another subsystem, and reading/writing content to it.

Typically, a subsystem uses its own representation for-
mats to deal most efficiently with the data it needs to han-
dle. For example, the visual working memory contains
regions of interest generated by a segmentor and proto-
objects generated by interpreting these regions, whereas
the dialogue subsystem contains logical forms generated
from parsing utterances, and spatial reasoning maintains
abstractions of physical objects with qualitative spatial re-
lationships between them.

In our overall system, we have subsystems for vision,
dialogue processing, manipulation, spatial reasoning (lo-
cal scenes as well as multi-level maps), planning, coor-
dination, and binding (used for symbol grounding). Sev-
eral instantiations of this system have been described else-
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where (Hawes et al., 2007a; Brenner et al., 2007; Kruijff
et al., 2007). Together, these subsystems create a system
that can learn and communicate about objects and spatial
locations with a user, and perform manipulation and navi-
gation tasks.

Figure 5: Dialogue processing (comprehension part)

Figure 5 illustrates the comprehension side of our di-
alogue processing subsystem.1 (The numbers in the text
refer to the round, blue labels in the figure.)

For speech recognition we use Nuance v8.5, to which
the subsystem connects over a SIP connection. This en-
ables us to use any number of microphones to ”speak”
to the robot – enabling both face-to-face and remote di-
alogue. Using an 8-microphone array on the robot we
can do basic forms of noise cancellation and speaker lo-
calization. Speech recognition stores a recognition result
on working memory in the form of a best string. Once
this information becomes available, an incremental pars-
ing process is triggered.

We have factorized (incremental) parsing into several,
interconnected functions: the incremental parsing process
itself (1), packing/unpacking and pruning of incremen-
tally construed analyses of utterance meaning (2), and
context-sensitive lexical retrieval (3). Parsing is based
on a bottom-up Early chart parser (Sikkel, 1999) built
for incrementally parsing Combinatory Categorial Gram-
mar (Steedman, 2000; Baldridge and Kruijff, 2003). Its
implementation relies on basic functionality provided by
OpenCCG2.

Incremental chart parsing creates partial, and integrated
analyses for a string in a left-to-right fashion. As each

1Most of the indicated processes have been implemented at
the time of writing. Under construction are stillsemantic inte-
grationandIS i.e. information structure resolution.

2http://openccg.sf.net

word in the utterance is being scanned, the parser retrieves
from the lexicon (3) a set of lexical entries. A lexical entry
specifies for a word all its possible syntactic and semantic
uses. During parsing, this information is used to integrate
the word into possible analyses. By factorizing out lexi-
cal retrieval we have made it possible to use information
about the situated- and task-context to restrict what lexi-
cal meanings are retrieved (”activated”) for a word. After
each word, the parser’s chart maintains one or more possi-
ble analyses in parallel. These analyses represent the syn-
tactic and semantic structure built for the utterance so far,
and indicate possible ways in which these analyses can be
continued by means of open arguments.

Figure 6: Logical form ”I want you to take the mug”

Semantic structure is represented as an ontologi-
cally richly sorted, relational structure – a logical form
(Baldridge and Kruijff, 2002). Figure 6 gives an exam-
ple of a logical form (system output). Each node has a
unique identifier with an associated ontological sort (e.g.
t1 of sortaction−motion), and a proposition (e.g.take).
Nodes are connected through named relations. These in-
dicate how the content of a single node contributes to the
meaning of the whole expression. For example, ”you”
(y1) both indicates the one whom something is wanted of
(Patient-relation fromw1), and the one who is to perform
the taking action (Actor-relation fromt1). Nodes carry
additional features, e.g.i1 identifies a singular person.

After each step in incremental parsing, the current set of
logical forms is packed to create a more efficient represen-
tation for computing with logical forms (Oepen and Car-
roll, 2000; Carroll and Oepen, 2005). Figure 7 illustrates
the development of the packed packed representation for
”take the mug”. At the first step (”take”), 6 logical forms
are packed together, showing we essentially have two al-
ternative interpretations: ”take” as an action, and as part
of the expression ”take a look.” The second step (”take
the”) makes it clear we only need to look at the action-
interpretation. The possible meanings for the determiner
is expressed at the node for the Patient. At this point we
have anoverspecifiedmeaning. Although the delimina-
tion is unique, we cannot tell at this point whether we are
dealing with a singular object, or a non-singular (i.e. plu-
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ral) object – all we know it has to be one or the other. This
becomes determined in the third step (”take the mug”).

Once the parser has created a packed representation,
this is provided to the working memory. At this point,
several processes for dialogue interpretation further in-
terpret the representation, by providing discourse refer-
ents for the objects and events in the logical forms (4)
and trying to connect the utterance to the preceding dia-
logue context in terms of rhetorical relations and dialogue
moves (Asher and Lascarides, 2003). The resulting inter-
pretations are related to the packed logical forms through
”caches”. A cache is a representation in which content
is associated with other content, maintaining a mapping
between unique keys in the two content representations.
By using caches on top of the packed logical forms, we
achieve a scalable approach for multi-level dialogue inter-
pretation.

The packed logical forms, together with any dialogue-
level interpretation of the content, is then provided to sub-
systems for extra-linguistic interpretation (8–10) (see be-
low). The result of such interpretation is one or more pref-
erence orders over the interpretations representation by the
packed logical forms. Technically, a scoring function is a
partial order over substructures in packed logical forms.
We can define ensembles over these functions to integrate
their preferences, as e.g. suggested in (Kelleher, 2005) for
salience functions. Before each next parsing step, packed
logical forms are then pruned based on scoring ensembles,
and the parse chart is updated.

In the architecture discussed here we rely for visual ref-
erent resolution on a grounding process calledbinding.
The basic idea is illustrated in Figure 8. Each subsys-
tem can have a binding monitor, which is a process that
monitors the subsystem’s working memory. Every time
the working memory contains content that could be con-
nected to content in other modalities, the binding monitor
translates this content using a mapping between the sub-
system’s own representational formalism, and anamodal
format used in the binding subsystem. This is based on the
idea of ontology-mediated information fusion, cf. (Kruijff
et al., 2006).

The resulting representation is then written to the work-
ing memory in the binding subsystem. There it acts as a
proxy – namely, as a proxy for content in the originating
subsystem. The binding subsystem now applies strategies
to combine proxies with similar content, but coming from
different subsystems. Proxies can then be combined form
unions. The power of the binding mechanism is that we
can use a mixture of early- and late-fusion, and represent
content at any level of abstraction.

Figure 8: Cross-modal interconnectivity

Particularly, proxies from an individual subsystem can
form relational structures. We thus can represent ”the blue
mug” as a single proxy, as well as ”the blue mug next to
the red box” as a relational structure connecting two prox-
ies. Like individual proxies, the binder will try to connect
relational structures – and either succeeding in doing so,
e.g. if there is a blue mug next to the red box, or failing.
This is crucial for situated dialogue processing (cf. also
(Scheutz et al., 2004; Brick and Scheutz, 2007)).

Once we have a packed representation of logical forms,
alternative relational structures are presented as proxies to
the binding subsystem. By monitoring which relational
structures can be bound into unions, and which ones can-
not, we can prune the set of logical forms we maintain for
the next step(s) in incremental parsing. We thus handle
examples such as those discussed in (Brick and Scheutz,
2007) through an interaction between our binding subsys-
tem, and the subsystem for dialogue processing.

Evaluation
Below we present preliminary results of an evaluation of
the system. At the time of writing, we can only present
statistical results evaluating the linguistic aspects of our
processing model – not for the impact cross-modal bind-
ing has on linguistic processing. We do describe below
how we will be able to statistically evaluate the impact of
binding.

Design & measures

We have designed a set of eleven visual scenes, in which
we can systematically vary the potential ambiguity of a
visual object relative to specific types of referring expres-
sions. Figure 9 gives an example of such a scene. As-
suming we are looking at the scene from the robot’s view-
point, expressions such as ”the blue thing” or ”the blue
ball” uniquely refer to the blue ball (with identifierb2). If
we furthermore take e.g. visual and topokinetic salience
into account, the referring expression ”the mug” in ”take
the mug” has a strong preference for the red mug (m1) as
being the visual referent (the white mug (m2) being less
visually salient, and unreachable).

Figure 9: Sample visual scene

For these scenes, we have formulated a total of 58 ut-
terances. These utterances express either commands (”put
the mug to the left of the ball”) or assertions (”the mug is
red”). The utterances vary in length, with a distribution
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Figure 7: Example packed logical forms

as given in Table 1. The (weighted) average length of the
utterances in the evaluation is 6.07 words.

The utterances include referring expressions, which
may be ambiguous relative to the scene for which they
have been formulated. This enables us to investigate the
interplay between different forms of ambiguity. First, we
want to explore to what degree we can resolve purely lin-
guistic ambiguity (notably, syntactic PP-attachment am-
biguities) against non-ambiguous situations. Second, we
want to evaluate to what degree ambiguity in situation
awareness can be resolved through non-ambiguous lin-
guistic meaning – or, if both would be ambiguous, to what
degree we can still reduce the ambiguity. By systemati-
cally varying the ambiguity in the scenes, and in the struc-
ture of the utterances, we can properly evaluate these fac-
tors.

length 16 14 13 12 11
# utterances 1 2 2 4 7

length 10 9 8 7 6 5 4
# utterances 4 3 5 4 5 11 10

Table 1: Distribution of #utterances over lengths

In the experiment, we have used two incremental
parsers. One is the incremental parser which uses
grammatical knowledge to prune analyses during parsing
(”pruning”). The other parser does not do any pruning,
and functions as baseline (”baseline”). Below we show
results of the pruning parser relative to the baseline per-
formance.

Results
We present here results that measure the improvements the
pruning parser makes over the baseline in terms of number
of final analyses, the size of the resulting packed logical
form, and time to obtain all complete analyses. The first

two aspects measure memory use. Memory use is a fac-
tor that has an important impact on situated grounding of
language. The fewer analyses, and the smaller the packed
logical form, the lessvarying(or ambiguous) information
we need to try and bind to information in other modalities.

Figure 10: Sentence length (X) * Number of final analyses
(baseline, pruning) (Y)

Figure 10 shows a bar chart of the number of final anal-
yses produced by the baseline parser (light-blue, left) and
the pruning parser (red, right). Using weighted averages,
we get a 65.92% improvement of the pruning parser over
the baseline. This improvement is statistically significant
(one-way analysis of variance, F value = 27.036, Pr>
0.001).

If we look at the variation in size of the packed logi-
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Figure 11: Sentence length (X) * Number of final packed
LF size (baseline, pruning)(Y)

cal forms, we see a similar improvement. Figure 11 plots
the sizes of the resulting packed logical forms against
the utterance length, for the two parsers. This shows a
49.87% improvement of the pruning parser over the base-
line (weighted average). Again, this result is statistically
significant (one-way analysis of variance, F value=6.5283,
Pr>0.01).

Figure 12 gives the results for time to parse completion,
for the pruning parser and the baseline. On a weighted
average, the pruning parser presents a 6.04% over the
baseline (statistically significant, F value = 115.40, Pr>
0.001).

Discussion
The results show improvements of the pruning parser over
the baseline in terms of memory use, and in time to com-
pletion. We have obtained these improvements on a data
set of 58 utterances of varying complexity – not on iso-
lated examples – and shown them to be statistically signif-
icant.

These results are in and by themselves not surprising –
if a parser does pruning, it should do better than a baseline
which does not. What is more interesting in the light of
situated dialogue processing is that, even when we do use
grammatical knowledge to select analyses, this may still
not be enough to reduce the final number of analyses to 1.
If that were the case, then there would be no need to use
grounding in the situation. On the data set we have used,
we have a (weighted) average of 2.71 final analyses for
the pruning parser (against a weighted average of 10.77
for the baseline).

Our next step is to evaluate our system, including the
visual scenes on which the utterances have been formu-
lated. The system enables us to prune analyses based on

Figure 12: Sentence length (X) * Time (ms) to parse com-
pletion (baseline, pruning)(Y)

what content in a packed logical form can (or cannot) be
grounded in situation awareness.

Conclusions
We presented work on an implemented model of situated
dialogue processing. The model is based on the idea that
to understand situated dialogue, linguistic meaning needs
to be coupled to the situated context. Processing dialogue
incrementally, information about the dialogue- and situ-
ated context can help at each step to focus the linguis-
tic analysis. The implemented has been evaluated on a
data set of 58 utterances formulated on 11 different vi-
sual scenes. Investigating the effects of using linguistic
knowledge, the results show that using such knowledge
can greatly improve the performance of an incremental
parser, but cannot fully reduce linguistic ambiguity. This
confirms the need for including information about the sit-
uated context to further reduce that ambiguity. We are cur-
rently planning follow-up evaluations that will investigate
these effects further.
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Abstract

The paper presents an implemented approach to produc-
ing robot gaze during comprehending visually situated di-
alogue. The approach is based on an incremental model
for processing situated dialogue. In this model, utterance
interpretations are build step-by-step, in a ”left-to-right”
fashion. At each step, grammatical and dialogue-level in-
formation is combined with information about the visually
situated context. As a consequence, utterance processing
can be guided so as to construct only situationally appro-
priate interpretations. Furthermore, at each step a set of
visual referents is determined, to which the unfolding ut-
terance meaning is currently making reference. In the ap-
proach, this information is used to drive robot gaze, letting
the robot change its fixation onto the most recent visual
referent. The underlying assumption is that gaze behavior
helps to establish joint attention (”common ground”) in a
dialogue, if there is congruency between where the robot
is looking, and what the (intended) visual referent is. The
paper reports on a pilot study in which this assumption is
studied. The results show statistically significant interac-
tions between congruence, believability, and appropriate-
ness of referring expression.

Introduction
In situated dialogue, people not only talk – they also look.
They look at the visual objects they believe are being re-
ferred to. This serves a fundamental function in dialogue.
By aligning what they attend to in the visual context, the
resultingjoint attentionindicates that they share the same
understanding of what is being talked about (Garrod and
Pickering, 2004; Pickering and Garrod, 2004).

In this paper, we discuss an implemented approach that
makes a robot produce similar behavior when it is trying
to understand an utterance. Several empirical studies have
confirmed that such robot behavior would make human-
robot interaction more natural (Breazeal et al., 2004a;
Miyauchi et al., 2004; Sidner et al., 2004; Sidner et al.,
2005; Yoshikawa et al., 2006). It is still an open question
though how to produce such behavior in a way that it really
takes the situation into account. Current approaches pri-
marily rely on scripted behaviors which are not grounded
in the visual context.

The approach we present relies on explicitly grounding
dialogue in the situated context. The main idea is to use
an incrementalmodel for dialogue analysis, and step-by-
step connect the linguistic representations with informa-

tion about the visually situated context. From this inter-
connection we can then derive what the visual objects are
that are being talked about, and so drive the robot’sgaze
– i.e. what objects it should fixate on, and when it should
move from looking at one object to the next. We use in-
sights from psycholinguistics in postulating what factors
in the visually situated contextmightplay a role (Altmann
and Steedman, 1988; Altmann and Kamide, 2004; Knoe-
ferle and Crocker, 2006). We have performed a pilot study
to empirically evaluate our approach.

Our approach is related to other recent work on incre-
mental language processing for dialogue systems (Allen
et al., 1996; Mori et al., 2001; Rosé et al., 2002), and
for human-robot interaction (Brick and Scheutz, 2007).
Like (Brick and Scheutz, 2007) we analyze an utterance
for its meaning, not just for syntactic structure (Allen
et al., 1996; Mori et al., 2001; Rosé et al., 2002). We
advance on (Brick and Scheutz, 2007) by analyzing ut-
terance meaning incrementally also relative to the struc-
ture of the dialogue context, allowing different levels of
linguistic description to constrain possible interpretations
(Stone and Doran, 1997). We adopt a ”packed” represen-
tation of the linguistic analyses (Oepen and Carroll, 2000;
Carroll and Oepen, 2005) to efficiently handle alternative
(i.e. ambiguous) meanings. These packed representations
are subsequently related to information about the situation
and ongoing tasks (Allen et al., 2001; DeVault and Stone,
2003; Gorniak and Roy, 2007). This essentially comes
down to trying to resolve how a meaning refers to the cur-
rent context (Stone and Doran, 1997; Brick and Scheutz,
2007) – intuitively, if a meaning presents an unresolvable
reference, it can be discarded. Whenever a step in the in-
cremental utterance analysis introduces a new object in
the utterance meaning, we thus get a set of possible vi-
sual referents for that object description. The basic idea in
producing ”gaze” is to let the robot look (i.e. fixate) at the
visual referent(s) for the most recently added object(s).

An overview of the paper is as follows. We first pro-
vide further background to our approach. We discuss rel-
evant psycholinguistic insights in what factors tend to in-
fluence understanding situated language, and position our
approach in more detail to the current state-of-the-art. We
then present our approach in detail. We discuss the cogni-
tive architecture schema we employ (Hawes et al., 2007a;
Hawes et al., 2007b), our incremental approach to multi-
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level dialogue analysis, how utterance meaning gets inter-
connected with the broader context – and how gaze behav-
ior is driven by the resolution of the visual objects that we
find the utterance refers to, as we incrementally analyse its
possible meanings. Finally, we discuss the results of a pi-
lot experiment we have performed. The pilot investigates
the extent to which a user believes the robot has under-
stood what was said on the basis of where the robot looks.
Results show statistically significant interactions between
believability, and congruency between gaze and intended
visual referent. The paper ends with conclusions.

Background
Empirical studies in psycholinguistics have investigated
what information listeners use when comprehending spo-
ken utterances. These studies use eye-trackers to moni-
tor where people look at in a scene, and when. Knoe-
ferle & Crocker (Knoeferle and Crocker, 2006) argue that
these findings identify two core dimensions of the inter-
action between language and situated experience. One
is the temporal dimension: Eye movements during utter-
ance comprehension reveal that visual attention is closely
time-locked with utterance comprehension. The second is
the information dimension, indicating how for utterance
comprehension listeners draw not only upon linguistic in-
formation, but also upon scene understanding and ”world
knowledge.” Below we discuss studies investigating the
latter two aspects.

Altmann & Kamide (Altmann and Kamide, 1999) show
that listeners use ”world knowledge” to anticipate what
will be mentioned next in an utterance. They focus their
attention on objects before these objects are explicitly re-
ferred to. For example, when someone hears ”The cat
chases the mouse.”, her gaze already moves to the mouse
in the scene before she has actually heard that word.
Knowing that cats typically chase mice (not cheese), and
that the argument structure ofchasereflects this, the lis-
tenerexpectsthat the next object to be mentioned will be
the mouse, and fixates on that object.

Also scene understanding
influences how we under-
stand an utterance. For ex-
ample, consider the figure
to the right. Tanenhaus et
al (Tanenhaus et al., 1994)
show that once the listener
has heard ”Put the apple on
the towel ...” she faces the
ambiguity of whether to put
the (lone) apple onto the (empty) towel, or to take the ap-
ple that is on the towel and put it somewhere else. The
ambiguity is revealed as visual search in the scene. Only
once she has heard the continuation ”... into the box” this
ambiguity can be resolved. In (Tanenhaus et al., 1994)
the listener cannot directly manipulate the objects. If this
is possible, Chambers et al (Chambers et al., 2004) show
that also reachability plays a role. Because the listener can
only grasp the apple that is on the towel, this is taken as

the preferred referent.
These the studies thus show that gaze fixations are de-

rived from how we can resolve a visual referent for an
object reference. In establishing referents, listeners use
visual and spatial properties of objects, combined with vi-
sual salience and ”topokinetic” salience derived from ob-
ject reachability.

Several approaches have been proposed for visual ref-
erent resolution in human-robot interaction, in relation to
language processing. Gorniak & Roy (Gorniak and Roy,
2004; Gorniak and Roy, 2005) present an approach in
which utterance meaning is probabilistically mapped to
visual and spatial aspects of objects in the current scene.
Recently, they have extended their approach to include
action-affordances (Gorniak and Roy, 2007). Their focus
has primarily been on the grounding aspect, though. Al-
though they use an incremental approach to constructing
utterance meaning, grounding meanings in the social and
physical context as they are construed, the (im)possibility
to ground alternative meanings does not feed back into the
incremental process to prune inviable analyses. This is
where they differ from e.g. Scheutz et al (Scheutz et al.,
2004; Brick and Scheutz, 2007). They present a model for
incremental utterance processing in which the analyses are
pruned if it is impossible to find visual referents for them.

Our approach to incremental language analysis is
closely related to that of Scheutz et al. We incrementally
build up a representation of utterance meanings, in par-
allel to syntactic analyses (Steedman, 2000). In this we
(jointly) differ from other approaches such as (Allen et al.,
1996; Mori et al., 2001; Rosé et al., 2002), who only build
syntactic analyses. We advance on Scheutz et al in several
ways, though. We analyze utterance meaning incremen-
tally not only at the level of grammar, but also relative to
the structure of the dialogue context. This allows different
levels of linguistic description to constrain possible inter-
pretations (Stone and Doran, 1997). Furthermore, we do
not deal with individual analyses, but with a ”packed” rep-
resentation (Oepen and Carroll, 2000; Carroll and Oepen,
2005) to handle linguistic ambiguity. Ambiguity is inher-
ent in natural language – often, parts of an utterance may
be understood in different ways. Packing provides an effi-
cient way to represent ambiguity. Parts shared across dif-
ferent analyses are represented only once, and ambiguities
are reflected by different ways in which such parts can be
connected. These packed representations are subsequently
related to information about the (possibly dynamic) situa-
tion (Kruijff et al., 2006) and ongoing tasks (Allen et al.,
2001; DeVault and Stone, 2003; Brenner et al., 2007; Gor-
niak and Roy, 2007). Should a possible meaning turn out
to present an unresolvable reference, we discard that anal-
ysis from the set of analyses maintained by the parser.

We use this approach to incremental language pro-
cessing as the basis for producing gaze fixations and -
movements. The basic idea is simple. Whenever a new
object description is introduced in the unfolding utterance
meaning, we determine the set of possible visual refer-
ents. We then let the robot fixate at the visual referent(s)
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for the most recently added object(s). Although simple,
this approach sets us apart from several other approaches
to producing gaze in human-robot interaction. Most ap-
proaches adopt fixed scripted behaviors to drive gaze (Sid-
ner et al., 2004), or make the robot look at an ”area of
change” to signal understanding (Breazeal et al., 2004b).
Alternatively, the robot is made to exactly mimic its hu-
man partner (Yoshikawa et al., 2006). The problem with
these systems is that gaze is not produced on the basis of
a deeper understanding of the situation, and how dialogue
refers to that situation. This results in a rigid and merely
reactive behavior that is not flexible enough to adapt to
novel situations.

The approach to producing robot gaze we propose here
is a natural extension of an incremental model of situated
dialogue processing. Incrementally construed linguistic
meaning gradually becomes grounded in the social and
physical context in which the dialogue takes place, in ways
that reflect the unique and dynamic nature of situations.

Approach
We have implemented our approach in an cognitive archi-
tecture based on the CoSy Architecture Schema Toolkit
(CAST) (Hawes et al., 2007a; Hawes et al., 2007b). For
the purpose of this paper, we focus on an architecture con-
sisting of subsystems for visual and spatial processing of
the situation, for interconnecting (”grounding”) content
across subsystems, and for gaze and dialogue processing.

Cognitive architecture

In CAST, we conceive of a cognitive architecture as a
distributed collection of subsystems for information pro-
cessing (Hawes et al., 2007a; Hawes et al., 2007b). Each
subsystem consists of one or more processes, and a work-
ing memory. The processes can access sensors, effectors,
and the working memory to share information within the
subsystem. Subsystems can also share information with
other subsystems. Principally, this can be done by moni-
toring a working memory of another subsystem, and read-
ing/writing content to it.

Typically, a subsystem establishes its own represen-
tation formats to deal most efficiently with the data it
needs to handle. For example, the visual working mem-
ory contains regions of interest generated by a segmentor
and proto-objects generated by interpreting these regions,
whereas the dialogue subsystem contains logical forms
generated from parsing utterances, and spatial reasoning
maintains abstractions of physical objects with qualitative
spatial relationships between them.

In our overall system, we have subsystems for vision,
dialogue processing, manipulation, spatial reasoning (lo-
cal scenes as well as multi-level maps), planning, coor-
dination, and binding (used for symbol grounding). Sev-
eral instantiations of this system have been described else-
where (Hawes et al., 2007a; Kruijff et al., 2007). Together,
these subsystems create a system that can learn and com-
municate about objects and spatial locations with a user,
and perform manipulation and navigation tasks.

Figure 1: Dialogue processing (comprehension part)

Dialogue analysis
Figure 1 illustrates the comprehension side of our dialogue
processing subsystem.1 (The numbers in the text refer to
the round, blue labels in the figure.)

For speech recognition we use Nuance v8.5, to which
the subsystem is connects over a SIP connection. This
enables us to use any number of microphones to ”speak”
to the robot – enabling both face-to-face and remote dia-
logue. Using an 8-microphone array on the robot we can
do basic forms of noise cancellation and speaker local-
ization. Speech recognition stores a recognition result on
working memory in the form of a best string. Once this in-
formation becomes available, an incremental parsing pro-
cess is triggered.

We have factorized (incremental) parsing into several,
interconnected functions: the incremental parsing process
itself (1), packing/unpacking and pruning of incremen-
tally construed analyses of utterance meaning (2), and
context-sensitive lexical retrieval (3). Parsing is based
on a bottom-up Early chart parser (Sikkel, 1999) built
for incrementally parsing Combinatory Categorial Gram-
mar (Steedman, 2000; Baldridge and Kruijff, 2003). Its
implementation relies on basic functionality provided by
OpenCCG2.

Incremental chart parsing creates partial, and integrated
analyses for a string in a left-to-right fashion. As each
word in the utterance is being scanned, the parser retrieves
from the lexicon (3) a set of lexical entries. A lexicon entry
specifies for a word all its possible syntactic and semantic
uses. During parsing, this information is used to integrate

1Most of the indicated processes have been implemented at
the time of writing. Under construction are stillsemantic inte-
grationandIS i.e. information structure resolution.

2http://openccg.sf.net
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the word into possible analyses. By factorizing out lexi-
cal retrieval we have made it possible to use information
about the situated- and task-context to restrict what lexi-
cal meanings are retrieved (”activated”) for a word. After
each word, the parser’s chart maintains one or more possi-
ble analyses in parallel. These analyses represent the syn-
tactic and semantic structure built for the utterance so far,
and indicate possible ways in which these analyses can be
continued by means of open arguments.

Semantic structure is represented as an ontologi-
cally richly sorted, relational structure – a logical form
(Baldridge and Kruijff, 2002). After each step in incre-
mental parsing, the current set of logical forms is packed
to create a more efficient representation for computing
with logical forms (Oepen and Carroll, 2000; Carroll and
Oepen, 2005). Figure 2 illustrates a packed representation
of intermediate logical forms for ”put the ball to the left of
the box”, packing together 30 logical forms.

Once the parser has created a packed representation,
this is provided to the working memory. At this point,
several processes for dialogue interpretation further in-
terpret the representation, by providing discourse refer-
ents for the objects and events in the logical forms (4)
and trying to connect the utterance to the preceding dia-
logue context in terms of rhetorical relations and dialogue
moves (Asher and Lascarides, 2003). The resulting inter-
pretations are related to the packed logical forms through
”caches”. A cache is a representation in which content
is associated with other content, maintaining a mapping
between unique keys in the two content representations.
By using caches on top of the packed logical forms, we
achieve a scalable approach for multi-level dialogue inter-
pretation.

The packed logical forms, together with any dialogue-
level interpretation of the content, is then provided to sub-
systems for extra-linguistic interpretation (8–10) (see§).
The result of such interpretation is one or more prefer-
ence orders over the interpretations representation by the
packed logical forms. Technically, a scoring function is
a partial order over substructures in packed logical forms.
We can define ensembles over these functions to integrate
their preferences, as e.g. suggested in (Kelleher, 2005) for
salience functions. Before each next parsing step, packed
logical forms are then pruned based on scoring ensembles,
and the parse chart is updated.

Resolving referents

In the architecture discussed here we rely for visual ref-
erent resolution on a grounding process calledbinding.
The basic idea is illustrated in Figure 3. Each subsys-
tem can have a binding monitor, which is a process that
monitors the subsystem’s working memory. Every time
the working memory contains content that could be con-
nected to content in other modalities, the binding monitor
translates this content using a mapping between the sub-
system’s own representational formalism, and anamodal
format used in the binding subsystem. This is based on the
idea of ontology-mediated information fusion, cf. (Kruijff

et al., 2006).
The resulting representation is then written to the work-

ing memory in the binding subsystem. There it acts as a
proxy – namely, as a proxy for content in the originating
subsystem. The binding subsystem now applies strategies
to combine proxies with similar content, but coming from
different subsystems. Proxies that can be combined form
unions. The power of the binding mechanism is that we
can use a mixture of early- and late-fusion, and represent
content at any level of abstraction.

Figure 3: Cross-modal interconnectivity

Particularly, proxies from an individual subsystem can
form relational structures. We thus can represent ”the blue
mug” as a single proxy, as well as ”the blue mug next to
the red box” as a relational structure connecting two prox-
ies. Like individual proxies, the binder will try to connect
relational structures – and either succeeding in doing so,
e.g. if there is a blue mug next to the red box, or failing.
This is crucial for situated dialogue processing (cf. also
(Scheutz et al., 2004; Brick and Scheutz, 2007)).

Once we have a packed representation of logical forms,
alternative relational structures are presented as proxies to
the binding subsystem. By monitoring which relational
structures can be bound into unions, and which ones can-
not, we can prune the set of logical forms we maintain for
the next step(s) in incremental parsing. We thus handle
examples such as those discussed in (Brick and Scheutz,
2007) through an interaction between our binding subsys-
tem, and the subsystem for dialogue processing.

Producing gaze

The result of binding is that we obtain, after each incre-
mental interpretation step, a set of one or more visual ref-
erents for the objects represented by the packed logical
forms. Depending on whether binding is able to resolve
any syntactic ambiguities (as in e.g. ”put the apple on the
towel ... ”), the set of referents may present referential
ambiguity, or not.

The gaze subsystem monitors the binding working
memory for unions of recently added proxies coming
from the dialogue subsystem, bound to visual entities.
Based on the (un)ambiguity of these unions, and the com-
pleteness of the linguistic analyses, the gaze subsystem
will then produce one of the following behaviors:

Saccade from speaker to unambiguous visual referent,
fixation: At the start of hearing a new utterance, the robot
is looking at the user. As soon as the first visual referent is
established, the robot moves to look at the visual referent,
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Figure 2: Example packed logical form - ”put the ball to the left of the box”
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and fixates on it.
Saccade from unambiguous visual referent to next un-
ambiguous referent, fixation: If the next expression un-
ambiguously refers to a new visual object, the robot moves
to this new object and fixates.
Saccade between ambiguous referents: If the current set
of visual referents is ambiguous, the robot will move be-
tween these objects.
Saccade back to listener: Once the utterance has been
fully analyzed, the robot returns to looking at the speaker.

These gaze behaviors rely in an essential way on the in-
cremental approach to dialogue processing, as discussed
above. Furthermore, a fundamental assumption is that
the robot’s gaze is only ”natural” or believable (i.e. con-
tributing to joint attention (Garrod and Pickering, 2004))
if it there is congruency between the intended referent and
what the robot fixates on. In the next section we present
the results of a pilot study which investigated this assump-
tion.

Pilot experiment
The approach we present here is based on a fundamental
assumption about the relation between gaze (notably, fixa-
tion), and visual referents. Namely, we assume that a fixa-
tion iscongruentwhen the robot looks at the ”right” visual
referent. This has an importanthypothesizedeffect on es-
tablishing joint attention in visually situated dialogue. If a
robot would produce an incongruent fixation, the speaker
would presumably believe that the robot did not under-
stand her correctly. We have performed a pilot study to
investigate this potential effect of incongruent fixations, in
comparison to congruent fixations. This follows up on ear-
lier studies, e.g. the one by Yoshikawa et al (Yoshikawa
et al., 2006) who show that congruent gaze is perceived
more natural than staring, or gaze behavior that appears
independent of what the speaker communicates.

The main hypothesis for the pilot study was that ”con-
gruency between gaze fixation and intended referent leads
to higher degree of belief that the robot understands which
visual referent is referred to in the utterance.” Or, vice
versa, that incongruent gaze (i.e. fixation on the wrong
visual referent) yields lower believability in the robot hav-
ing understood. As baseline, we used fixation on the vi-
sually most salient item. This does not require the robot
to resolve the referent. All we need to do is just trigger
a behavior to look at an object. The baseline reveals how
much a robot does, or does not, need to be able to relate
situation awareness with dialogue processing to yield con-
vincing interactive behavior.

The pilot study is set up as a web-experiment, in which
people are shown 35 videos. Figure 4 shows a screenshot
from the browser. We uploaded the videos to GoogleV-
ideo, to make sure anyone could view them independent of
platform or browser. Each video shows a visual scene of
a robot with an arm, standing at a table-top scene includ-
ing two or more colored objects. Some of these objects
the robot is capable of manipulating, some not. Then, the
robot is told an utterance, in which one visual object is re-

Figure 4: Browser screenshot

ferred to. While comprehending the utterance, the robot
subsequently fixates at one of the objects in the visual
scene. Each video takes approximately 7 to 8 seconds.
After the video, the subject is asked two questions:

Q1 ”Are you convinced that the robot has managed to re-
solve the reference XYZ to the right object (namely,
Q)?” (Answer on a 5-point Lykert scale, ”(1) not con-
vinced at all ... (5) yes, totally convinced.”)

Q2 ”Do you believe that the expression XYZ is appro-
priate to uniquely identify the object Q in the scene?”
(Answer on a 5-point Lykert scale, ”(1) no, not appro-
priate at all ... (5) yes, very appropriate.”)

We performed the pilot study with 15 subjects, 5 fe-
male and 10 male. Some of these subjects were familiar
with robots, though none with our system. We solicited
subjects by email. Subjects were not offered any finan-
cial compensation. Each subject was given the following
information.

Nature of the workspace The subject is told where the
robot can reach.

Nature of the objects The subject is told that all objects
can be referred to as ”things”, which objects the robot
can grasp, and that the robot can push all objects (within
reach).

Nature of the instructions told to the robot The sub-
ject is told the robot may be given a command to
manipulate an object, or just a description of an object
in the scene

Below we discuss in more detail the principled design
approach we took for generating the visual scenes for the
videos, and present the results and their discussion.

Design
The point of the pilot study was to investigate congruency
between gaze fixation, and visual referents. We therefore
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needed to design the visual scenes for the videos in such
a way that we would control the factors that influence the
(potential) ambiguity of a referring expression.

For each scene, we wanted to consider a number of
scenarios. Given the baseline of fixating on the visually
most salient object, we wanted to systematically vary the
objects and scene structure relative to two fundamental
conditions: (1) the intended referent has the same visual
salience as a distractor, or (2), the intended referent has a
lower visual salience than the visually most salient object.
This implies that for a referring expression, if the visually
most salient item is not in the distractor set for the ex-
pression, incongruency arises automatically (i.e. baseline
gaze, versus congruent gaze).

To bring about potential (in)congruency in these condi-
tions, we thus needed to consider the contrast between the
visually most salient item, and the intended visual refer-
ent. Following (Dale and Reiter, 1995; Kelleher and Krui-
jff, 2006) we set up a basic template for a visual object,
consisting of its material and contrastive properties, spa-
tial relations, and visual and topokinetic salience.

Then, given a visual salience condition, we selected a
set of two or more objects that would enable us to sys-
tematically vary distractor factors (relative to the intended
referent) based on type, and material and contrastive prop-
erties. Subsequently, using a 4 by 5 matrix grid, we posi-
tioned objects in the scene such that we obtained the de-
sired visual salience condition, topokinetic salience, and
spatial relations that could be used to uniquely identify a
referent. Figure 5 shows the salience measures (relative to
the robot’s viewpoint) we used in determining how these
measures acted as distractor factors.

Figure 6 gives an example of a visual scene. For the
condition of distinct visual salience, the utterance ”Look
at the ball” would have as intended referentb2, but would
yield an incongruent gaze fixation atm1 under a baseline
behavior (m1 being the visually most salient object).

Results

We analyzed the results from the pilot study relative
to the visual salience conditions. Within these condi-
tions, we looked at two types of variance: (1) Vari-
ance in the relation between congruence/incongruence
and believability (question Q1), and (2) variance in the
relation between congruence/incongruence, believability
(question Q1), and appropriateness of the referring expres-
sion (question Q2).

The first type of variance reveals the basic impact of
(in)congruence on believability (one-way ANOVA). The
second type reveals more about the relation between con-
gruence, believability, and how much information we need
in a referring expression to rule out distractors. By com-
puting the variance in the latter type we can investigate the
role visual salience plays as distractor factor.

Table 1 gives the results for the variation between con-
gruency and believability. Results are statistically signif-
icant (p=0.001) across both conditions. Figure 7 shows
the boxplot for the condition different visual salience; the

Figure 5: Visual and topokinetic salience measures

Figure 6: Sample visual scene
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Figure 7: Boxplot: Congruency∼ believability (diff. vis.
salience)

boxplot for the other condition is similar.

Condition F-value Significance
Distractorswith eq. vis. salience 961.1 0.001
Distractorswith diff. vis. salience 301.08 0.001

Table 1: Variance: Congruency∼ Believability (Q1) (one-
way ANOVA)

Table 2 gives the results for the variation between con-
gruency, believability, and appropriateness of the referring
expression to uniquely identify the intended visual ref-
erent (two-way ANOVA). Again, results are statistically
significant (p=0.001) across both conditions.Figure 8 and
Figure 9 show the boxplots for the conditions different re-
spectively equal visual salience.

Condition F-value Significance
Distractorswith eq. vis. salience 299.16 0.001
Distractorswith diff. vis. salience 1005.67 0.001

Table 2: Variance: Believability (Q1)∼Congruency * Ap-
propriateness (Q2) (two-way ANOVA)

Discussion
The results all show statistically significant interactions
between congruency of fixation, and believability. The re-
sults thus confirm the main hypothesis of the pilot study.

Across the conditions, we can see an interesting pat-
tern appear. In the condition under which visual objects
are distractors because they have equal visual salience, in-
congruency is particularly negative (Table 1). The impor-
tance of proper linguistic reference, i.e. the production and
comprehension of contextually appropriate referring ex-
pressions, because clear if we combine this result with the
variance in relation to appropriateness (Table 2 and Figure
9). We need further experimentation to determine the ex-
act impact of the different distractor factors on resolution
of visual referents. Having said that, we see these results
as strengthening the argument that natural language pro-
cessing for human-robot interaction requires taking into

Figure8: Boxplot: Believability∼ congruency * appro-
priateness (diff. vis. salience)

Figure9: Boxplot: Believability∼ congruency * appro-
priateness (eq. vis. salience)

account semantic and pragmatic factors – well beyond the
level of simple syntactic analysis – if we want robots to
produce believable gaze.

This conclusion may be strengthened further if we look
at the other condition, in which distractors differ in visual
salience. In this condition, incongruence arises automat-
ically if referring expressions are not resolved. Tables 2
and 1 show the sharp contrast that can be observed be-
tween congruent and incongruent fixations in this case.

Conclusions
The paper presented an approach to robot gaze produc-
tion, which we implemented using the CAST framework.
The core of the approach is constituted by an incremen-
tal model of dialogue analysis, and the possibility to bind
utterance meaning to visual referents. Based on what ref-
erents are becoming referred to as the utterance analysis
unfolds, robot gaze is driven to move its fixation from one
visual object to another. The approach is based on the
assumption that, for such gaze to contribute to establish-
ing joint attention in situated dialogue, fixations need to
be congruent with the (intended) visual referents. We pre-
sented a pilot study which showed statistically significant
interactions between congruence, believability, and appro-
priateness of referring expression – thus providing initial
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empirical support for the approach.
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Abstract 

Notwithstanding the success of contemporary spoken 
language technology in a range of practical applications, 
it is widely acknowledged that serious shortfalls in 
performance limit its wider deployment.  Unconstrained 
speech-based interaction with embodied agents - such as 
robots - remains outside the scope of current technology 
and thus presents key challenges to the research 
community.  However, it is argued that the solutions lie, 
not only outside the field of speech technology, but also 
outside current theories of human spoken language 
processing.  Instead, it is proposed that research into 
spoken language by mind or machine now needs to draw 
inspiration from areas as widely dispersed as cognitive 
neuroscience and control engineering.  Following such an 
approach, this paper describes a theoretical framework 
known as ‘PREdictive SENsorimotor Control and 
Emulation’ (PRESENCE), and experiments using a 
PRESENCE-inspired architecture to enable a robot to 
clap in synchrony with a user’s voice illustrate the power 
of the paradigm.  It is concluded that future research in 
spoken language processing is likely to benefit greatly 
from PRESENCE and from greater emphasis on the 
challenges raised in situated and embodied environments, 
the evolution and acquisition of spoken language, and 
appropriate and intuitive speech-based human-robot 
interaction. 

Introduction 

Over the past fifty years, spoken language technology – 
automatic speech recognition, text-to-speech synthesis 
and spoken language dialogue systems – has made 
tremendous strides in terms of its technical abilities and 
practical applications.  The majority of mobile telephones 
now carry ‘voice dialling’ as a standard feature, the new 
Microsoft Vista operating system incorporates the ability 
to dictate documents or control a PC by voice, and IVR 
(interactive voice response) systems are becoming 
commonplace for interacting with automated services 
over the telephone.  Progress has been driven by the 
extensive use of machine learning techniques drawing on 
vast quantities of speech training material.   

However, these successes belie the uncomfortable fact 
that the performance of such systems appears to be 
asymptoting well short of human spoken language 
capabilities, and such shortfalls reveal themselves in 
realistic everyday environments which may contain 
competing sound sources, multiple users or which 
inadvertently encourages users to step outside the narrow 
confines of the application domain.  Unfortunately each 
of these aspects typifies the range of applications that 
involve speech-based interaction with embodied agents - 
such as robots - and hence the feasibility of integrating 

contemporary spoken language technology into robotic 
systems is currently severely compromised. 

Nevertheless, the challenges posed by attempting to 
speech-enable robotic systems are exactly those that can 
drive spoken language technology research in fruitful 
new directions.  The author has argued elsewhere 
(Moore, 2007a) that the limitations of current spoken 
language technology are a direct consequence of the 
natural tendency of scientists to take a reductionist 
approach in which automatic speech recognition, 
synthesis and dialogue are treated as independent 
components and even developed by different research 
communities.  Such enforced separation also undermines 
those few attempts that have been made to ‘bridge the 
gap’ between automatic and human speech processing 
(Scharenborg et al, 2003). 

The Way Forward 

What appears to be needed to move to the next 
generation of spoken language technology is to re-
evaluate the current research paradigms not, as one might 
suppose, with respect to current theories of human 
spoken language (which are similarly fragmented), but in 
the light of a number of advanced ideas drawn from 
disciplines outside the field of spoken language 
processing.  In particular, considerable progress is 
currently being made (in areas such as cognitive 
neuroscience) in understanding and modelling the general 
behaviour of living systems, and much of this research is 
directly relevant to spoken language interaction.  Old 
ideas such as ‘perceptual control theory’ (Powers, 1973) 
and new discoveries such as ‘mirror neurons’ (Rizzolatti 
and Craighero, 2004) serve to indicate a hitherto 
unsuspected and intimate link between perceptual and 
productive behaviours and inspire new models of action 
understanding based on significant sensorimotor overlap.  
Coupled with contemporary theories of cortical 
functionality such as ‘hierarchical temporal memory’ 
(Hawkins, 2004) and ‘emulators’ (Grush, 2004), these 
putative processes offer a tantalising glimpse into 
possible computational models of cognition, interaction 
and speech. 

Predictive Sensorimotor Control and 

Emulation 

In (Moore, 2007a and 2007b), the author has drawn a 
number of such ideas together into a single coherent 
theoretical framework termed PRESENCE – ‘PREdictive 
SENsorimotor Control and Emulation’ - a core feature of 
which is the necessity to move away from a classic 
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Brunswikian stimulus-response model of behaviour to 
one in which participants (humans or machines) are 
viewed as multiple loosely-coupled control-feedback 
loops.  It is argued that such an approach provides a more 
sophisticated model of interactive behaviour such as 
spoken language and provides a putative architecture for 
future speech-based human-machine interaction in 
situated embodied environments. 

PRESENCE is based on the premise that there are 
three fundamental factors that ultimately determine an 
organism’s fitness to survive in an evolutionary 
framework: its ability to manage energy (facilitating 
efficient behaviour in the context of scarce resources), 
time (facilitating efficient planning in the context of 
potentially harmful situations) and entropy (facilitating 
efficient communications in the context of information 
sparsity).  These constraints, coupled with an integrated 
and recursive processing architecture, pave the way to a 
new approach to spoken language technology in which 
high-level interactive behaviours such as prosody and 
emotion emerge as essential aspects of a communicative 
system rather than as processing afterthoughts. 

Experimental Work 

A preliminary experimental validation of the principles 
espoused in PRESENCE has been conducted using the 
ALPHA REX humanoid robot constructed using the 
LEGO

®
 MINDSTORMS

®
 NXT platform.  By 

coordination and synchronization in a PRESENCE-
inspired framework, the robot was able to learn to 
produce motor behaviour in time to rhythmic spoken 
input (much like someone clapping along to music). 

The robot was programmed using three sensorimotor 
control loops: one to monitor and control its own 
behaviour, one to monitor the behaviour of the human 
user and a third driven by a ‘need’ to optimise 
synchronisation between the other two.  The resulting 
behaviour is illustrated in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1:  Robot tapping in synchrony with a user’s speech 

(S-system, U-user). 

 
The results of the experiment showed that the robot 

was not only able to synchronise its behaviour with that 
of the user, but it also successfully predicted successive 
rhythmic actions after the user ceased to speak. 

Conclusion & Future Research 

As a result of the development of PRESENCE and the 
preliminary experiments reported here, it is concluded 
that future research in spoken language processing is 
likely to benefit greatly from greater emphasis on the 
very practical issues raised in situated and embodied 
environments, and the computational mechanisms 
required to support appropriate and intuitive speech-
based human-robot interaction.  To that end, research at 
the University of Sheffield is currently being directed 
towards models of the evolution and acquisition of 
spoken language (Boves et al, 2007), and the 
development of an animatronic tongue - see figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2:  Animatronic tongue being developed at the 

University of Sheffield. 
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Abstract

In the aim of realizing user-friendly humanoid robots that
are flexible, adaptable and easy to command and instruct,
this paper reports on our endeavor to construct an on-line
operation system that enables a human user to operate hu-
manoid robots by using natural language instructions.

To realize artificial agents that are able to understand
natural language instructions and act accordingly will
need the integration of knowledge representation, percep-
tion, decision-making and on-line motion generation tech-
nologies. Humanoid robots, which are mobile platforms
that possess multi-degrees of freedom and multi opera-
tional point, will need to address unique challenges apart
from the general difficulties of constructing natural lan-
guage interpretation system.

Our research group has been developing on-line behav-
ioral operation technologies that enable humanoid robots
to perform tasks in human environment integrating ob-
ject recognition technologies using 3D vision and online
whole-body motion generation technologies. This paper
tackles this integration problem by addressing the issues
of representing knowledge of objects and actions which
facilitates natural language instructions for tasks in indoor
human environments. We propose a taxonomy of objects
in indoor human environments and a lexicon of basic ac-
tions and behaviors in this preliminary attempt to construct
a reliable and flexible natural language instruction system.

We describe the implementation of the proposed on-
line behavioral operation system on our humanoid robot
HRP-2, which is able to detect the direction of a speaker
from within 2 meters and receive natural language instruc-
tions from the user using microphone arrays connected
to a speech recognition embedded system on-board the
robot(Figure1).

For an autonomous humanoid robot, as its control mod-
ule, information processing module, batteries, and me-
chanical components have to be built on-board the robot,
the number and performance of CPU that can be installed
on-board the robot is limited. For this reason, while visual
processing are usually processed on-board of the robot
due to the difficulty to have high-bandwidth communi-
cation for high quality on-line visual information, speech
information is relatively low and its recognition are usu-
ally done remotely. In our system, we have adopted a

Figure 1: Responding to speaker: Yes, can I help you?.

Figure 2: Taking a drink from the fridge as instructed.

speechrecognition hardware module developed by NEC
Corporation in our joint project, the Development Project
for a Common Basis of Next-Generation Robots (Devel-
opment of Speech Recognition Device and Module) spon-
sored by the New Energy and Industrial Technology De-
velopment Organization of Japan. The speech recognition
hardware module is developed using an application pro-
cessor MP211 manufactured by NEC Electronics which
has three ARM9 CPUs and one DSP mounted on an em-
bedded system on-board our robot HRP-2. This speech
recognition module is able to process the speech informa-
tion input from an 8-channel microphone array on-board
HRP-2 for speaker direction detection and speech recog-
nition with noise filtering.

We will report on experiments using the proposed
online behavioral operation system which enable a hu-
man operator to instruct HRP-2 to perform tasks such
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as taking a drink from the fridge using a combination
of basic actions and behaviors through natural language
instructions(Figure2,Figure3).

Figure 3: Giving the requested drink during demonstra-
tion.
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Abstract
We present observations that suggest that pointing can
fulfill not only a deictic but also an iconic function. We
discuss the possibility that the iconic patterns emerge
mainly because of tight timing and close sequence of a
deictic gestures and another, iconic gesture. Thus, instead
of overloading single gesture performances with deictic
and iconic information at the same time, complex
pointing patterns is hypothesized to emerge from two
distinct gestures that convey meanings so tightly related
that the movements are triggered and generated either
closely one after the other or even in overlap.

We hypothesize that effects due to the biological
constraints of the human body and co-articulation as well
as the time characteristics involved in this form of
incremental gesture thinking may have a significant
impact on the resulting gesture pattern. This performance
may, in turn, be perceived and interpreted by the observer
as complex in terms of different forms of information. We
tested this alternative hypothesis by analyzing empirical
data on pointing in mother-child dialogues. In addition,
we simulated the emergence of pointing patterns using an
artificial system, the virtual human MAX, whose motor
control model is able to fluently blend independent,
successive gestures that can be exactly timed.

Motivation
In this paper, we argue that the timing in-between
communicative gestures can convey specific meaning
either by itself or because a timed information is
meaningfully perceived. Imagine a child acquiring first
language: When she or he says “door!” and then shortly
after “open!”, this behavior can be interpreted either as
two utterances, e.g. that the child wants to open the door
or as a two-word-sentence, e.g. by which the child
expresses that the door is open. Certainly, it depends on
the situation which interpretation is more appropriate but
it is also a matter of timing: When the time between the
two utterances is very tight, it is more likely to be a two-
word-sentence. We would like to extend this notion to
gestural behavior which is assumed to be tightly coupled
with thinking for speaking, but which adds to it the
dimension of spatio-motoric imagery.

Introduction
In studies about gestural behavior, the timing of the
performed gestures and the uttered speech is crucial. In
fact, gestures and speech are viewed to be semantically
and pragmatically co-expressive (Butcher & Goldin-

Meadow, 2000). This implies that the production of
verbal and nonverbal behavior is synchronous. Some
investigators let a time period of 2 seconds decide about
the relationship between gesture and speech. Other
decide that one concept in speech has to be expressed by
one concept in gesture (Gerwing, 2007). However, in
praxis, kinetic information alone seems to be insufficient
for spotting a gesture (Sowa, 2007). Therefore, a
researcher analyzing gestural behavior is confronted with
various cases in which (1) it is difficult to decide whether
a particular gesture stands in relation with what has been
said and (2) a gesture appears to be more complex, i.e.
composed of some units. For example, when mothers
explain to their children how to bring two objects in a
certain spatial relation, they point not only to the
participating objects but they also indicate which motion
is necessary to perform this relation: Their point almost
seems to draw a trajectory according to which a child
should put the objects together. Similarly, when pointing
to explain a relation that is considered canonical between
two objects (e.g. a train inside a tunnel), mothers seemed
to produce pointing gesture in form of a saccade, i.e.
from the trajector to the landmark object. It was
hypothesized that such a saccade may convey additional
semantic information about the togetherness
(canonicality) of the two objects (Rohlfing 2005).

Together, these observations suggest that a pointing
gesture can fulfill not only a deictic but also an iconic
function. This would support the recent view that the
gesture types often proposed in the literature are not
disjunctive but constitute different dimensions which
may apply to different extents to the same gesture
(McNeill 2005). However, an alternative possibility is
that pointing retains its primarily deictic meaning but the
observed patterns emerge mainly from the tight timing
and close sequence of one pointing gesture and another,
iconic gesture. Thus, two distinct gestures would be
responsible for the appearance of a pointing pattern
mainly because of the dynamics and incrementality of
the verbal-gestural thinking that has brought them to life.
For example, an observed saccade might not be
intentionally drawn but come about from the necessary
motor motions when performing fast and sequential
pointing to different participants. Similarly, the motion
trajectory could emerge because the speaker starts with a
deictic gesture, isolating the location of an intended
referent, and then focuses her thinking on closely related,
yet different (iconic) information that is reflected in a
seamlessly connected iconic gesture, retaining the
previously adopted hand shape.
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Thus, instead of overloading single gesture
performances with deictic and iconic information at the
same time, complex pointing patterns are hypothesized
to emerge from two or more distinct, successive gestures
that convey meanings so tightly related that the
movements are triggered and generated either closely
one after the other or even in overlap. The final gestural
performance will result not only from the individual
form of every single gesture, but also from how they can
be combined and reconciled in accord with the gesture-
specific timing constraints. We hypothesize that effects
due to the biological constraints of the human body and
motor control, i.e. co-articulation, as well as the time
characteristics of the processes involved in this form of
incremental gesture thinking may have a significant
impact on the resulting gesture pattern. This performance
may, in turn, be perceived and interpreted by the
observer as complex in terms of different forms of
information.

Study
We tested our alternative hypothesis by analyzing
empirical data on pointing in mother-child dialogues
(Rohlfing, 2005). In addition, we simulated the
emergence of pointing patterns using an artificial system,
the virtual human MAX, whose motor control model
allows us to exactly define the timing of successive
gestures and then creates fluent blending and co-
articulation in-between them automatically (Kopp and
Wachsmuth 2004).

Participants. 21 students from the Bielefeld University
were recruited for this study.

Stimuli. The participants were presented four scenes that
were selected from a corpus of 34 mother-child pairs and
five scenes that were created with the virtual human
MAX. For the human data, the scenes were examples of
a natural mother-child conversation, in which a mother
produced gestural behavior according to the categories
below. The scene was cut out of the context of a task, in
which a mother was asked to instruct her child to put to
objects together.

For MAX data, the scenes were re-constructed by
manually defining the utterances to be produced by the
agent in an XML specification language. Such
specifications state the words to be uttered by the system,
the form of the gestures, and the words in speech with
which a gesture is affiliated (and must thus be
synchronized with).

Two scenes were chosen (and reconstructed with
MAX) to present single pointing:

• a pointing gesture
• an iconic gesture

Three other examples were chosen to present a
complex pointing behavior:

• a saccade leading from one object to another (see
Figure 1).

Figure 1: A pointing saccade in natural mother-child
conversation

In MAX, this was modeled as two separate, but tightly
timed pointing gestures, for which the system would
generate a shortest-path, linear transition movement
in-between (see Figure 2).

Figure 2: A pointing saccade in MAX

• a single trajectory going from one object to
another with more iconicity in the transition (see
Figure 3).

Figure 3: An “expressive transition” in mother-child
conversation

In MAX, the performance was modeled as two
separate gestures (see Figure 4); the second gesture
required a change of gesture direction, from which
more depictive movements (thus potential iconicity) in
the motor transition emerged — we called it
“expressive transitions”
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Figure 4: An “expressive transition” in MAX

• a similar transition as above, however, instead of
two separate gestures, MAX performed a dynamic
gesture with pointing hand shape, with the preparation
phase towards one object (at 0:02) and then the stroke
of the gesture turning towards the other object (at
0:03) — we called this pattern a “transitive
expression”.

The participants were randomly assigned to two groups:
One group saw gestures accompanying speech, in the
other group, only the gestural behavior (without the
audio) was presented.

Procedure. All the scenes were presented in a random
order. The participants were invited to rate the gestures
that they see on a computer screen. After we gave some
examples, we asked them to decide whether they see a
deictic or iconic gesture, how many gestures they see,
and what the gestures refer to (an object, an action, or a
location).

Results. The single pointing gestures were rated
similarly for the scenes from mother-child conversations
and for MAX, i.e. no statistical differences between the
scenes were found: The majority of subjects saw one
gesture in the presentation.

As to the complex pointing patterns, the participants
described the pointing saccade as two separate pointing
gestures in both scenarios.

Scene from human data Scene with MAX

1 gesture 24 9.5

2 gestures 76 90.5

deictic 86 95

Table 1: Subjects’ ratings (in percentage) for a
pointing saccade

As shown in Table 1, even though no statistical
differences were found between the human data and
MAX (paired t-test t(20) = -1.4, p = 0.19 concerning the
number of gestures seen), the ratings in human data
seems to be less obvious than for the MAX scene. This
might result from the fact that in MAX, the two gestures
were generated separately and necessarily with lesser
continuity as in the human data. We can therefore

conclude that a pattern does not emerge when the
transition has little iconicity and/or little continuity.

As to the “expressive transitions”, our analysis
revealed that while in the human data, subjects’ decision
about the number of gesture was quite uncertain (43 %
identified one, 57 % two separate pointing gestures), in
the MAX data, subjects identified rather two pointing
gestures (86 %). We think that for human data, more
examples have to be presented in order to investigate
whether a change in directionality of the second gesture
will be perceived as a separate gesture, which seems to
be the case in the MAX data.

Interestingly, when the gesture is programmed as a
single gesture that prepares with pointing to one object
and whose stroke reorients itself into a differently
directed pointing to another object (“transitive
expression”), then it seems to be a matter of the
accompanying speech how this gestures is perceived (see
Table 2).

With speech No speech

1 gesture 36 70

2 gestures 64 30

deictic 91 40

Table 2: Subjects’ ratings (in percentage) for a
“transitive expression”

In the group who heard the speech along with the
gesture (left column in Table 2), subjects were inclined
to identify two deictic gestures. In the group without
audio (right column in Table 2), subjects identified rather
a single iconic gesture. These group differences in
identifying the kind of pointing pattern were statistically
significant as shown by a paired t-test: t(20) = 2.79, p <
0.05. That is, our initial hypothesis that when the
iconicity in the transition is increased, subjects will
identify one rather then two gestures proved to be too
simple. We only obtained support for it in conditions in
which only the mere gestural movements are available to
the raters. When additional information from speech
comes into play, subjects tended to see two gestures,
even though only one continuous movement was
performed by MAX r(19) = 0.67, p < 0.01. Thus, even
though the gestural pattern seems to visually indicate a
single meaningful motor performance, as suggested by
the results from the no-speech condition, the subjects’
rating is heavily influenced by what they heard the
system saying: put the [horse  under the       bridge    ]! It is
possible that the impression of two gestures being
present emerged from the idea that two objects are
involved, which were marked or ‘pointed out’ by the
preparation phase coinciding with the word “horse” and
the stroke coinciding with the word “bridge”.
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Conclusions
Our study was the first one that explicitly compared
gestures that were performed by real speakers with
gestures that were autonomously rendered by an artificial
system. The parallels we found between these two
gesture sets suggest that complex pointing behavior can
be modeled in an artificial system like the virtual human
MAX, and that this method may be viable as a means of
systematically exploring variants of verbal or nonverbal
communicative behavior. In applying this method here,
we could isolate novel effects of the verbal utterance on
the perception and interpretation of pointing patters,
instances of everyday gestural behavior that is so
prominent and natural as to be frequently used even by
mothers when they explain to the children basic spatial
relations.

In our future work, we aim to deepen both our
research method as well as the study described here. For
the latter, we plan to provide information about the
performed task to the subjects in order to achieve a more
context sensitive rating. In addition, we plan to develop
settings for adult-adult communication and aim to elicit
pointing behavior in order to gain more examples for our
fine-grained analysis of reasons for the emergence of
complex pointing patterns.
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Abstract 
Motivated by the need to support language-based 
communication between robots and their human users, as 
well as grounded symbolic reasoning, this paper presents 
a learning architecture that can be used by robotic agents 
for long-term and open-ended category acquisition. In this 
learning architecture, multiple object representations and 
multiple classifiers and classifier combinations are used. 
All learning computations are carried out during the 
normal execution of the agent, which allows continuous 
monitoring of the performance of the different classifiers. 
The measured classification successes of the individual 
classifiers support an attentional selection mechanism, 
through which classifier combinations are dynamically 
reconfigured and a specific classifier is chosen to predict 
the category of a new unseen object. In the current 
implementation of this learning architecture, base 
classifiers follow a memory-based approach, in which 
misclassified instances are simply added to the instance 
database. The main similarity measures used in the 
implementation are based on Euclidean distance and on a 
multi-resolution matching algorithm. Classifier 
combinations are based on majority voting and the 
Dempster-Shafer evidence theory. A simple agent, 
incorporating these learning capabilities, is used to test 
the approach. A long-term experiment was carried out 
having in mind the open-ended nature of category 
learning. With the help of a human mediator, the agent 
incrementally learned 68 categories of real world objects 
visually perceivable through an inexpensive camera. 

Introduction 
Human-robot interaction is currently a very active 

research field (Fong et al. 2003). The role of social 
interaction in machine learning and, particularly, in robot 
learning is being increasingly investigated (Seabra Lopes 
and Connell 2001; Thomaz and Breazeal, 2006). 

Robots are expected to adapt to the non-expert user. 
This adaptation includes the capacity to take a high-level 
description of the assigned task and carry out the 
necessary reasoning steps to determine exactly what 
must be done. Adapting to the user also implies using the 
communication modalities of the human user. Spoken 
language is probably the most powerful communication 
modality. It can reduce the problem of assigning a task to 
the robot to a simple sentence, and it can also play a 
major role in teaching the robot new facts and behaviors. 

There is, therefore, a trend to develop robots with spoken 
language capabilities (Seabra Lopes and Connell 2001; 
Steels and Kaplan 2002; Fong et al. 2003; Seabra Lopes 
et al. 2005). 

Language processing, like reasoning capabilities, 
involves the manipulation of symbols. By symbol it is 
meant a pattern that represents some entity in the world 
by association, resemblance or convention (Seabra Lopes 
and Chauhan 2007). Association and resemblance arise 
from perceptual, sensorimotor and functional aspects 
while convention is socially or culturally established. In 
classical artificial intelligence, symbolic representations 
were amodal in the sense that they had no obvious 
correspondence or resemblance to their referents Harnad  
(1990) proposed a hybrid approach to the “symbol 
grounding problem,” which consisted of grounding 
bottom-up symbolic representations in iconic 
representations and categorical representations. 

A distributed view on language origins, evolution and 
acquisition is emerging in linguistics. This trend 
emphasizes that language is a cultural product, 
perpetually open-ended and incomplete, ambiguous to 
some extent and, therefore, not a code (Love 2004). The 
study of language origins and evolution has been 
performed using multi-robot models, with the Talking 
Heads experiments as a notable example (Steels 1999; 
Steels 2001). In this case language is transmitted 
horizontally in the population of robots. Meanwhile, 
processes where language is vertically transmitted are of 
particular relevance to robotics applications. In vertical 
transmission, an agent or population of agents inherits 
most of its linguistic behavior from a previous 
generation, or from an independent population (Steels 
2003; Steels and Kaplan 2002). Given that language 
acquisition and evolution, both in human and artificial 
agents, involve not only internal, but also cultural, social 
and affective processes, the underlying mechanism has 
been called “external symbol grounding” (Cowley 2007). 

Having in mind the need to support symbolic 
reasoning and communication mechanisms in artificial 
agents, this paper investigates how category learning can 
be implemented in such agents. As in other works 
reported in the literature, this topic will be explored in a 
visual category learning domain. Such popular choice is 
justified by analogies with child development. In fact, in 
the earliest stages of child language development, most 
of the vocabulary consists of common nouns that name 
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concrete objects in the child’s environment, such as food, 
toys and clothes. Gillette et al. (1999) show that, the 
more imageable or concrete the referent of a word is, the 
easier it is to learn. So concrete nouns are easier to learn 
than most verbs, but “observable” verbs can be easier to 
learn than abstract nouns. 

Cognitive models and robotic prototypes have been 
developed for the acquisition of a series of words or 
labels for naming certain categories of objects. In 
general, the success of language acquisition in robots 
depends on a number of factors (Seabra Lopes and 
Chauhan, 2007): sensors; active sensing; physical 
interaction with objects; consideration of the affordances 
of objects; interaction with the human user; object and 
category representations; category learning; category 
membership evaluation. Most of these issues still need to 
be suitably addressed by robotics researchers. 

Roy and Pentland (2002) present a system that learns 
to segment words out of continuous speech from a 
caregiver while associating these words with co-
occurring visual categories. The implementation assumes 
that caregivers tend to repeat words referring to salient 
objects in the environment. Therefore, the system 
searches for recurring words in similar visual contexts. 
Word meanings for seven object classes were learned 
(e.g., a few toy animals, a ball). Steels and Kaplan 
(2002) use the notion of “language game” to develop a 
social learning framework through which an AIBO robot 
can learn its first words with human mediation. The 
mediator, as a teacher, points to objects and provides 
their names. Names were learned for three objects: “Poo-
Chi,” “Red Ball” and “Smiley.” The authors emphasize 
that social interaction must be used to help the learner 
focus on what needs to be learned. Yu (2005) studies, 
through a computational model, the interaction between 
lexical acquisition and object categorization. In a pre-
linguistic phase, shape, color and texture information 
from vision is used to ground word meanings. In a later 
phase, linguistic labels are used as an additional teaching 
signal that enhances object categorization. A total of 12 
object categories (pictures of animals in a book for small 
children) were learned in experiments.  

The authors of the present paper have previously 
developed a vocabulary acquisition and category 
learning system that integrates the user as instructor 
(Seabra Lopes and Chauhan 2006; Seabra Lopes and 
Chauhan 2007). The user can provide the names of 
objects as well as corrective feedback. An evaluation 
methodology, devised having in mind the open-ended 
nature of word learning, was proposed and used. On 
independent experiments, the system was able to learn 6 
to 12 categories of regular office objects, associating 
them to natural language words. Like us, Lovett et al. 
(2007) also advocate that the key to recognition in the 
absence of domain expectations (i.e. in open-ended 
domains) is efficient on-line learning, but the work they 
describe is still based on the traditional procedures of 
gathering instances manually, training a recognizer on 
some of them and finally testing on unseen instances. 
The most notable feature of this work is the use of 
qualitative image representations and a specific similarity 
assessment method. The approach is demonstrated by 
learning 8 categories of user-drawn sketches. Another 

recent work also explores continuous learning for visual 
concepts (Skocaj et al, 2007). They use very simple 
objects to teach four colour categories (red, green, blue, 
yellow), two size categories (small, large) and four shape 
categories (square, circular, triangular, rectangular). 

Current approaches to the problem, although quite 
different from each other, all seem to be limited in the 
number of categories that can be learned (usually not 
more than 12 categories). This limitation seems also to 
affect incremental/lifelong learning systems, not 
specifically developed for word learning or symbol 
grounding, such as Learn++ (Polikar, Udpa, Udpa & 
Honavar 2001) and EBNN (Thrun 1996). Several 
authors have pointed out the need for scaling up the 
number of acquired categories in language acquisition 
and symbol grounding systems (Cangelosi and Harnad 
2000; Steels and Kaplan 2002). 

Within the field of computer vision, there is recent 
progress towards systems able to learn larger numbers of 
categories. The main works are being evaluated on 
Caltech-101, a well-known database composed of 8677 
images of objects of 101 different categories. 
Recognition accuracy achieved on this problem using 15 
training images per category is between 50% and 60% 
(Grauman and Darrell 2007). However, all works based 
on the Caltech-101 data follow a traditional train and test 
approach, rather than focusing on interactive agents with 
on-line learning capabilities. 

In this paper, we present a learning architecture that 
can be used by robotic agents for long-term and open-
ended category acquisition. In this learning architecture, 
multiple object/category representations and multiple 
classifiers and classifier combinations are used. All 
learning computations are carried out during the normal 
execution of the agent, which allows continuous 
monitoring of the performance of the different 
classifiers. The measured classification successes of the 
base classifiers are used to dynamically reconfigure some 
of the classifier combinations as well as to select the 
classifier that will be used to predict the category of a 
new unseen object. 

Agent Architecture 
The developed agent is a computer with an attached 
camera running appropriate perceptual, learning and 
interaction procedures.  The agent’s world includes a 
user, a visually observable area and real-world objects 
whose names the user may wish to teach. The user, who 
is typically not visible to the agent, will therefore act as 
instructor. The user can change de content of the scene, 
by adding or removing objects.  

Using a simple interface, the user can select (by 
mouse-clicking) any object from the visible scene, 
thereby enabling shared attention. Then, the user can 
perform the following teaching actions: 
— Teach the object’s category name 
— Ask the category name of the object, which the 

agent will predict based on previously learned 
knowledge 

— If the category predicted in the previous case is 
wrong, the user can send a correction. 
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Main blocks 
The agent architecture (figure 1) consists of a 

perception module, an internal lifelong category learning 
and recognition module and an action module. The 
current action system abilities are limited to reporting the 
classification results back to the user. 

 

 
Figure 1 – Agent architecture 

 
The tasks of the perception system include receiving 

user instructions, capturing images from the camera and 
extracting object features from images (figure 1). When 
the user points the mouse to an object in the scene image, 
an edge-based counterpart of the whole image is 
generated. The implementation of the canny algorithm, 
from the publicly available openCV library of vision 
routines, is used for edge detection. From this edges 
image, the boundary of the object is extracted taking into 
account the user pointed position. This is performed 
using a region growing algorithm and currently assumes 
that objects don’t overlap (or occlude each other) in the 
image. 

Given the boundary of the object, an edges-based 
counterpart of the object image is extracted from the full 
scene image (see example in Figure 2). 

 

 
 

Figure 2 – Edges-based counterpart of  
a visual scene with three objects 

 
 
Most of the features used by the classifiers described 

later in this paper are shape features extracted from this 
edges image. Only one classifier uses color features. In 
this case, the original object image is converted to the 
HSV color format. The primary purpose of using HSV 
format lies in the fact that most of the color information 
is in the H component (hue specifies the dominant 

wavelength of the color in most of its range of values), 
thus facilitating image analysis based on a single 
dimension. 

The communication between the agent and the human 
instructor is supported by the perception and action 
systems. At present, the communication capabilities of 
the robot are limited to reading the teaching options 
(teach, ask, correct) in a menu-based interface and 
displaying classification results. In the future, simple 
spoken language communication will be supported. 

Learning architecture 
Language acquisition is highly dependent on the 

representations and methods used for category learning 
and recognition. Learning a human language will require 
the participation of the human user as teacher or 
mediator (Steels and Kaplan 2002; Seabra Lopes and 
Chauhan, 2007). A learning system in a robot should 
support long-term learning and adaptation. Such a 
system should support supervised, incremental, on-line, 
opportunistic and concurrent learning and should also be 
able to improve or optimize its performance through 
meta-learning (Seabra Lopes and Wang 2002; Seabra 
Lopes and Chauhan 2007). 

The learning architecture proposed here (see Figure 2) 
was designed to satisfy these requirements. By 
organizing its categories and instances according to 
user’s feedback, it behaves in a supervised way. It is on-
line because it is integrated in the normal activity of the 
agent. It is incremental and opportunistic because it is 
able to adjust categories when new instances are 
observed, rather than requiring that training instances are 
given in a training phase or according to a pre-defined 
training schedule. It doesn’t involve heavy computations, 
which facilitates the concurrent handling of multiple 
learning problems. 

This learning architecture is based on the idea that 
using multiple representations, multiple classifiers and 
multiple classifier combinations, all potentially 
complementary of each other, can enhance global 
performance. Some of these ideas, particularly the use of 
classifier combinations, are not new in the machine 
learning literature (Xu et al. 1992). The main innovation 
in this architecture is that those complementarities are 
explored in an on-line learning architecture, and a simple 
form of meta-learning takes advantage of the on-line 
nature of the learning process, to improve global 
performance. Teaching and corrective feedback from the 
human mediator are used to monitor the classification 
success of the individual classifiers. The measured 
classification successes of the individual classifiers are 
used to dynamically reconfigure some of the classifier 
combinations as well as to select the classifier that will 
be used to predict the category of a new unseen object. 

Feature Spaces 
Objects should be described to the learning and 

classifications algorithms in terms of a small set of 
informative features. A small number of features will 
shorten  the  running  time   for   the   learning  
algorithm.  
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Figure 3 – Learning architecture 

 
Information content of the features will strongly 
influence the learning performance. 

In the approach of this paper, multiple, possibly 
complementary feature spaces are concurrently 
explored. Most of these feature spaces result of 
segmenting the smallest circle enclosing the edges 
image of the object and centred in its geometric centre. 
For different feature spaces, such circle is segmented 
either into a number of slices (Figure 4, left) or a 
number of concentric layers (Figure 4, right). Current 
implementation uses 40 slices and 160 layers. Feature 
spaces based on this kind of segmentation are aimed at 
capturing shape information. In the following, feature 
spaces are briefly described. 
 
 

 

 

 
 

Figure 4 – Segmentation of edges image of an  
object into slices (left) and layers (right) 

 

Shape slices histogram (SSH). The histogram 
contains, for each slice, the percentage of edge pixels in 
that slice with respect to the total number of edge pixels 
of the object. An example is given in figure 5a for the 
three objects shown in figure 2. Given the rotation-
dependent nature of this feature space, similarity (or 
distance) between instances must be computed as the 
maximum similarity (or minimum distance) between 
the respective feature vectors as they are circularly 
rotated relative to each other. 

Area (AREA). This feature space is composed of a 
single feature, area, defined as the total number of 
pixels of the object. This is the only scale-dependant 
feature space used in this work. 

Shape slices normalized radii averages (SSNRA). 
For each slice, i, the average radius of all pixels in that 
slice, Ri, is computed. In this feature space, an object 
represented by a vector r  = ri .. r40, where ri = Ri /R and 
R is the average of all Ri. This is the core of the feature 
space used in previous work (Seabra Lopes and 
Chauhan, 2007). An example is given in figure 5b for 
the three objects shown in figure 2. As in shape slices 
histogram, similarity computations involve rotations. 

Normalized radius standard deviation (RADSD). 
This is another feature space composed of a single 
feature. Its value is the standard deviation of the 
normalized radii averages, ri .. r40, mentioned in the 
previous paragraph. 

Shape slices normalized radii standard deviations 
(SSNRSD). For each slice, i, the radius standard 
deviation of all pixels in that slice, Si, is computed. In 
this feature space, an object is represented by a vector 
s  = si .. s40, where si = Si/R and R is the average radius 
as mentioned above. An example is given in figure 5c 
for the three objects shown in figure 2. As in other 
representations based on shape slices, similarity 
computations involve rotations. 

Shape layers histogram (SLH). The histogram 
contains, for each layer, the percentage of edge pixels 
with respect to the total number of edge pixels of the 
object. This feature space is not only scale-invariant, 
but also rotation-invariant. An example is given in 
figure 5d for the three objects shown in figure 2. 

Color ranges (COLOR). In this feature space, an 
object is represented by a set of the main colors of the 
object. Each color is represented as a range of hue 
values in HSV color space. These color ranges are 
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extracted from a color histogram using a simple method 
presented in a previous paper (Seabra Lopes et al 
2007). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 – Different types of shape features for the three 
objects in figure 2: (a) Shape slices histogram; (b) Shape 
slices normalized radii averages; (c) Shapes slices normalized 
radii standard deviations; (d) Shape layers histogram. 
 

 Similarity and Membership Measures 
Categorization of a new previously unseen instance 
involves ranking the known categories according to 
measures of membership of the instance to each of the 
categories. In turn, computing membership measures 
often involves evaluating similarities and/or distances 
between instances. 

Euclidean measures 
Since objects are represented as feature vectors in most 
of the features spaces described above, an obvious 
similarity measure is inverse Euclidean distance. For 

two objects x  and y , with distance D = yx − , 
inverse Euclidean distance is given by 1/D. 

In instance-based classifiers, membership to a 
category is evaluated by computing and combining the 
similarities of the target object to the known instances 
of the category. In the present work, assuming that 
categories are homogeneous, i.e. that there are no 
significant intra-class variations, averaging the 
similarities of the target object to the known instances 
of the category seems an appropriate strategy for 
computing membership measures. 
 One of the membership measures used in this work 
is, therefore, computed by inverting and normalizing 
the average Euclidean distance of the target object to 
the instances of the given category Ci, as follows: 

∑
=

= N

k
ki

i

DD

NCEuclidMem

1

)/1(
)( , 

where N is the number of categories, i, k=1, …, N, and 
Di and Dk are the average Euclidean distances of the 
target object to the known instances of categories Ci 
and Ck, respectively. The membership values 
EuclidMem(Ci) sum to 1.0, allowing their use as 
evidence in Dempster-Shafer combinations. 

Multi-resolution measures 
In the present work, similarity is alternatively measured 
through a multi-resolution matching algorithm similar 
to the matching algorithm used in the recently proposed 
pyramid match kernel (Grauman and Darrell 2007). 
This kernel function was designed to enable the 
application of kernel-based learning methods to 
domains where objects are represented by unordered 
and variable-sized sets of features, such as sets of local 
features in computer vision. In this kernel, each feature 
set is mapped to a histogram pyramid, i.e. a multi-
resolution histogram preserving the individual features 
distinctness at the base level. Then, the histogram 
pyramids are matched using a weighted histogram 
intersection computation. 
 The feature spaces used in the present work, as 
described above, are ordered and have a constant 
dimension, so mapping these representations to multi-
resolution pyramids is direct. Then, the same basic 
matching algorithm can be applied. 

The pyramid match score for two objects x  and y  is 
given by: 
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where L is the number of pyramid layers, i
iw 2= is the 

weight of layer i and Ni measures the additional 
matching at layer i, as given by: 
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where )(xFi  is the feature representation of object x  at 
layer i and I() is an intersection function which 
measures the overlap of two objects as follows: 
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Note that this type of matching applies not only to 
histograms, as done by Grauman and Darrell, but also 
to other feature vectors that are normalized by some 
constant R, as it happens in the “shape slices 
normalized radii averages” feature space described 
above. The use of pyramid matching in the present 
work extends a previous, simpler idea of the authors, 
which consisted of including in feature spaces block 
averages computed based on base-level ordered feature 
vectors (Seabra Lopes and Chauhan 2007; Seabra 
Lopes and Camarinha-Matos 1998). 
 Based on the pyramid match score, the following 
category membership measure for a particular target 
object and category Ci can be computed: 

∑
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where N is the number of categories, i, k=1, …, N, and 
Pi and Pk are the average pyramid match scores of the 
target object to the known instances of categories Ci 
and Ck, respectively. The PyramidMem(Ci) membership 
values sum to 1.0, allowing their use as evidence in 
Dempster-Shafer combinations. 

Categorization 
In the present work, categories are simply 

represented by sets of known instances. The known 
instances that are stored are those explicitly taught by 
the human user and also those objects that the agent 
failed to categorize correctly, leading to corrective 
feedback from the user. The agent, therefore, doesn’t 
add to its instance database those objects that it was 
able to categorize correctly. 

Categorizing a new previously unseen object 
involves computing measures of membership of the 
object to the known categories. The category with 
highest membership measure for the target object is 
returned. These computations are carried out by 
classifiers. In the present work, multiple classifiers and 
multiple classifier combinations are used. 

Base classifiers 
The use of a specific membership measure with a 
specific feature space results in a specific “base 
classifier”. The following base classifiers were included 
in the implementation: 
 
− Classifiers using single-dimension feature spaces 

with Euclidean membership measurement: “Area” 
(AREA); “Normalized radius standard deviation” 
(RADSD). 

− Classifiers using feature vectors with Euclidean 
membership measurement: “shape slices 
histogram” (SSH-EM), “shape slices normalized 
radii averages” (SSNRA-EM), “shape slices 
normalized radii standard deviations” (SSNRSD-
EM) and “shape layers histogram” (SLH-EM). 

− Classifiers using feature vectors (the same as in 
the previous group) with pyramid membership 
measurement: SSH-PM, SSNRA-PM, SSNRSD-
PM and SLH-PM. 

− Classifier based on a color-based category 
representation and membership measure 
(COLOR) presented elsewhere (Seabra Lopes et 
al. 2007). 

 
In total, therefore, the implementation includes 11 base 
classifiers. 

Classifier combinations and meta-learning 
The complete learning and categorization approach 
includes classifier combinations. Some of the classifier 
combinations are dynamically reconfigured according 
to the observed success of the base classifiers. 
Classification success rates computed over the last N 
iterations (N=50 was used) is the performance measure 
used to guide reconfiguration of classifier 
combinations. This introduces a meta-learning 
component in the category learning system. 
 

Dempster-Shafer combinations 
The Dempster-Shafer theory of evidence is a powerful 
tool for representing and combining uncertain 
knowledge (Shafer 1976). It is based on a basic belief 
assignment, i.e. a mass function m(A) that assigns a 
value in [0,1] to every subset A of a set of mutually 
exclusive propositions θ. The belief in the composite 
proposition B⊆θ is given by the sum of m(A) for all 
A⊆B. The belief in θ sums to 1.0. In this theory, when 
multiple evidences allow to derive multiple basic belief 
assigments, these evidences can be combined. In 
particular, two basic belief assignments m1 and m2 can 
be combined by the following rule: 
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This rule is the basis of a well known method for 
combining multiple classifiers (Xu et al. 1992; Al-Ani 
and Deriche, 2002). Each classifier provides evidence 
that is expressed as a basic probability assignment. In 
the work of this paper, the membership measures 
described above (Euclidean-based and pyramid-based) 
are directly used as masses. As mentioned before, these 
membership measures are normalized to sum to 1.0. 

Sets containing more than one category are assigned 
a mass of 0.0, so the approach comes close to the 
Bayesian combination approach. The main difference is 
that normalized membership measures are used instead 
of conditional probabilities. These conditional 
probabilities could be estimated based on the confusion 
matrixes of each classifier. The classical way of doing 
this is to acquire a confusion matrix for each classifier 
in a preliminary training/testing phase. This approach, 
however, is not viable in a long-term / open-ended 
learning scenario. Is such a scenario, therefore, the 
alternative would be to build the confusion matrixes on-
line. This would imply that, in an initial stage as well as 
after the introduction of a new category, the conditional 
probabilities would be heavily biased by the specific 
cases seen so far. We did some exploratory experiments 
in this direction and observed that classifier 
combinations based on conditional probabilities start 
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behaving poorly, but eventually catch up with classifier 
combinations based on membership measures. 
However, even in the long run, conditional probabilities 
didn’t seem to be able to significantly outperform 
membership measures, as far as classifier combinations 
are concerned. 

Four Dempster-Shafer classifier combinations were 
included in the implementation, namely combinations 
of the top two, three, four and five most successful 
classifiers (respectively DS2TOP, DS3TOP, DS4TOP 
and DS5TOP). Since the classification success of each 
classifier is re-evaluated in each teaching/learning 
interaction with the human user, these classifier 
combinations are also dynamically reconfigured in each 
such opportunity. 
 

Majority voting combinations 
Voting methods are also well known in classifier 
combinations (Xu et al, 1992; Kittler et al, 1998). In the 
implementation, two dynamically reconfigured 
classifier combinations based on majority voting were 
included: majority voting of the top three and five most 
successful classifiers (respectively MAJ3TOP and 
MAJ5TOP). In addition, a classifier combination based 
on majority voting of all previously described 
classifiers (MAJORITY-ALL) was also included. 

The Predicted Category 
The internal computations described until now 
culminate in a category prediction that is communicated 
to the interlocutor(s) of the agent, typically a human 
user. This category will be the category predicted by the 
currently most successful classifier, considering all base 
classifiers and classifier combinations described above. 

Experimental Evaluation Protocol 
The word/category learning literature has some 
common features. One of them is the limitation on the 
number of learned words. The known approaches have 
been demonstrated to learn up to 12 words. 

The other common feature is the fact that the number 
of words is pre-defined. This is contrary to the open-
ended nature of the word learning domain. Then, given 
that the number of categories is pre-defined, the 
evaluation methodology usually consists of extracting 
certain measures on the learning process (Roy and 
Pentland 2002; Steels and Kaplan 2002; Yu 2005; 
Skocaj et al. 2007; Lovett et al, 2007). Some authors 
plot this type of measures versus training time or 
number of examples. As the number of 
words/categories is pre-defined, the plots usually show 
a gradual increase of these measures and the 
convergence to a “final” value that the authors consider 
acceptable. 

However, robots and software agents are limited in 
their perceptual abilities and, therefore, cannot learn 
arbitrarily large numbers of categories, particularly 
when perception does not enable the detection of small 
between-category differences. As the number of 
categories grows, learning performance will evolve, 

with phases of performance degradation followed by 
recovery, but will eventually reach a breakpoint. 

A well-defined teaching protocol can facilitate the 
comparison of different approaches as well as the 
assessment of future improvements. With that in mind, 
the teaching protocol of figure 6 was previously 
proposed (Seabra Lopes and Chauhan 2007). For 
clarity, its presentation is repeated here. 
 

introduce Class0; 
n = 1; 
repeat { 

introduce Classn; 
  k = 0; 
  repeat { 
   Evaluate and correct classifiers; 
   k ← k + 1; 
  } until ( ( average precision >  
                        precision threshold and k≥n)  
                   or 
                 (user sees no improvement in precision)); 
  n ← n + 1; 
   } until (user sees no improvement in precision). 

Figure 6 – Experimental evaluation protocol 
 
This protocol is applicable for any open-ended class 

learning domain. For every new class the instructor 
introduces, the average precision of the whole system is 
calculated by performing classification on all classes for 
which data descriptions have already been learned. 
Average precision is calculated over the last 3×n 
classification results (n being the number of classes that 
have already been introduced). The precision of a single 
classification is either 1 (correct class) or 0 (wrong 
class). When the number of classification results since 
the last time a new class was introduced, k, is greater or 
equal to n, but less than 3×n, the average of all results is 
used. The criterion that indicates that the system is 
ready to accept a new object class is based on the 
precision threshold. 

Experimental Results 
Experiments were conducted according to this 

protocol. The set of categories and the set of training 
instances were not established in advance. As 
categories were learned, new objects were fetched from 
the surrounding office environment and used to 
introduce new categories. Many objects were brought 
from the homes of the authors for proceeding with the 
experiments until the breakpoint was reached. 

The experiments lasted for several days and a total of 
3767 question/correction iterations (figure 7). In total, it 
was possible to teach 68 categories of real-world 
objects, which can be roughly grouped as follows: 
office objects – 40%; child toys – 20%; other home 
objects – 20%; other – 20%. Figure 8 displays one 
sample image per category. During the 
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teaching/learning process, the agent stored a total of 
1168 training instances. 

Figure 7 displays the evolution of classification 
precision versus number of question/correction 
iterations. As observed in previous work (Seabra Lopes 
and Chauhan 2007; Seabra Lopes et al. 2007), 
classification precision degrades after the introduction 
of each new category, then eventually recovers.  

Towards the limit of the category discrimination 
abilities of the agent, learning starts to take longer. 
From figure 7, we see that most categories were learned 
in the first ~2000 iterations (exactly 60 categories), 
while in the remaining ~1800 iterations it was possible 

to learn only 8 additional categories. The breakpoint is 
also clearly visible in figure 9 which displays the 
evolution of the average number of training instances 
per category versus the increasing number of 
categories. After learning the first 30 categories, the 
system had stored less than 4 instances per category. 
While learning additional 30 categories, the number of 
instances per category continued to grow according to a 
linear trend, reaching an average close to 9 instances 
per category. Finally, while learning the last 8 
categories, the number of instances per category 
abandoned the linear evolution trend and jumped to 17. 
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Figure 7 – Evolution of classification precision versus number of question/correction iterations 
 

 

 
Figure 8 – Sample images of all acquired categories 
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Figure 9 – Evolution of number of training instances per 

category versus number of acquired categories 
 
Table I – Classification success rates for all classifiers 

Single dimension classifiers 
AREA 
RADSD 

 
44.6 
27.4 

Shape feature vectors with Euclidean 
membership 
SSH-EM 
SSNRA-EM 
SSNRSD-EM 
SLH-EM 

 
 

2.8 
2.9 
2.0 

30.8 
Shape feature vectors with pyramid 
membership 
SSH-PM 
SSNRA-PM 
SSNRSD-PM 
SLH-PM 

 
 

46.2 
64.6 
8.2 

43.1 
Color-based classifier 
COLOR 

 
8.7 

Dempster-Shafer combinations 
DS2TOP 
DS3TOP 
DS4TOP 
DS5TOP 

 
57.3 
57.5 
56.9 
64.2 

Majority voting combinations 
MAJ3TOP 
MAJ5TOP 

 
65.3 
63.9 

Majority voting of all other classifiers 
MAJORY-ALL 

 
70.6 

 
The analysis of the performance of the individual 

classifiers is also relevant (Table I). Classifiers based 
on Euclidean membership perform very poorly. The 
best classifier in this group was SLH-EM (shape layers 
histogram with Euclidean membership) with an average 
precision of 30%. One of the single dimension 
classifiers performed better than that (AREA, 45%). 
Classifiers based on pyramid membership measurement 
performed far better than the Euclidean ones (e.g. 
SSNRA-PM, 65%). 

Dynamically reconfigured Dempster-Shaffer 
combinations were in the range of 57% to 64%. 
Dynamically reconfigured majority voting 
combinations were in the range of 64% to 65%. Finally, 
the majority voting of all other classifiers (MAJORITY 
ALL) achieved a precision of 70.6%. 

The externally observable performance of the agent 
was very close to MAJORITY-ALL, exactly 70.0%. 

Note that, as mentioned before, the predictions of the 
agent are those of the current most successful classifier. 
In 64% of experiment time, MAJORITY-ALL was the 
best classifier. Other classifiers were the most 
successful for shorter amounts of time: MAJ3TOP with 
a share of 10%, SSNRA-PM with a share of 8% and 
DS5TOP with a share of 4%. 

Conclusions 
This paper presented a category learning architecture 
with several innovations. One of them is the use of 
multiple representations, multiple classifiers and 
multiple classifier combinations, all potentially 
complementary of each other. Although common in off-
line learning, this approach has not been explored for 
on-line learning methods. Another innovation is the use 
of an attentional selection mechanism to reconfigure 
classifier combinations as well as to select the classifier 
that is used in a specific situation. Although our goal is 
not to emulate human category learning, some parallels 
can be drawn with research in that field (Ashby and 
Obrien 2005; Kruschke 2005). In particular, researchers 
have been recently moving toward the conclusion that 
human category learning relies on multiple memory 
systems and multiple representations. The also recently 
emphasized role of attentional selection, i.e. a 
mechanism of focusing on specific features or 
representations based on recent experience, can be 
paralleled with our mechanism of dynamically selecting 
and reconfiguring classifiers. 

The shape-based feature spaces are also an original 
proposal of the authors in an attempt to develop 
computationally light classifiers that can be used in an 
on-line classifier combination architecture. The 
application of the pyramid matching algorithm of 
(Grauman and Darrell, 2007) to feature spaces where 
objects described, not by histograms, but by other 
normalized feature vectors is also a contribution of this 
paper, which actually produced excellent results. The 
extreme differences in performance between SSNRA 
EM (2.9%) and SSNRA-PM (65%) illustrate this point. 

Overall, our approach seems to outperform several 
previous works initially cited. While previous 
approaches enabled learning of up to 12 categories, the 
proposed approach enabled learning of 68 categories in 
a long-duration experiment. 

Besides the overall success of this work, compared to 
previous works with similar goals, the results provide 
support to some of the “ingredients” of the approach. In 
particular, the use of pyramid matching proved far more 
effective than Euclidean distance in similarity 
assessment. Also, majority voting proved successful in 
maximizing overall performance. The results don’t 
provide irrefutable evidence in favor of the proposed 
attentional selection mechanism. Actually, selecting the 
“current best” classifier led the agent to perform 
slightly worse (70%) than the majority voting classifier 
(70.6%). Future experiments will be designed to enable 
drawing conclusive results concerning attentional 
selection. 
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Abstract

This paper outlines a constraint-based system that enables
artificial agents to interpret and conceptualise rich meaning
which involves different concept types and semantic func-
tions. Such compositional meaning consists of a network
of semantic building blocks that bundle a semantic function
together with the necessary concept grounding and learning
methods. The semantic blocks are implemented as con-
straints, and the compositional meaning is represented as
a constraint network. The interpretation of such meaning
corresponds to constraint satisfaction. The conceptualisa-
tion is realised as a goal-directed construction of the con-
straint network. The concept acquisition is fully integrated
in the interpretation and conceptualisation processes.

Introduction
A system that enables agents to talk about the world can be
decomposed in three sub-systems: the sensorimotor sys-
tem, the conceptual-intentional system and the language
system (Hauser et al., 2002). Figure 1 shows how these
sub-systems interact.

hearerspeaker

conceptualisation

goal

interpretation

world

model

perception
and modeling

model

perception and
modeling

action

utterance

meaning

production

meaning

parsing

sensorimotor 
system

conceptual-
intentional
system

language 
system

Figure 1: Overview of the interaction between the three
sub-systems required for enabling artificial agents to com-
municate about the world through language.

The sensorimotor system takes care of the perception of
the world and the construction of a model of that world.
This world-model is used by the other sub-systems. The
language system deals with the production of the utter-
ance given the intended meaning, and the parsing of an
utterance which yields the understood meaning. The third
sub-system, the conceptual-intentional system, henceforth
CIS, sits in between the language system and the sensori-
motor system. It has to deal with the representation, inter-
pretation and conceptualisation of meaning.

The conceptualisation process takes a speech-act goal
and the world-model provided by the sensorimotor sys-
tem. It composes the meaning that should be expressed in
the utterance to be produced by the language system. The
interpretation process takes the meaning reconstructed by
the language system and interprets it in the context of the
world-model provided by the sensorimotor system. The
resulting action can range from executing the speaker’s
directive, or storing in memory the proposition in the
speaker’s assertive.

In this paper we focus on the conceptual-intentional
system, and in particular on the question how such a sys-
tem can be implemented for use in experiments involving
language games (Steels, 1995).

To start we will consider the nature of the compositional
meaning we want this system to be able to deal with. Such
meaning consists of a network of semantic building blocks
that take concepts as arguments. We will first look at the
concepts and proceed with the semantic blocks.

Concepts
We will focus on speech-act goals that are concerned with
the discrimination and/or description of objects in an ob-
served scene. Figure 2 depicts a simple example scene
which involves a number of objects with different shapes
and sizes. If the speaker wants to draw the hearer’s atten-
tion to object o1, then he/she could do so by saying “the
pyramid”. If the topic is rather object o4 then it could say
“the big ball”, while “the ball next to the big box” would
do for object o6.

o2 o3 o4 o5 o6o1

Figure 2: Simple example scene involving a number of
objects, which are labeled for the purpose of the discus-
sion.
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Words like ball, box, big, rightmost and next-to each
name a concept. Categories, prototypes, relations, events,
roles, etc. are all different types of concepts.

Concepts can be used to discriminate specific objects
by filtering them from a given context. A concept such as
the shape prototype BALL can for instance be used to filter
the objects that are ball-like, while a concept such as the
comparison BIG can be used to filter the objects with a size
larger than the average size.

Concepts that by themselves do not discriminate a topic
can be combined. The phrase “the big ball” for instance,
properly discriminates object o4 in the above example
scene, even though there is more than one ball and sev-
eral big things. There is however only one object that is
both big and ball-like.

Concept grounding
The concepts need to be grounded in the sensorimotor
functionality which interacts with the world. Different
methods can be used for the grounding of concepts, for
example neural networks are used in (Plunkett et al.,
1992), probability density estimation in (Roy and Pent-
land, 2002), radial basis function networks in (Steels and
Belpaeme, 2005), nearest neighbor (Belpaeme and Bleys,
2005), discrimination trees (Steels, 1996), event feature
detectors (Siskind, 2001), etc.

A grounding method is minimally capable of assessing
if some entity in the world-model belongs to some cat-
egory. Each category for a particular grounding method
corresponds to some particular set of parameters. Fig-
ure 3 lists some basic grounding methods and the kinds
of parameters associated with the concepts grounded by
the respective techniques.

Since no single grounding method is well suited for all
types of concepts, the system needs to accommodate dif-
ferent grounding techniques.

Semantic functions
Concepts serve as arguments for semantic functions such
as the context filtering discussed before. Other examples
of semantic functions are: quantification as in “the ball”
or “some boxes”, set operations as in “the balls and the
boxes” or “all balls except the rightmost”, predication as
in “the ball is big”, negation as in “the box is not round”,
deictic reference as in “... that is round”, etc. Note that
different semantic functions can use the same concepts.

The artificial agents need to be able to autonomously
interpret meaning that involves such semantic functions.
Each semantic function thus requires a procedural imple-
mentation. This implementation takes the relevant con-
cepts as arguments and calls the relevant grounding meth-
ods where needed.

Consider for example a semantic function that filters a
set of entities according to a concept type that is grounded
by means of a multi-layered perceptron. The application
of this filtering involves the categorisation of each entity
in the context by means of the perceptron, which is config-
ured with the parameters – the weights – associated with

the given concept. The results of these categorisations are
then used by the semantic function to derive the filtered
target-set1.

Concept acquisition
Each agent has its own collection of concepts. These
repertoires are furthermore not fixed. Agents need to be
able to invent or learn new concepts or adapt existing ones.
The nature of the learning methods depends on the type of
the concerned concepts. Figure 3 lists a number of con-
cept grounding methods and potential learning methods.
Back propagation can for example be used with the multi-
layered perceptron based grounding method.

...... ...

segmentationdiscrimination 
tree segment

new point or 
shift points

back-
propagation

learning 
methods

weights, θML 
perceptron

points, k

grounding 
method

concept 
parameters

k-NN

Figure 3: This table lists some basic grounding methods
and the corresponding concept parameters and learning
methods. For the k-nearest-neighbours (k-NN) method,
the parameters are one or more prototypical points in
the data-space, and the (optional) value k. The learning
method is either simply adding the positive example point
or shifting the points based on positive and negative exam-
ples. For the multi-layered (ML) perceptron method, the
parameters are the weights and (optionally) the threshold
function, while the learning method is back-propagation.
The third grounding method involves a discrimination tree
(Steels et al., 2000), for which a concept corresponds to
some segment (a node in the tree) or a set of segments.

A typical learning situation occurs when the speaker’s
utterance involves a word that the hearer does not know.
Consider for instance the situation in which the speaker
says “the frouple” to discriminate object o1 (the pyramid)
in figure 2. The hearer does not know this word and in-
dicates that it could not understand the utterance. The
speaker could then draw the attention to the topic through
other means, such as by pointing to it. This presents a
learning opportunity for the hearer. It now knows the con-
text and the topic, and could try to infer the concept that
corresponds with the word “frouple”. The candidate con-
cepts are those that properly discriminate that topic. All
candidates, or one chosen according to some heuristics
such as the saliency, can then be passed to the learning
method associated with the grounding method.

This inference of candidate concepts can be seen as a
different operational mode of the involved semantic func-
tion. Where interpretation corresponds to taking a context

1or multiple candidate target-sets
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source-set and a concept to produce a filtered target-set,
here the semantic function takes a source-set and a filtered
target-set, and infers the concepts that could account for
the filtering of that target-set from the source-set.

Compositional meaning
Rich meaning involves different types of concepts and a
variety of semantic functions that take these concepts as
arguments. The conceptual-intentional system has to be
able to both interpret and conceptualise such composi-
tional meaning. The building blocks of these compositions
each bundle a semantic function together with the neces-
sary grounding and learning methods, as shown in figure
4. The involved functionality is wrapped in a uniform,
abstract interface. This abstraction enables the semantic
composer to transparently combine disparate underlying
functionality.

The interface of a semantic block provides one slot for
each argument that the involved semantic function needs
to operate over. Compositional meaning is constructed by
linking together the slots of multiple semantic blocks.

semantic block

semantic function

grounding 
method

learning 
method

+

Figure 4: A semantic block combines a semantic function
together with the necessary concept grounding and learn-
ing methods.

The tight coupling between the semantic functions and
the grounding and learning methods affords a strong inter-
action between language use and concept formation. Such
interaction is required to enable the structurally coupled
evolution of language and concept repertoires.

Composition strategies
As mentioned earlier, the phrase “the big ball” properly
discriminates object o4 in figure 2 because there is only
one object that is both big and ball-like. The interpreta-
tion of this composition can be implemented by filtering
in parallel the set of balls and the set of big things, and
then taking the intersection of both sets.

This composition strategy is however not sufficient.
Consider for instance the phrase “the big box” in the con-
text of the scene shown below in figure 5. It discriminates
object o2 even though the intersection of the set of big
things {o1,o3}, and the set of box-like things {o2,o4},
is empty. Interpreting such phrase rather consists of first
interpreting the noun relative to the context of the whole
phrase. This yields a sub-context that consists of all boxes,
i.e. {o2,o4}. Then the modifier is interpreted relative to
this sub-context, which yields the bigger of both boxes,
the intended topic.

o2 o3o1 o4

Figure 5: A scene with two big and three small objects.

The kind of context manipulation involved in the inter-
pretation of a modifier-head structure can be made possi-
ble by providing (explicit) slots for the source-set (the in-
put context) and the target-set (the filtered context) in the
concerned semantic blocks. The modifier-head structure
can then be attained by linking the target-set of the head’s
block to the source-set of the modifier’s block. A block-
diagram that represents this set-up is shown in figure 6.

filtering 
block

filtering 
block

noun concept modifier concept

main 
context

sub 
context

topic

Figure 6: A semantic block-diagram for a noun + modifier
phrase like “big box”. The noun filtering block takes the
main context and the noun concept and produces the fil-
tered sub-context. This sub-context and the modifier con-
cept are then used by the modifier building block to filter
the topic.

Constraint networks
A semantic block generally supports several ways in
which data flows in and out of that block. The concrete
flow depends on the availability of values for the con-
cerned slots. This availability is for instance different for
a regular interpretation situation than for a learning situa-
tion. The ability to deal with different data-flows can be
captured by implementing the semantic blocks as compu-
tational entities called constraints.

If the semantic blocks are implemented as constraints,
then the compositional meanings correspond to constraint
networks. Interpreting such meaning then corresponds to
finding a solution for the constraint network, i.e. solving
the constraint satisfaction problem.

A constraint can be represented as an n-slot predicate in
which each slot is occupied by a variable. Multiple con-
straints form a network if slots from different constraints
are occupied by the same variable.

Examples
Let’s consider some examples of the interpretation and
concept learning processes. These examples involve four
types of semantic constraints, which are here represented
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as n-slot predicates in which each slot is occupied by a
variable. Multiple constraints form a network if slots from
different constraints are occupied by the same variable.

The first two semantic constraints are
filter-set-prototype(target-set, source-set, prototype)
and filter-set-size(target-set, source-set, comparison).
They involve a filtering function such as described before.
The first can filter the source-set by some prototype such
as BALL or BOX. The second takes a comparison such as
BIGGER-THAN, and retains in the target-set those objects
from the source-set which are bigger than average.

The third block is unique-element(object, set). This
block asserts that the filler of the set slot is a set that con-
tains one element; the filler of the object slot. It is used
to cover the uniqueness of the topic. The fourth semantic
block is equal-to-context(set), which simply asserts that
the filler of the set slot equals the set of objects in the ob-
served context.

o1 o2 o3 o4 o5 o6

Figure 7: A scene with a number of object of varying size
and shape.

Example 1: the big ball
Let’s consider the semantic composition that discriminates
object o5 in the scene shown in figure 7. Combining these
four constraints in a suitable composite meaning, gives the
constraint network shown in figure 8.

Figure 8: Semantic composition example 1

{ equal-to-context(context),
  filter-set-prototype(set-1, context, prototype),
  filter-set-size(set-2, set-1, comparison),
  unique-element(topic, set-2) }

Interpretation Let’s assume that the grammatical anal-
ysis of an utterance such as “the big ball” yields this com-
position plus the bindings: prototype ← BALL and com-
parison← BIG, which are returned by the lexical look-up
of “ball” and “big” respectively.

The semantic composition can now be interpreted by
solving the constraint satisfaction problem. First the
equal-to-context constraint binds the context variable to
the complete set of objects in the scene, i.e. context ←
{o1,o2,o3,o4,o5,o6}. Given the bindings for both the

context and prototype variables, the filter-set-prototype
constraint can infer a binding for set-1, i.e. the set of ball-
like objects: {o2,o4,o5}. With this binding and the com-
parison, the filter-set-average constraint can now infer the
binding set-2 ← {o5}, since o5 is larger than the aver-
age size of the three balls. Finally, unique-element can
correctly bind topic to o5, as such yielding the intended
topic.

Acquisition Say we hear “the froople ball” but do not
know the meaning of “froople”. If we signal our mis-
understanding to the speaker, and the speaker manages
to draw our attention to the intended topic through other
means, such as pointing, an opportunity for learning
presents itself. We take the same semantic composition
and fill in the known bindings: prototype ← BALL and
topic ← o5. We can now again try to find a solution for
the constraint network.

Applying the unique-element constraint gives the bind-
ing set-2 ← {o5}. Applying the equal-to-context and
filter-set-prototype constraints gives set-1← {o2,o4,o5}.
Given these bindings the filter-set-size block can try to
abduct a comparison that could account for the filtering
from the set-1 to set-2. If this concept already exists in the
inventory, a new entry between this concept and the form
“froople” can be added in the lexicon. If it was not con-
ceptualised before, it can also be added in the conceptual
inventory.

Example 2: the ball next to the big box
As a second example we will assume the same context,
but take o2 as the topic. We cannot easily find a semantic
program that discriminates this topic using the same con-
straints as before. Let’s therefore introduce an additional
semantic block: filter-set-relation(target-set, source-set,
relation, referent). This block filters all elements from the
source-set for which the relation does not apply with re-
spect to the referent. The relations we consider here are
spatial relations, such as NEXT-TO, or IN-FRONT-OF. This
enables us to construct the semantic composition that cor-
responds to “the ball next to the big box”, which properly
discriminates the intended topic. The resulting composi-
tion is shown in figure 9.

Figure 9: Semantic composition example 2

{ equal-to-context(context),
  filter-set-prototype(set-1, context, proto-1),
  filter-set-size(set-2, set-1, comparison),
  unique-element(referent, set-2),
  filter-set-prototype(set-3, context, proto-2),
  filter-set-relation(set-4, set-3, relation, referent),
  unique-element(topic, set-4) }

For a regular interpretation the bindings are: proto-1←
BOX, comparison ← BIG, proto-1 ← BALL, and relation
← NEXT-TO. Resolving the constraint network will first
bind referent to o1 like in the previous example, and set-3
to the set of balls, i.e. {o2,o4,o5}. Given these bindings
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the filter-set-relation block can now select from set-3 those
elements which are ’next-to’ the referent and bind this set,
i.e. {o2}, to set-4, giving us the correct topic.

Goal-directed composition of constraint
networks

The conceptualisation of a semantic composition corre-
sponds to the construction of a constraint network. The
input for this process is a communicative goal, e.g. ’dis-
criminate topic X in the sensory context’, and an inventory
of primitive constraints. The resulting constraint network
has to be coherent and fulfil the given goal when inter-
preted by the hearer. In order for the hearer to be able
to properly interpret the decoded composition, all argu-
ments that cannot be inferred should be expressed in the
utterance. These essential arguments thus have to be rep-
resentable in language, for instance as lexical forms.

Finding a suitable constraint network given some goal
is a combinatorial problem. Blindly trying to link together
various constraints in arbitrary configurations and check-
ing if the results satisfy the requirements is not a viable
strategy. We propose a structured, goal-directed strategy
to manage the combinatorial explosion.

For a semantic composition to be useable, it must be re-
solvable given the essential arguments. All other bindings
in the solution must be directly or indirectly inferable from
this select set of bindings. In other words, there must ex-
ist a directed, non-cyclic dependency network among the
bindings which reflects the inferential flow from the es-
sential source bindings to the binding or bindings that rep-
resent or otherwise contribute to the communicative goal.
The process of creating an appropriate semantic composi-
tion can be guided by this requirement.

Let’s for example consider the construction of the se-
mantic composition shown in figure 8. The initial goal is
to discriminate object o5 from the sensory context shown
in figure 7. We start the composition by introducing a vari-
able and bind the topic to it. This binding is meant to be
inferable during interpretation, so we need to add a con-
straint that can infer the binding. Most constraints how-
ever hold over more than one variable, which will need
to be added. The bindings for these new variables also
need to be either essential bindings or be inferable them-
selves. Introducing a new constraint to fulfil a goal might
thus introduce new sub-goals, which need to be fulfilled
recursively.

Let’s say we add unique-element(topic, set-2) to infer
the topic. This introduces a new sub-goal: find support
for (the binding of) set-2. Adding filter-set-average(set-
2, set-1, comparison) fulfils this sub-goal, but yields two
new sub-goals: set-1 and comparison. The comparison
concept can be expressed in the utterance, but the set will
have to be recursively dealt with.

A complete overview of the composition process is
shown in figure 10. Each row represents a step in the pro-
cess, starting with the initial step in the first row. The first
column gives the goal for each step. The second column
shows the ’action’ taken to fulfil the goal, which is either a

new constraint or an argument that has to be expressed in
the utterance. The third column lists the sub-goals entailed
by adding a constraint. Each of these sub-goals needs to
be fulfilled in one of the subsequent rows.

Figure 10: Goal directed composition

topic

-comparison

context

prototype

context, prototype

goal

unique-element(topic, set-2)

set-2
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-

set-2

filter-set-average(set-2, set-1, comparison)

subgoals

BIG

-

BALL

The composition process starts with the initial goal and
ends when all the sub-goals that were introduced along
the way, are fulfilled. For each goal there might be sev-
eral constraints that could infer that goal. The composi-
tion shown in figure 10 thus represents but one particular
path of potentially many. All these paths form a tree. Var-
ious strategies can be used to more efficiently explore this
tree. We for instance apply an eager search strategy based
on a heuristic that favours smaller compositions, with less
unfulfilled goals and a smaller amount of essential argu-
ments. We prune branches that involve a cyclic depen-
dency and try to prune inconsistent branches as soon as
possible by propagating the constraints where possible af-
ter each extension.

Finally we would like to note that this composition
mechanism can also deal with situations in which the
structure of the semantic composition was not fully under-
stood. It can be used to hypothesise on a plausible com-
pletion of an incomplete network by adding constraints to
account for bindings not yet accounted for in exactly the
same way as outlined before.

Conclusion
A semantic building block bundles all cognitive function-
ality that concerns a particular concept type. This includes
both the concept formation functionality and the semantic
operations that for instance categorise a set of visual stim-
uli. By encapsulating the procedural details and providing
a uniform, abstract interface, different concept grounding
techniques can be transparently combined.

Semantic blocks establish an omni-directional relation-
ship between a number of arguments, which can be nat-
urally implemented as constraints. A semantic composi-
tion can then be represented as a constraint network. The
declarative nature of such constraint networks permits a
flexible control-flow. This affords a natural and uniform
treatment of various compositional production, interpreta-
tion and learning needs, as was shown in the examples.

The grounding of both the concepts and the basic se-
mantic operations is taken care of by the semantic blocks.
The semantic compositions attain their grounding from
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their components and the procedurally embodied con-
straint satisfaction framework.

In sum, the proposed model satisfies the requirements
outlined in the introduction. A fully operational imple-
mentation of this model has been developed and can be
demoed upon request.
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Abstract

Despite ongoing research, the human ability of speech
perception remains a mystery. Current phonetic theory
is divided by two points of contention: the relationship
from production to signal to audition and the object of
perception/cognition. Here we discuss the role of current
phonetic theory within this debate and propose our own
hypothesis. We argue that human speech is enabled
through loosely constrained articulation and audition cou-
pled with the cognitive process of direct realism (DR).
We also contend that disembodied pattern recognition
is sufficient for the perception of phonetic tokens, as
grounding can be maintained through the properties of real
speech. However, to maintain this at the semantic level we
feel that robotic embodiment will be necessary.

Although related to motor theory (MT), DR differs
in a number of important ways. Significantly, speech
perception is not held to be ‘special’ . . . “and there is
no more reason to propose a role for the speech motor
system in speech perception than to propose an analogous
role for the viewer’s locomotor system in the visual
perception of walking” (Fowler, 1996, p. 1731). Instead
of forming cognitive representations of the external world
(either gestural or acoustic), our senses cause the direct
perception of the gesture through the acoustic signal.

DR faces various criticisms, arising through its asso-
ciation with MT, as they are often treated as one and
the same, e.g., Sussman (1989); Ohala (1996). Other
criticisms are more specific. What is the force enabling
auditory distinctiveness if we only perceive the gesture?
Surely we would be driven to maintainarticulatory dis-
tinctiveness? Fowler argues that the acoustic signal still
conveys information about the gesture, which accordingly
must be sufficiently distinct. But it does not follow
that a distinct signal is evidence for a symbolic auditory
representation. Another objection is that those who can’t
speak can still perceive speech. Motor theorists believe
that an “innate vocal-tract synthesizer” (Liberman and
Mattingly, 1985) can overcome this objection. While
Fowler reemphasises that the direct perception of speech
derives from a general theory of perception, this “inability
to reproduce heard gestures does not imply that they did
not perceive gestures (any more that the typical person’s
inability to perform a triple axel implies that he or she

(a) Double-weak speech perception.

(b) Strong-articulatory speech perception

(c) Strong-auditory speech perception

Figure 1: Conflicting phonetic theories use evidence of
strong constraints on articulation or audition to argue for
different symbolic systems of perception.

cannot see them)” (p. 1738). DR does not have to imply a
motor theory of speech perception. It only needs to agree
with MT in the trivial sense—we obviously ‘perceive’ the
vocal tract as it is the source of the speech signal. Where
DR can provide insight is in determining the object of
speech perception.

Using Nearey’s (1997) framework, we can classify
conflicting theories of perception into strong-auditory,
strong-articulatory, double-strong and double-weak (see
Figure 1). Strong-auditory theories include Stevens’s
(2002) well-known quantal theory. By contrast, strong-
articulatory theories include MT and Fowler’s direct re-
alism. Double-weak theory defines a middle course,
loosening constraints on both production and perception.
However, many would consider it to be an auditory rather
than articulatory theory.

Such disagreements arise because Nearey’s classifica-
tion only considers the means of production, the signal and
perception of speech, whereas the current major source of
disagreement is the form of the cognitive tokens. Auditory
theories hold that these smallest tokens are resolved as
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(a) Fowler’s direct realism

(b) Proposed double-weak direct realism

Figure 2: A comparison of Fowler’s direct realism and
double-weak direct realism. The phonetic evidence sug-
gests a double-weak approach, while our own work pro-
poses a direct realist cognitive theory.

idealised symbolic phonetic tokens, whereas MT holds
that the ultimate forms of perception are gestural tokens.
Considered in these terms we can see that DR and MT
(lumped together in Nearey’s framework) are clearly dif-
ferent, as DR considers the perception of speech to be
direct “unmediated by processes of hypothesis testing or
inference making and unmediated by mental representa-
tions” (Fowler, 1996, p. 1731)—articulatory or acoustic.
Freed from the need to lump all gesturalist theories into
the strong-articulatory camp, we can see that DR is in
fact a double-strong gesturalist theory (as opposed to
motor theories strong-articulatory gesturalist approach).
As clearly stated by Fowler: “phonological gestures are
the public actions of the vocal tract that cause structure
in acoustic speech signals. By hypothesis, they will be
found to cause specifiers or invariants in the acoustic
signal” (p. 1731).

We believe that speech is directly perceived; what is
perceived (in the trivial sense) is the vocal tract. Although
this appears to agree with Fowler, our theory differs in
important respects. We question Fowler’s naı̈ve realism
assertion that invariant “specifying acoustic properties is
what allows perception of the phonological properties to
be direct” (p. 1731). We feel that this plays into the hands
of a number of arguments against the philosophy of DR.
Rather we, like Nearey, are “genuinely impressed by the
quality of the research by both auditorists and the gestural-
ists that is critical of the other position” (p. 3242). Given
this we take a double-weak standpoint to the production
and auditory perception of the speech signal. However,
we do not believe that this double-weak approach nec-
essarily precludes DR. As Figure 2(b) shows, in this
new framework we can conceive of loosely-constrained
articulation and perception coupled with the direct per-
ception of speech, leading to a new double-weak direct
realism. Clearly, there needs to be a de-coupling between
the constraints on speech and the cognitive objects of
perception.

To support this assertion, we have constructed a compu-
tational model that is able to acquire the phonetic structure

of real speech using the details of this hypothesis. An
artificial agent, equipped with a biologically plausible
auditory system and vocal tract, is able to reproduce a
range of phonemes after being exposed to real speech.
Both its auditory and articulatory functions are loosely
constrained (in accordance with double-weak theory) and
at no time does it establish symbolic phonetic tokens
with its cognitive abilities. Rather, complex auditory cues
are used to enable the agent to reproduce the perceived
phonemes. We can infer from this reproduction that the
agent is capable of the direct perception of speech through
pattern recognition. Why has this separation between
the constraints present within the articulatory gesture and
auditory signal not taken place before? Perhaps because
evidence for a highly constrained vocal tract has been
assumed to be evidence for abstract gestures as the objects
of perception. Accordingly, a highly-constrained acoustic
signal has been assumed to be evidence for abstract
phonetic tokens. We argue that this is not necessarily the
case.

Direct realism supposes that speech is perceived di-
rectly, in the absence of any idealised abstract tokens—
either phonetic or articulatory. To test this hypothesis, our
agents have been embodied in a real-speech environment
avoiding the current symbolic phonetic systems which
force a (potentially-ungrounded) symbolic solution. To
develop our theory from the phonetic to the syntactic
level, and to avoid a reversion to ungrounded symbolism,
we will need to ground the evolved phonemes in real
speech and the evolved syntax in the real world. Thus,
future work will develop robotic agents to test further our
notions of DR within language. Ultimately, DR has lead
us to believe that the continued modelling of language will
require embodiment through the use of robotics.
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Abstract

This paper describes an approach towards generating refer-
ring expressions that identify and distinguish spatial enti-
ties in large-scale space, e.g. in an office environment, for
autonomous mobile robots. In such a scenario a dialogue
is often about things and places outside the current per-
ceptual fields of the interlocutors. One of the challenges
therefore lies in determining an appropriate dialogue con-
text. Other important issues are to have adequate models of
both the large-scale spatial environment and of the user’s
knowledge.

Introduction
In earlier work, we have presented a conversational au-
tonomous mobile robot (Zender et al., 2007), emphasiz-
ing situated dialogue for teaching the robot about its envi-
ronment. Besides understanding human-like concepts the
robot must be able to express itself in a way that is under-
standable by humans. It is therefore crucial that the robot
can produce expressions that successfully refer to entities
in its environment.

Previous approaches to the generation of referring ex-
pressions (GRE) in the general domain of conversational
agents have mainly focused on small-scale scenes or
closed-context applications, (Kelleher and Kruijff, 2006),
(Funakoshi et al., 2004), (Horacek, 1997), (Dale and Re-
iter, 1995). Although there are well-established methods
for generation referring expressions from both explicit and
implicit scene models, only limited research has focused
on how to determine what part of a scene constitutes the
current context. This is of special importance when con-
ducting a situated dialogue about large-scale space, where
large-scale space is defined as “a space which cannot be
perceived at once” (Kuipers, 1977). For the dialogue this
means that most potential referents and distractors are not
in the visual fields of the interlocutors, but still they will
want to talk about them.

In this paper, we present an approach to adapt the in-
cremental algorithm (Dale and Reiter, 1995) to a scenario
where a conversational robot has to refer to spatial entities
in large-scale space. We will show how our approach of
Conceptual Spatial Mapping (Zender and Kruijff, 2007)

∗ The research reported of in this paper was supported by
the EU FP6 IST Cognitive Systems Integrated project Cognitive
Systems for Cognitive Assistants “CoSy” FP6-004250-IP.

both provides a suitable knowledge base for the algorithm
and serves as a basis for determining the context set.

Background
The task of generating referring expressions can be para-
phrased as finding a description for an entity in the world
(the intended referent) that refers to the intended referent
and only the intended referent. This implies that the de-
scription must be chosen in a way that prevents it from
referring to another entity in the current context set. All
entities in the context set except the intended referent form
the contrast set. The referring expression must thus distin-
guish the intended referent from the members of the con-
trast set. A referring expression is a noun phrase (NP)
of any degree of complexity. In order to provide enough
information to uniquely identify the intended referent, fur-
ther attributes of the referent need to be expressed, for in-
stance with adjectives or prepositional phrases, which in
turn might contain a referring expression NP.

The incremental algorithm of (Dale and Reiter, 1995)
constitutes an approach to the GRE problem, which they
rephrase in terms of the Gricean Maxims. Inherently, any
referring expression should fulfill the Maxim of Quality
in that it should not contain any false statements. The al-
gorithm also ensures that only properties of the referent
that have some discriminatory power are realized (Maxim
of Relevance). Moreover, they try to fulfill the Max-
ims of Manner and Quantity in that the produced expres-
sions are short and do not contain redundant information.
The incremental algorithm provides a solution to the GRE
problem with a reasonable run-time complexity. This is
achieved by not trying to find an optimal referring expres-
sion, which Dale and Reiter justify by findings in psy-
cholinguistics.

Since we are going to present our approach in terms of
the incremental GRE algorithm, it is important to briefly
explain its relevant principles (cf. Algorithms 1, 2, 3). The
algorithm needs a knowledge base that describes the prop-
erties of the domain entities through attributes and values.
A special attribute is an entity’s type. The algorithm is
initialized with the intended referent, a contrast set (de-
fined as the context set without the intended referent) and
a list of preferred attributes. It then iterates through this
attribute list in the order of preference. If a property that
holds for the intended referent is false for at least one
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member of the contrast set, the property is added to the
generated expression and the ruled out members are re-
moved from the contrast set. When the algorithm has suc-
cessfully eliminated all original members from the con-
trast set, it terminates and returns the expression generated
so far. If the contrast set is non-empty after iterating over
all properties, the algorithm fails.

In order to determine appropriate discriminating prop-
erties, the algorithm requires a set of interface functions to
the knowledge base to get additional information, namely
the taxonomical specialization of a given attribute, the ba-
sic level category of an entity’s attribute, a model of the
user’s knowledge, and finally an ordered list of preferred
attributes.

Algorithm 1 The Basic Incremental Algorithm for GRE
Require: r = intended referent; C = contrast set; P = preferred-

attributes-list
Initialize: DESC = {}
for each Ai ∈ P do

V = f indBestValue(r,Ai,basicLevelValue(r,Ai))
if RulesOut(〈Ai,V 〉) 6= nil then

DESC = DESC∪{〈Ai,V 〉}
end if
if C = {} then

if 〈type,X〉 ∈ DESC for some X then
return DESC

else
return DESC∪{〈type,basicLevelValue(r, type)〉}

end if
end if

end for
return failure

Algorithm 2 findBestValue(r,A,initial-value)
if userKnows(r,〈, initial− value〉) then

val = initial-value
else

val = null
end if
if (more-speci f ic-value = moreSpeci f icValue(r,A,val)) 6=
nil∧
(new-value = f indBestValue(A,more-speci f ic-
value)) 6= nil∧
(|rulesOut(〈A,new-value〉)| > |rulesOut(〈A,val〉)|) then

val = new-value
end if
return val

Algorithm 3 rulesOut(〈A, V〉)
if V = null then

return nil
else

return {x : x ∈C∧userKnows(x,〈A,V 〉) = f alse}
end if

Our approach
A robotic office assistant that is supposed to interact with
its users through spoken language will have to refer to
things and places in their environment. It needs to do so in
a way that is intuitively understandable by humans. There
are conceivably many ways in which a robot might to refer

to things in the world and most of them will fail to achieve
their communicative goal. Consider the following set of
examples:

1. “the location at position (X = 5.56,Y = −3.92,θ =
0.45)”

2. “the mug left of the plate right of the mug left of the
plate”

3. “Peter’s office no. 200 at the end of the corridor on the
third floor of the Acme Corp. building 3 in the Acme
Corp. building complex, 47 Evergreen Terrace, Cal-
isota, Planet Earth, (...)”

4. “the area”

These referring expressions are valid descriptions of
their respective referents. Still they fail to achieve their
communicative goal, which is to specify the right amount
of information that the hearer needs to uniquely identify
the referent. First of all, robots are good at measuring ex-
act distances, humans are not. So the robot should em-
ploy qualitative descriptions that make use of the same
concepts as a human-produced utterance would. Second,
specifying a referent with respect to another referent that
is only identifiable relative to the first one leads to infinite
recursion instead of the communicative goal. Finally, the
robot might have a vast knowledge about facts and enti-
ties in the world, but it should not always try to uniquely
separate the referent from all entities in the world. At the
same time, it is necessary to provide enough information
to distinguish the intended referent from those entities in
the world that potentially distract the hearer. The follow-
ing expressions might serve as more appropriate variants
of the previous examples:

1. “the kitchen around the corner”

2. “the red mug left of the china plate”

3. “Peter’s office”

4. “the large hall on the first floor”

The fact that these might (or might not! ) be successful
referring expressions points to the importance of knowing
what the given context in a situation is. This is especially
the case for a mobile robot that operates and interacts in
large-scale space. It is thus an important basis to endow
the robot with a spatial representation that resembles the
way humans conceive of their environment. But it is not
enough; the robot must also be able to determine which
entities in the world might act as potential distractors with
respect to the hearer’s knowledge.

In the following sections we will describe how the onto-
logical representation of spatio-conceptual knowledge in
our robot architecture serves as a natural knowledge base
for the incremental GRE algorithm. Furthermore, we will
propose a method for a proper construction of the contrast
set for large-scale space.
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Figure 1: A subset of our office environment commonsense ontology, including relevant relations (dotted arrows) and basic
level categories (thick lines).

The knowledge base

Our robotic system is endowed with a multi-layered spa-
tial representation, ranging from a low-level metric map,
via a topological abstraction layer, to an ontology-based
conceptual map. We refer the reader to our previous pub-
lications for a more detailed account on the spatial repre-
sentation (Zender and Kruijff, 2007; Zender et al., 2007).
Here, we will focus on describing the relevant mecha-
nisms for the GRE task in large-scale space.

The conceptual map layer consists of a Description-
Logics based OWL-DL reasoner. It contains innate con-
ceptual commonsense knowledge about an indoor office
environment (Figure 1), i.e. types of spatial areas, objects
and persons, and the relations that can hold between them.
While the robot is exploring its environment, it populates
its ontology with acquired and inferred instance knowl-
edge.

The instances in the ontology are the entities of the
world model. The conceptual hierarchy provides the tax-
onomical type information of the instances that the GRE
algorithm requires. Furthermore, a number of concepts
such as Office, Kitchen, Corridor, Table, etc.
are marked as basic level categories, cf. (Brown, 1958)
and (Rosch, 1978). The relations between instances are
the attributes that the algorithm can use to further specify
a referent. Note that the use of relations leads to a recur-
sive call of the GRE algorithm with its well-known im-
plications. An extension of the algorithm with heuristics
to exclude reference to an already mentioned entity and to
keep the recursion depth minimal can be used to cope with
this issue. Currently, our approach supports the following
properties (in the order of preference):

Type We represent an entity’s type as the (asserted and
inferred) concepts of the corresponding instance. Through
ontological reasoning, we can retrieve an instance’s most
specific concept, its basic level category, and all the in-
stances of a concept. Further, taxonomy traversal func-
tions (e.g. getSuperConcepts,getSubConcepts) can pro-
vide additional type information if necessary.

Topological inclusion If the current context spans topo-
logical units at different hierarchical levels (cf. Fig-
ure 2) it is important to specify the intended refer-
ent with respect to the topological unit that contains
the referent, e.g. when referring to “the kitchen on the
3rd floor”, or “the table in the lab”. The concep-
tual map represents topological position with the fol-
lowing relations: hasObject(Area,Object), and
containsArea(Level,Area).

Ownership Areas in an environment are often referred
to by identifying their owners, e.g. “Bob’s office”. In our
ontology instances of Area can be related to a Person
instance via the isOwnedBy(Area,Person) relation.
The name of the person is represented as a string datatype
property.

Topological connectivity Information about neighbor-
ing areas can be a good cue for identifying spatial entities,
e.g. “the room next to the lab”. Our system represents ad-
jacency of topological areas in the topological layer of the
robot’s multi-layered map, where the information can be
accessed.

Name As names are usually (locally) unique, e.g. “the
Occam meeting room”, or “office 120”, they are definitely
a highly discriminating attribute for the GRE task. How-
ever, names do not seem to be a preferred category for
referring to rooms as they seldom contain more useful in-
formation than a generic NP + PP referring expression,
e.g. “the meeting room on the first floor next to the large
hall”. On the contrary, such a generic referring expression
might even bear additional useful information. Moreover,
remembering the inherently artificial name for an entity
might involve a higher cognitive load than processing the
information encoded in a more generic referential descrip-
tion. For other scenarios though, such as an information
desk agent at a hospital, or any other institution in which
there is a specific naming scheme, such as e.g. encod-
ing floor number and department, and numbering them
in sequential order, the name feature can conceivably be
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Figure 2: A topology of places, rooms and floors. Stars de-
pict navigation nodes that denote free and reachable space
for our robotic system. The set of navigation nodes is par-
titioned into distinct spatial areas, such as e.g. rooms. Ar-
eas in turn can belong to a floors, which are on the next
level of abstraction. Using topology traversal, we con-
struct an appropriate context set for the GRE task.

placed in a higher-ranking position in the preference list.
In our ontology names for areas are represented as a string
datatype property.

Landmarks The conceptual map contains spatial areas
in the environment as well as objects found there. The in-
formation about which objects are found there can be used
to further specify a spatial entity. Currently, our model
only provides the information which areas contain which
objects (hasObject(Area,Object)). The GRE al-
gorithm can thus form expressions like “the room with
the mailboxes”. Since most of these objects will only be
perceivable once the person is at the location of the in-
tended referent, we assume that this attribute should only
be used with a low preference. It is noteworthy that our
DL-reasoner is able to categorize spatial areas on the ba-
sis of the objects that are found there (Zender and Krui-
jff, 2007). The knowledge about which objects are found
where is thus reflected already in the type information,
which is always used in the process of generating a re-
ferring expression.

Determining the appropriate contrast set
In order to successfully identify a referent it is important
to determine a correct and appropriate contrast set. If the
contrast set is chosen too small, the hearer might find it
difficult to uniquely identify the intended referent with re-
spect to his or her knowledge. If, on the other hand, a too
large contrast set is assumed, the generated referring ex-
pression might violate Grice’s Maxims, here the Maxim
of Quality, in that it contains too much unnecessary infor-
mation.

Since the contrast set is defined relative to a context set,
the crucial task is hence to determine which part of the en-
vironment constitutes the current context. We claim that
the context for a dialogue situated in large-scale space can
be determined on the basis of a topological representation.
Assuming a topological hierarchy of places, the context
should include all sibling nodes of those topological units

that are visited when following the search path between
the current position and the intended referent (topology
traversal). For instance, if the intended referent is an ob-
ject located in the same room as the user and the robot,
only local landmarks should be considered. Likewise, if
the robot is to produce a referring expression to a room on
a different floor, all entities on that floor and on the current
floor will form the context. Using topological inclusion as
the most preferred attribute will then essentially function
as a pruning of the hierarchically ordered context set (if it
has discriminatory power at all, that is).

In our implementation, the lowest topological level is
the navigation graph. The set of navigation nodes is then
partitioned into topological areas that correspond to basic
spatial units, such as rooms and corridors. Our ontology
additionally contains a representation for dividing areas
into storeys to which they belong, cf. Figure 2. The topo-
logical unit that is considered the current position need
not necessarily be the robot’s and/or the hearer’s physi-
cal location. We claim that our approach will also yield
plausible results when used in an incremental dialogue to
generate route descriptions. In that case, the most recent
dialogue referent is assumed as the initial position.

Representing the user’s knowledge
In the incremental algorithm the userKnows function is
used to ensure that the algorithm does not include descrip-
tions that the hearer does not understand and also to pre-
vent the algorithm from ruling out members of the con-
trast set that are no potential distractors with respect to the
user’s knowledge. In our scenario, it is infeasible to fully
specify the knowledge of all possible interlocutors. We
therefore opt for a priori assuming an omniscient user. Us-
ing a dialogue model, we can explicitly mark information
as not known by the user when, e.g. answering questions.

Moreover, the representation of the user’s knowledge
plays important role for example in the route description
generation task. There, the UserKnows function should
initially return false for any knowledge pertaining to ref-
erents that have not yet been introduced. The task of gen-
erating a route description is then redefined in terms of
successively introducing new discourse referents that can
then be used for the GRE task.

Natural language processing
In our system, we use a communication system for situ-
ated spoken dialogue between the robot and a user. Our
implementation of the GRE algorithm collects informa-
tion from the ontology that it will then represent as a Hy-
brid Logics Dependency Semantics (HLDS) logical form
(Baldridge and Kruijff, 2002). This HLDS logical form
is then processed by the OpenCCG realizer, which gener-
ates a natural language expression (Baldridge and Kruijff,
2003). The following list shows how information from
the ontology is translated to HLDS. The logical form gen-
erated by the type attribute is the root node; logical forms
representing other attributes are dependent structures of a
root node.
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Figure 3: An example office environment knowledge base. The ontology contains several instances of areas (indicated by
the areaX tag) on two floors, objects (o1 is an instance of Faxmachine, o2 and o4 are instances of Couch, and o3 is
a Coffemaker), and persons (Bill and Bob).

• HLDS logical form for type:
@{X :entity}(〈TYPE〉

& 〈Delimitation〉unique
& 〈Number〉singular)

• HLDS logical form for topological inclusion (of areas):
@{X :location}(on

& 〈Anchor〉(location & floor
& 〈Delimitation〉unique
& 〈Number〉singular
& 〈Property〉(q− position & 〈ORD〉)))

• HLDS logical form for topological inclusion (of ob-
jects):
@{X :location}(in

& 〈Anchor〉(〈REFERRING EXPRESSION〉))

• HLDS logical form for topological connectivity:
@{X :location}(next to

& 〈Anchor〉(〈REFERRING EXPRESSION〉))

• HLDS logical form for ownership:
@{X :genOwner}(person & 〈NAME〉)

• HLDS logical form for name:
@{X :identifier}(loc−name & 〈LOCATION NAME〉)

• HLDS logical form for a number as name:
@{X :identifier}(number & 〈LOCATION NUMBER〉)

• HLDS logical form for landmark :
@{X :accompaniment}(〈REFERRING EXPRESSION〉))

Examples
Let us consider the example scenario depicted in Figure
3. For visualization purposes we have annotated a map
sketch with the instance knowledge that is represented
in the conceptual map. The knowledge base consists of
a number of areas that are anchored in the topological
map layer. The robot knows that the rooms in its envi-
ronment are numbered (<X>), and that two of the meet-
ing rooms additionally have names (‘‘Occam’’ and
‘‘Goedel’’). Additionally, the robot has learned the

types of the areas through situated dialogue with its user
(Kruijff et al., 2007). It knows about the presence of four
objects, and, finally, the robot knows two persons, and in
which offices they work.

The following examples are the results of applying the
algorithm under varying circumstances. The initial posi-
tion and the intended referent are denoted by i =areai
and r =arear, respectively.

(1) i =area3; r =area1;
Since initial position and target location are on the
same floor, the expression “the hall” is produced.
@{area1:e−location}(hall

& 〈Delimitation〉unique
& 〈Number〉singular)

(2) i =area3; r =area20;
Since initial position and target location are on dif-
ferent floors, the expression “the hall on the sec-
ond floor” is produced.
@{area20:e−location}(hall

& 〈Delimitation〉unique
& 〈Number〉singular) & 〈Location〉(on

& 〈Anchor〉(location & floor
& 〈Delimitation〉unique
& 〈Number〉singular
& 〈Property〉(q− position & 2)))

The system is able to successfully generate a referring
expression (Ex. 3) for the coffee maker (o3), but not for
any of the couches (o2 and o4) because the knowledge
base does not contain any information that can properly
distinguish between the two.

(3) i =area3; r =o3;
The position of the intended referent is anchored
in the navigation graph topology. The context set
thus spans two topological layers (the navigation
graph and the area layer). Hence the algorithm
includes the location information when generating
the referring expression “the coffee maker in the
kitchen”.
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Ex. 3 shows a weakness of the proposed algorithm. The
basic level category Kitchen for area10 is inferred on
the basis of the presence of a Coffeemaker instance.
However, when generating the referring expression for the
“coffee maker” this is not taken into account. It remains
an issue of further research to what extent this influences
the acceptability of such a referring expression.

Another observation can be made when generating a re-
ferring expression for area4 with different initial posi-
tions. However, if a recalculated contrast set is provided as
input for the recursive call to generate an embedded refer-
ring expression, we can avoid redundant attributes. Here
again, we make use of our principle to determine the con-
text on the basis of the topological hierarchy. We simply
assume the position of the most recent referent as the ini-
tial position when determining the contrast set. The result
of this modification leads to the result in Ex. 6

(4) i =area1; r =area4;
This configuration yields “the corridor next to the
secretariat”.

(5) i =area20; r =area4;
The unmodified algorithm yields “the corridor on
the first floor next to the secretariat on the first
floor”.

(6) i =area20; r =area4;
After the modification the algorithm produces “the
corridor on the first floor next to the secretariat”.

Conclusions
In this paper we have presented an approach to apply-
ing the incremental algorithm for GRE to the domain of
large-scale space, with an emphasis on its application in
a mobile robot office assistant scenario. We have shown
how our method of conceptual spatial mapping provides
a knowledge base for the GRE algorithm. We have argued
further that the construction of the context and contrast
sets using our method for topology traversal is an impor-
tant step towards generating appropriate referring expres-
sions in large-scale space. More importantly, the same
method can be used in scenarios where the robot has to
provide a verbal route description from a given start posi-
tion to a target location. The representation of the user’s
knowledge is another important parameter for the route
description task where new discourse referents have to be
introduced sequentially in order to allow for the genera-
tion of appropriate referring expressions.

Future work
In our current approach, the list of preferred attributes is
static. Other approaches, e.g. (Kelleher and Kruijff, 2006),
have shown that a dynamic ordering of attributes based on
their (relative) salience yields better results. It remains an
issue of future work to explore the effect and measurabil-
ity of different kinds of salience (e.g. visual and discourse
salience) in the context of GRE for large-scale space. A
first approach could be to work with different preference
lists for different types of referents (e.g. objects vs. areas).

The aforementioned approach of (Kelleher and Krui-
jff, 2006) provides an excellent opportunity for integrating
qualitative spatial reasoning for small-scale space with the
more allocentric conceptual spatial reasoning method of
the approach presented in this paper. Using the method of
topology traversal, the robot could conceivably produce
referring expressions that incorporate entities and prop-
erties at different levels of abstraction, thus leading to a
“zooming-in-and-out” behavior, like e.g. “the ball to the
left of the box on the table in the kitchen on the third
floor”. Since both approaches are compatible in that they
build upon on the same basic incremental GRE algorithm,
we claim that the capabilities of our robot to refer to en-
tities in the world can be significantly improved by com-
bining these approaches.
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Abstract

The use of probabilistic models in robotics is becoming
mainstream. These models are generally designed to serve
a specific purpose, such as mapping or control. This paper
argues that, rather than building specialized models suit-
able for some specific task, roboticists should focus on the
problem of building general statistical models. This is sim-
ply the problem of constructing a model of the sensor data,
which is equivalent to compressing the sensor data. This
perspective has two advantages. First, it allows strong com-
parisons of different techniques: models which compress
the sensor data to a smaller size are better. Second, the
utility of the general statistical model is potentially much
broader than a model designed to serve a specific purpose.
This view is motivated by the field of statistical natural lan-
guage processing, where constructing a language model is
a core problem for many different applications. Further-
more, the general statistical modeling view opens a new
door for statistical learning due to the immense amount of
data available, which justifies the use of highly complex
models.

We present a technique, based on the Maximum Entropy
framework, for general statistical modeling of laser range
data from a mobile robot. We show that the model ob-
tained in this way can be used to localize the robot from
sensor observations, and can be used to detect changes in
the environment.

Introduction
The use of probabilistic models for robotics has recently
become mainstream. However, the models employed are
typically intended to be used for some specific purpose,
such as mapping (Thrun, 2002) or control (Wolpert et al.,
2003). The idea of this paper is that it is important and use-
ful to construct general statistical models without knowing
in advance what the application of the model will be. If
a good general statistical model can be obtained, it can be
used for many different applications. This paper illustrates
the idea in the well-known scenario where the system is a
mobile robot and the data comes from laser range finders.

Current robotic systems can generate data at rates on the
order of 100 Mb/s. Transmitting or storing this data would
seem then to be an impossible task. However, in spite of
this nominally massive data rate, it is clear that the funda-
mental information generation rate is much lower because
the data is highly redundant. For example, each image
frame contains a large amount of information about the

subsequent frame. By creating a code which exploits this
correspondence, we should be able to significantly reduce
the code length of the data. One of the basic results of in-
formation theory tells us that in order to achieve the best
possible data compression rate, we need a perfect model
of the probability distribution that generated the data. Dis-
crepancies between the real source and our model will lead
to suboptimal compression rates. Thus, our goal of com-
pressing data leads us directly to the goal of constructing
a good model of the data. Conversely, we can judge the
quality of our model by how well it allows us to compress
the data.

Several of the ideas in this paper are inspired by the
field of statistical natural language processing (SNLP). A
major goal of SNLP is to create a good language model,
which is simply a probability distribution p(s) over sen-
tences in the language. Though there are many interest-
ing applications of SNLP, three important ones are speech
recognition, machine translation, and text compression.
By the equivalence between statistical modeling and en-
coding mentioned above, it is clear that the central re-
quirement for text compression is to have a good language
model. It turns out that this is a requirement for the other
two applications also. The machine translation and speech
recognition problems are generally formulated as finding
s∗ in the following equation:

s∗ = argmax
s

p(x|s)p(s) (1)

Here s is a sentence, and x is either the translation of
that sentence into another language (machine translation)
or the spoken sound of the sentence (speech recognition).
Then the system chooses s∗ as either the translation of the
sentence into another language, or the text version of the
utterance. It is clear that for this technique to work, one
must use a good language model p(s).

We see that in SNLP a good language model is a widely
(perhaps universally) useful tool. This is an important
conceptual advance for two reasons. First, progress in
language modeling can be compared easily, by using the
compression rate. Second, it allows advances made in one
area to immediately benefit many different applications (a
similar effect to how an increase in CPU speed immedi-
ately benefits a diverse set of software applications).

In order to create good language models, one typically
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first obtains a large corpus of text. Because of the internet,
it is now possible to access corpuses of text that are on
the order of gigabytes in size. Then a statistical model is
trained using the corpus, leaving out some part to be used
as test data. Finally one measures the log likelihood of the
test data given the model. This value is equivalent to the
theoretical optimal code length to which the test data can
be compressed using a code based on the model. Several
techniques exist for constructing codes based on probabil-
ity distributions which yield asymptotically optimal code
lengths (Witten et al., 1987).

One of the most powerful set of techniques in SNLP
is based on the principle of Maximum Entropy (Berger
et al., 1996; Rosenfeld, 1996). This principle, first advo-
cated by (Jaynes, 1957), instructs us to select the statis-
tical model with the highest entropy that satisfies the set
of constraints imposed by the data. The Maximum En-
tropy framework is also attractive because it allows us a
wide degree of liberty to define features which reflect our
knowledge of the structure of the domain. For example,
in SNLP one feature which is sometimes used is based on
the part of speech of the previous word. In English, if the
previous word is an article (“a”, “an”, “the”) it becomes
highly probable that the subsequent word is a noun. Thus
a feature which can exploit such structure should be able
to improve the compression rate.

This paper is essentially an attempt to transplant both
the overall approach of general statistical modeling and
a particular technique (MaxEnt) from SNLP to robotics.
Given any robotic system one can easily define a set of
models for the data produced by that system, and compare
those models using the code length / log-likelihood. The
key analogy here is between a corpus of text and a “cor-
pus” of sensor data generated by a robotic system.

The most basic application of this research can be found
in the direct link between modeling and compression.
Compressing the large amount of sensor data generated
by a system is clearly beneficial for several applications.
For example in the case of remote operation it is benefi-
cial to compress the data as it is sent from the robot to the
operator. In the case of surveillance, the compression rate
provides a natural mechanism by which to detect abnor-
malities. We also expect that, as is the case in SNLP, a
good statistical model of the sensor data will be useful for
a variety of applications.

The research described in this paper is superficially sim-
ilar to the problem of simultaneous localization and map-
ping (SLAM), which has a large literature (Montemerlo
et al., 2002; Dissanayake et al., 2000). However, in our
work the emphasis is on modeling of data, rather than ob-
taining a map.

Maximum Entropy Framework
The Maximum Entropy (MaxEnt) framework describes
a set of methods for modeling data. These methods
have recently had great success in modeling natural lan-
guage (Pietra et al., 1997; Rosenfeld, 1996). In this pa-
per we use the MaxEnt framework to model sensorimo-

tor data. The MaxEnt framework is appealing because it
allows us wide liberty in defining features for use in con-
structing the model. However, the general approach to sta-
tistical modeling of sensorimotor data described in the in-
troduction does not depend on the choice of one particular
modeling tool.

Maximum Entropy as a general principle of statistical
inference was first described by (Jaynes, 1957). Given a
set of observations, the principle instructs us to select the
maximum entropy model which is consistent with the ob-
servations. This leads to a probability distribution of the
form:

p(x) = k exp
(∑

i

λi fi(x)
)

(2)

Where k is a normalization constant and fi(x) are a set
of feature functions. The parameters λi are determined by
a set of constraints given by the data:

Ep[ fi] =
1
N

∑
data

fi(x) (3)

In other words, we require that the empirical expecta-
tions of the feature functions be equal to the expectations
induced by the model. In theory the feature functions can
take any form that is thought to be useful. In practice they
are often binary functions of the form:

fi(x) =
{

1 (cpi(x) == T )
0 (4)

Where cp(x) is a context predicate which can be true or
false. Context predicates can also be thought of as a set
of labels which are attached to a data sample. In this pa-
per we will be particularly interested in conditional Max-
imum Entropy estimation. Here we are interested in ob-
taining estimates of p(y|H), where H is the history of data
preceeding y. This situation is covered with the same ba-
sic procedure, except now we have more complex feature
functions:

fi j(y,H) =
{

gi(y) (cp j(H) == T )
0 (5)

We refer to the gi(y) as conditional functions. Thus,
a feature function fi j consists of a context predicate cp j
and a conditional function gi. The conditional functions
may have different forms, which lead to different models.
When y is not interpretable in terms of continuous numeric
values, a common choice is gi(y) = δyyi . The feature func-
tion only fires for a particular value of y. This technique
can be used even if the values for y are numeric, but may
require a large number of parameters, depending on the
quantization. A model with fewer parameters but good
performance can often be defined by using two functions
g1(y) = y and g2(y) = y2. This corresponds to building
an MaxEnt model from the first and second moments of y,
which gives a Gaussian distribution.
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Finding the Parameters
The main difficulty in maximum entropy estimation is to
obtain the parameters of the distribution (λi above). There
are several algorithms for this purpose (Malouf, 2002), the
most well-known of which is called Generalized Iterative
Scaling (Darroch and Ratcliff, 1972). The algorithms all
attempt to maximize the log likelihood of the data under
the model:

L(Λ) =
∑
data

p̃(y,H) logqΛ(y|H) (6)

Where p̃(y,H) is the empirical distribution and qΛ(y|H)
is the model with parameters Λ. An equivalent formula-
tion of the problem is to find the set of parameters such
that:

∑
data

qΛ(y|H)p̃(H) fi j(y,H) =
∑
data

p̃(y,H) fi j(y,H) (7)

The equivalence between these two formulations can be
understood as follows. For probability distributions of the
form (2), the set of parameters which maximizes the like-
lihood of the data and the set of parameters which pro-
duce the maximum entropy distribution while respecting
the constraints produced by the data are identical (Berger
et al., 1996).

In this work we use the standard Generalized Iterative
Scaling (GIS) algorithm. This technique finds the optimal
parameters λi j by performing updates of the form:

∆λi j = log
(

E p̃[ fi j]
EqΛ

[ fi j]

) 1
C

(8)

Where Ep̃ denotes empirical expectations (RHS of
Eqn. 7) and EqΛ

denotes expectations under the current
model (LHS of Eqn. 7). The value C is a constant such
that

∑
i j fi j(x) = C for each element of the training data,

which is required for the proof of convergence. This can
be easily satisfied by the use of dummy features, but if the
value of C is large, it can slow down convergence. The log
likelihood is a convex function of the parameters λi j, so
this technique is not affected by local minima.

Statistical Modeling Techniques
Our goal in this research is to give an example of how
the general statistical modeling paradigm can be applied
to robotics. For this reason, we use a simple and well-
known application area: a mobile robot navigating in an
unknown environment, collecting sensor data from a set
of laser range finders. The environment used in shown in
Figure 1. The robot’s control system consists of a simple
Braitenberg architecture. This basically tells the robot that
if an obstacle is detected on the left side, the robot should
turn right. Surprisingly, this very simple behavior leads to
good obstacle avoidance properties (Braitenberg, 1984).

In this section we describe two different approaches to
statistical modeling of the robot data. The first one is
based on attempting to model probability distribution for

Figure 1: Map A, used to generate training data. The robot
is shown in red, with grey lines indicating sensor rays.

Figure 2: Map B, used to test for environmental change
detection.

sensor readings based on features of the history such as
the previous sensor readings, and the location of the robot.
In the second approach, we transform the sensor readings
into a new event space, create a statistical model in the
new space, and then transform back to predict the sensor
readings.

Direct Statistical Modeling of Sensor Readings
In this section we describe techniques for constructing
probability distributions p(y|H) over sensor readings y
given the history H. In principle, the history can include
any information which is available to the robot at the time
of prediction. In the following, we notate st

k as the reading
of sensor k on timestep t, whereas st denotes the full set
of sensor readings on timestep t Both the previous sensor
reading st−1 and the location r are understood to be in-
cluded in the history H. We make a distinction between
next sensor reading y which is the object of prediction and
past readings s which can be used for the prediction. Note
also that we are building separate statistical models for
each of the 12 sensors. Some Trackers assign the same
context predicate to all sensors, while others assign differ-
ent predicates to each (see Table 1).
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To use the Maximum Entropy framework, one must de-
fine a set of feature functions that will be useful in pre-
dicting sensor readings. In statistical natural language pro-
cessing, these feature functions typically refer to the words
preceeding the target word in a sentence. For example, if
the preceding word is “the”, there is a high probability that
the subsequent word will be a noun. In this work we de-
fine feature functions which refer to various functions of
the previous sensor readings and the robot location.

In the definitions below we refer also to the conditional
functions gi(y). In the experiments described below we
use two sets of conditional functions, “delta” and “nu-
meric”. The delta conditional functions are of the form
gi(y) = δ(y− yi), where yi range over all possible sensor
readings. The numeric conditional functions are g1(y) = y,
g2(y) = y2. If used alone, these two functions suffice to
determine a Gaussian probability distribution. However,
we observed in the course of experimentation that very
often the empirical distribution corresponding to a partic-
ular feature function would include a roughly Gaussian
set of values in an intermediate range, and additionally a
significant number of values at the maximum sensor read-
ing. For this reason we added a third conditional func-
tion g3(y) = δ(y− ymax) to the numeric set, where ymax
is the maximum sensor reading. The numeric conditional
functions use fewer parameters than the delta conditional
functions (3 vs 64), so we use the latter only in conjunc-
tion with feature functions that generate a small number of
predicates (the total number of parameters is the number
of conditional functions times the number of predicates).

We refer to a package of feature functions, conditional
functions, and associated logic as a “Tracker”. We have
defined several different types of Trackers, which are de-
scribed below. They have different properties as shown
in Table 1. This table shows the approximate number of
predicates that can be produced by the Tracker, the num-
ber of predicates generated per step, the type of condi-
tional functions gi(y) used for the Tracker, and whether
the Tracker is location-dependent or sensor-specific.

Previous Value Tracker (PVT) - use the value of the
sensor on the previous timestep (st−1

k ) to predict the next
value:

vk = st−1
k (9)

fi j(y,H) =
{

gi(y) (Vj ≤ vk < Vj+1)
0 (10)

Since there are 64 values the reading can take on, there
are 64 possible context predicates for each sensor (V =
{0,1,2 . . .63}) At each time step there can be only one
active context predicate of this type per sensor.

Neighbor Previous Value Tracker (NPVT) - use the
neighboring sensor readings on the previous step, that is
st−1

k±1. As with the Previous Value Tracker, there are 64
possible values. The intuition behind this tracker is that
sensor readings can often be discontinuous as the path of
the sensor ray suddenly connects with an obstacle. This

could cause very bad prediction breakdowns, if the pre-
diction system assumed that the sensor reading doesn’t
change rapidly. Typically, however, if a discontinuity is
about to occur then there should be a large gap between
the previous value of the sensor and the previous value of
its neighbor.

Obstacle Tracker (OBST) - Here we use a simple geo-
metric obstacle position estimator (denoted OPE) to esti-
mate the position of an obstacle from the previous sensor
reading st−1. This function assumes the obstacles are cir-
cular and of known radius. The obstacle position estimator
only fires if there are two or more adjacent sensor readings
that report a non-maximum value.

v = OPE(st−1) (11)

fi j(y,H) =
{

gi(y) (v ∈ ROBST
j )

0
(12)

This requires a number of context predicates which is
depends on how many regions ROBST

j we use. In the fol-
lowing experiments, we use a quantization which gives
about 1000 possible locations. Note that the locations are
relative to the robot’s position. This sensor will produce
multiple context predicates if there are multiple obstacles
detected.

Basis Function Tracker (BFT(n)) - given the previous
full sensor reading st−1 and a vector φ, use the dot product
to define a set of feature functions:

v = φ · st−1 (13)

fi j(y,H) =
{

gi(y) (Vj ≤ v < Vj+1)
0 (14)

In other words we take a weighted sum of the all the
sensor readings from the previous step to generate the con-
text predicate. The question now is how to find a good
choice for φ. The intuition behind this concept is that if a
good set of basis functions is used, then one of them might
respond strongly to a particular configuration of obstacles
that is highly informative. In the following we use Legen-
dre polynomials to define φ:

φ
n
k = Pn(xk) (15)

Where Pn(x) is the nth Legendre polynomial and the
xk are 12 equally spaced points on the interval [−1,1] in-
clusive. The notation BFT(n) refers to a feature function
defined using φn.

Simple Map Tracker (SMT) - This Tracker uses a fea-
ture function that depends only on the robot’s current lo-
cation, and not on its orientation. The rationale here is that
the number of predicates will be prohibitively large if we
use a feature function which depends on the orientation
as well as the pose. Furthermore, because of the way the
robot moves through the environment, it is often the case
that its position in the map determines its orientation as
well. For example, when the robot is located in the narrow
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Tracker # Predicates gi(y) Type Sensor-Specific Loc. Dep.? Predicates per Step
PVT 64 Delta Yes No 1

NPVT 128 Delta Yes No 1-2
OBST ∼1000 Numeric No No 0-3

BFT(n) ∼100 Delta Yes No 1
SMT 4096 Numeric No Yes 1
SPT ∼40000 Numeric Yes Yes 1

REXT(n) 4096 Numeric Yes Yes 1

Table 1: Tracker information.

space between two obstacles, it is typically not pointed to-
ward the obstacles (sometimes this is not the case, due to
the random initialization of the robot’s position). We use
a quantization of the map that leads to 4096 regions RSMT

j .

v = rx,y (16)

fi j(y,H) =
{

gi(y) (v ∈ RSMT
j )

0
(17)

Sensor Position Tracker (SPT) - use a feature function
based on the current position and direction of the sensor
base:

v = rk (18)

fi j(y,H) =
{

gi(y) (v ∈ RSPT
j )

0
(19)

Here rk is distinct from the robot’s location r because
the former refers to a sensor’s position on the external sur-
face of the robot, while the latter refers to the robot’s cen-
ter. More importantly the rk have different angular com-
ponents. We assume knowledge of the relationship be-
tween the robot pose and the pose of each sensor. This
Tracker should be very informative - a given sensor should
always respond with the same reading at a given location.
However, there are too many possible poses to create fea-
ture functions that respond exactly to every one of them.
In other words, we need to coarsely quantize the data in
order to limit the number of context predicates required.
In these experiments we use a quantization leading to ap-
proximately 40,000 regions RSPT

j .
Ray Extension Tracker (REXT) - use a set of feature

functions based on the grid regions which the sensor ray
goes through. Thus, we define a set of feature functions
fi jn which are true if the nth sensor reading for a timestep
is within a region R j. The function EXT (rk,n) denotes
extension: it calculates the position in world coordinates
corresponding to the nth sensor reading. To limit the num-
ber of predicates, we use n ∈ {16,32,48,64}.

vkn = EXT (rk,n) (20)

fi jn(y,H) =
{

gi(y) (vkn ∈ RREXT
j )

0
(21)

Again, the number of context predicates is determined
by the size of the regions RREXT

j . For this Tracker we use
4096 regions. At each timestep, this Tracker produces 4
context predicates for each sensor.

Statistical Modeling in the Transition Space
In the previous section, we were interested in making pre-
dictions about probability distributions of the sensor read-
ings p(y|H). In this section, we use a different approach.
Here, we transform the sensor data into a new space and
create a statistical model of the data in the new space.
Then, in order to predict sensor readings, we transform
predictions made by the model back into the sensor space.

The new event space classifies sensor ray transitions
X → X ′ as either STOP or PASS. The X locations are
determined by the tracing the path taken by the sensor ray.
In other words, for each possible sensor reading we find
the position that reading corresponds to in the real world.
For each timestep, this method generates a large number of
PASS transitions (because the sensor ray typically passes
through several positions before being stopped) and possi-
bly one STOP transition, if an object was detected by the
sensor. Thus we are interested in constructing probability
distributions of the form p(STOP|X ,X ′).

The same MaxEnt framework is used, but here we ap-
ply a much smaller number of feature functions. The fea-
ture functions correspond to obstacles of known radius, at
various positions. Also, in this case we have only two out-
come values (PASS or STOP) as opposed to the 64 sensor
reading values in the previous section.

cpi j(X ,X ′) =
Rmin < D(X ,Pi j) < Rmax
D(X ′,Pi j) < D(X ,Pi j)

(22)

fi j(y,X ,X ′)=
{

1 (y == STOP, cpi j(X ,X ′) == T )
0

(23)
Where D(. . .) is Euclidean distance. Thus, the feature

function fires if the first point of the transition is within
an annular ring of inner radius Rmin and outer radius Rmax,
and the second point is closer to the center point Pi j than
the first point. This function hopefully captures the notion
of a sensor ray being stopped by an obstacle centered at
Pi j. Here we assume that the obstacle radii are approxi-
mately known.
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This method gives us a model for probabilities
p(STOP|X ,X ′). In order to predict the sensor readings,
we must transform these probabilities into probabilities for
sensor readings p(y|H) as in the above section. This can
be done by the following simple recursive process.

T0 = 1 (24)

p(y = Yi|H) = Ti · p(STOP|Xi,Xi+1) (25)

Ti+1 = Ti−P(y = Yi|H) (26)

Here, Ti represents the total probability that the sensor
has not yet encountered a stopping point. If the stopping
probabilities were identical and equal to γ for every tran-
sition, then this would just be an exponential distribution
with parameter γ. This technique captures the fact that if
a sensor ray goes through the vicinity of two obstacles,
each of which have equal probability of stopping it, then a
sensor reading corresponding to the closer obstacle has a
greater probability.

In our experiments, we used a quantization giving ten
thousand possible obstacle locations (and the same num-
ber of feature functions). For completeness we also used
several feature functions corresponding to walls, but as we
are primarily interested in inferring obstacle locations we
skip over the wall feature functions.

Experimental Results
The robot’s sensor apparatus consists of 12 laser range
finders. They are arrayed on the front face of robot. For
the purposes of this experiment, we assume that the sen-
sors report measurements with 6 bits of precision on each
timestep, for a total of 72 bits of data per timestep.

The robot runs through trajectories which are 150
timesteps long. Thus each trajectory generates 10,800 bits
of data. The training data consists of 500 trajectories for a
total of 5,400,000 bits and the test is uses 100 trajectories
for a total of 1,080,000 bits. We will be particularly inter-
ested in the log likelihood of the model on the test data, so
we will often compare values achieved by different models
to the 1080K value. We ran two sets of experiments, one
of which was noise-free and one of which applied noise to
the sensor values. The noise was applied by adding Gaus-
sian random values to the sensor reading. However, if af-
ter applying the noise the distance to an obstacle was still
greater than the sensor range, then the sensor reported the
maximum 6-bit reading. In other words, the noise never
caused the sensor to report a non-maximum value if the
there was no obstacle within range. The standard devia-
tion of the noise was one tenth of the robot’s radius.

Our first goal is to determine which combination of
Trackers give the best performance, measured by log like-
lihood on the test data. If we use too many Trackers, we
will get bad performance due to overfitting. It is also pos-
sible that some of the Trackers are simply ill-suited to the
task at hand.

By inspection during the course of experimentation, we
observed that the Previous Value Tracker (PVT) gives the

Tracker Log-Like (Kbits) Log-Like (Kbits)
Noise Free Sensor Noise

REXT(16) 224 321
REXT(32) 208 312
REXT(48) 209 312
REXT(64) 215 318

OBST 210 317
SPT 261 360

NPVT 173 302
SMT 218 322

BFT(2) 194 313
BFT(4) 197 313

PVT(alone) 222 325
Trans-Space 117 293

Flat 1080 1080

Table 3: Negative Log-Likelihood achieved on the test
data by combining various Trackers with PVT.

best compression rate when used alone. So, the first re-
sult reports the performance of various Trackers coupled
with the PVT. Table 2 shows the results from the train-
ing phase. We report the negative log-likelihood of the
model on the training data for the noisy case and the noise-
free case. We also show the number of GIS iterations
and time required for convergence. For compactness we
show only the two Basis Function Trackers that gave the
best results. Somewhat surprisingly, the Trackers based
on sensor readings from the previous timestep (OBST,
NPVT, and BFT(n)) give better compression rates than
those based on the robot’s location (SMT, SPT, REXT(n)).
This may be because the previous sensor reading-based
Trackers require fewer parameters. It may be that the lo-
cation based Trackers can achieve good performance, but
only if a larger amount of training data is used.

From these results (confirmed by results on the test data
below) it appears that the best model can be constructed by
using the PVT and the Neighbor Previous Value Tracker.
We now attempt a third test in which we use three Track-
ers, these two combined with the others. The results for
the third test are shown in Table 4. The best third Tracker
appears to be the 4th Basis Function Tracker, BFT(4). Ob-
serving that the improvement in code length over the pre-
vious combination is relatively modest (165 Kbits vs 173
Kbits) we conclude that not much further progress is pos-
sible given the amount of data we are using.

Also in Table 2 is shown the results for the Transition
Space model. We see that this technique performs better
than the Tracker-based models.

Application to Pose Estimation
In this section we describe how the MaxEnt model de-
veloped above can be used in conjunction with a particle
filter to estimate the robot’s pose as it moves through the
environment. In order to generate the statistical model, we
assumed that knowledge of the robot’s location was avail-
able. Now we show that once we have the model, we can
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Tracker Train Data LL Train Data LL GIS Iterations GIS time (s)
Noise Free Sensor Noise

REXT(16) 680 1026 1607 2770
REXT(32) 668 1016 1475 2648
REXT(48) 669 1014 1309 2589
REXT(64) 684 1028 1161 2424

OBST 715 1064 755 8747
SPT 685 1024 1397 3619

NPVT 544 969 509 772
SMT 707 1053 1108 2055

BFT(2) 629 1021 302 485
BFT(4) 648 1033 299 526

Flat 5400 5400 - -
Trans-Space 61 184 863 592

Flat (TS) 8936 8899 - -

Table 2: Training information for various Trackers combined with Previous Value Tracker. “Flat” is the log-likelihood
/ codelength of the training data that would result from making uniform predictions of sensor readings. Also shown is
analogous information for the Transition Space model. Note that the flat codelength for the Transition Space model is
different from the Tracker models, because we are modeling a different event space.

Tracker Log-Like (Kbits) Log-Like (Kbits)
Noise Free Sensor Noise

REXT(16) 192 308
REXT(32) 178 302
REXT(48) 181 301
REXT(64) 185 304

OBST 169 299
SPT 245 340

SMT 180 306
BFT(2) 166 301
BFT(4) 165 299

Flat 1080 1080

Table 4: Negative Log-Likelihood achieved on the test
data by combining various Trackers with PVT and NPVT.

use it to find the robot’s position.
For conciseness we give only the briefest possible de-

scription of the particle filter. The interested reader is
referred to the tutorials (Arulampalam et al., 2002; Rek-
leitis, 2004). This technique allows us to estimate some
quantity of interest, such as robot location, from probabil-
ity estimates obtained with a statistical model. The algo-
rithm represents the PDF of some variable of interest as a
weighted sum of a large number of particles. The particle
filter performs the following operations:

• Prediction step - update the positions of the particles by
sampling from the robot’s motion model.

• Update step - use the information from a newly avail-
able sensor reading to update the particle weights.

• Resample step - if the total weight is densely packed
into a small set of particles, resample by dropping low-
weight particles and adding copies of high-weight par-
ticles.

The main requirements for using the particle filter are a
good motion model for the robot and a good observation
model to use for the update step. The update step changes
the probability distribution to reflect a newly available sen-
sor reading s by updating the weights wi of the particles:

w′i = wi ∗ p(s|ri) (27)

Thus if a particle representing a position ri gives a very
unlikely prediction of the sensor reading s its weight will
be greatly reduced. This observation model p(s|ri) is ex-
actly the object we developed in the previous section. Un-
fortunately, however, we cannot use the best model as de-
termined by the compression rate, because these Track-
ers do not use location information. In the following
experiments we test two models using the SMT and the
REXT(32), as well as the Transition Space model.

An additional requirement for using the particle filter is
a motion model for the robot. This is a probability dis-
tribution over subsequent states given the previous state
and the motor command. The point is that we don’t as-
sume that the motion model is perfect, but rather subject
to a certain amount of noise (if there were no noise, we
could use the motion model to obtain the exact location
of the robot at every step). In this work, we do not con-
sider the motor commands issued by the control system,
but rather assume that the control system reports a noisy
estimate of the robot’s motion at each step. We separate
this into linear noise applied to the robot’s (x,y) position
and rotational noise applied to the robot’s orientation (θ).
We assume that these are both zero-mean Gaussian with
σ = .003. For comparison the robot’s radius is .042.

In initial experiments we noticed one problem that of-
ten occurs is that while the particle filter produces good
position estimates most of the time, occassionally it com-
pletely loses the position of the robot. In this case, the
particles become concentrated in a location far away from
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Figure 3: Average position error on particle filter local-
ization experiments. This plot shows the average position
error over an entire trajectory. The results are sorted so
that the highest error trajectory for each method is shown
on the right.

the robot’s actual position. This typically occurs when the
robot goes through a region for which the model has insuf-
ficient data, and so produces bad probability estimates. It
is then very difficult for the system to re-acquire the robot
position. In contrast, the open-loop particle filter (one in
which the update step is skipped) creates a wide cloud of
particles, some of which almost always overlap with the
robot’s real position.

We developed a slightly modified version of the particle
filter that exploits this phenomenon. There are some num-
ber of “hard” particles and some number of “soft” par-
ticles. All particles are updated normally using the pre-
diction and update rules. However, only the low-weight
hard particles are discarded during the resampling step.
The soft particles remain, regardless of how low their
weights drop. We observed that this has the following ef-
fect: sometimes the system builds up a large amount of
error, but after a few steps the error suddenly drops dra-
matically. This can be understood as follows: the system
first incorrectly assigns a large weight to some bad parti-
cles, but keeps the soft particles. It then becomes clear that
the bad particles are inconsistent, (because they are mak-
ing bad predictions), so weight is transferred back to some
of the soft particles that are making good predictions.

In Figure 3 we show the average Euclidean distance er-
ror between the particle filter’s estimate of the robot loca-
tion and the real position, where the average is taken over
a single trajectory. The results from 30 trajectories are
sorted for the sake of comparison (the highest-error tra-
jectory for a given model appears on the right, the lowest-
error on the left). We used two Tracker based models,
one using the SMT and another using the REXT(32). For
these two, 1000 “soft” and 1000 “hard” particles were
used. We also show the results for the Transition Space
model. This model is quite computationally expensive, so
we used only 100 hard particles and no soft particles in
this case. However, good results can be obtained nonethe-

Figure 4: Detecting environmental change. After the
100th trajectory, the environment is changed from map A
to map B.

less, as shown. For comparison we show also show the
error resulting from an open-loop particle filter with 1000
particles.

Application to Environmental Change Detection
In this section we describe a method for using the sta-
tistical models of sensor data developed in the previous
sections for the purpose of detecting changes in the envi-
ronment. The intuition here is that the probability mod-
els developed during the training phase are well-suited to
the environments which were used to generate the train-
ing data. Thus if the environment is changed, the mod-
els should “detect” that change by reporting a high code
length for the data from the new environment.

To test this idea, we looked at the change in codelength
resulting from a change in the environment. We generated
200 trajectories. The first 100 were from the original map
A shown in Figure 1, the data from which was used to train
the models. The second 100 trajectories were from a dif-
ferent map, Figure 2. We graphed the codelength assigned
to each trajectory. The results are shown in Figure 4. Ev-
idently the technique works very well, as the code length
immediately spikes when the environment changes.

However, using the best model (PVT+NPVT+BFT(4))
as indicated by the compression rates achieved in the pre-
vious section did not give perfectly clear results. This
can be understood because the Trackers that were selected
used primarily local information about the structure of the
sensor readings. The results shown in green are gener-
ated using a combination of the REXT(32) and the BFT(2)
Trackers. Also shown are the results for the Transition
Space model.

Conclusion
This paper describes an approach to robotics based on the
creation of general statistical models to describe the data
generated by the system. Motivated by work in the field of
statistical natural language processing, we attempt to build
statistical models of data generated by the system. The
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goal is simply to find the model which achieves the best
log likelihood for the data, which is equivalent to com-
pressing the data. Because the performance of a model
is graded by one number, we are able to make progress
in a clear direction. A major hypothesis of this approach
is that the general statistical model produced in this way
will be useful for practical applications. This hypothesis is
supported by the preliminary results given in this paper, as
well as by work in SNLP where improvements to the lan-
guage model result in increased performance in machine
translation and speech recognition applications. However,
we also saw that for some applications, because the differ-
ent modeling techniques worked in different ways, it was
not the model which produced the best compression that
was the most useful.

The result of this paper showed that a general statistical
tool, the Maximum Entropy framework, can be used for
the problem of understanding sensor data from a mobile
robot. This contrasts to the standard approach of using a
specialized statistical model, such as one based on map-
ping. The key advantage of the general perspective is that
it can be used in many other situations. If we wanted to
use visual data instead of range data, it should be quite
straightforward to define a new set of context predicates
which respond to visual data. For example, we could de-
fine a set of predicates which respond to the presence of
lines, corners, or other shapes in images.

One powerful idea in computational neuroscience is
that the brain uses essentially only one learning algorithm
for all of its activities (Quartz and Sejnowski, 1997). A
weaker, but perhaps more plausible, version of this idea
is that the brain uses a small number of basic algorithms,
and all cognitive abilities arise from interactions of this
small set. If this idea is true, it is a powerful argument for
the general statistical modeling approach. Instead of us-
ing separate algorithms for object recognition, mapping,
dextrous control, language, vision, and all the other as-
pects of cognition, the general approach simply consid-
ers data as a generic mass of bits in which structure must
be found. This view is certainly valid from the perspec-
tive of individual neurons, which can hardly be said to
“know” whether the data impinging on their synapses is
visual, aural, tactile, or olfactory. Following this line of
reasoning we are led to the conclusion that language scien-
tists and roboticists fundamentally seek to understand the
same thing: the process by which the brain extracts struc-
ture and meaning from data. This conclusion is supported
by the results of this work, where a technique which was
originally used for statistical natural language processing
turned out to be useful for modeling sensory data from a
mobile robot.

It can be argued that most subfields of artificial intelli-
gence are fundamentally concerned with statistical mod-
eling. Computer vision, robotics, planning, natural lan-
guage processing, and many other facets of AI can be for-
mulated as statistical problems. Historically, the field of
statistics has operated in regimes where the data samples
are relatively few in number and statistically independent.

One of the great lessons of statistical learning theory is
that when the data is limited, the model built from the data
must be simple in order to avoid overfitting. In the VC
theory (Vapnik, 1998), model complexity is quantified by
the VC dimension; in MDL theory (Rissanen, 1978), it
is quantified by the code length required to represent the
model. So, a standard problem in statistics would be to
fit a Gaussian model to a set of 1000 data points - a small
amount of data, and a simple model to describe it. When
we enter the regime of data rates on the order of 100 Mb/s,
the situation is entirely different. The vast amounts of
data available justify the use of enormously more com-
plex models. Traditional application-oriented research in
artificial intelligence ignores the vast bulk of data avail-
able, preferring instead to focus on a small subset of data
for which labels or ground truth can be obtained. In doing
so the research is necessarily limited in the complexity of
the models it can justifiably create.

While this study is only a first step, some important
principles were observed. The first is that even simple
methods can yield important improvements. This can
be seen as an illustration of the “cheap design” principle
of (Pfeifer and Scheier, 1999). In our case we observed
that predicting the sensor values based solely on the pre-
vious value yielded a decrease in code length of about
70% on the noisy data. Also, an important tradeoff ex-
ists between the fineness of the model and the amount of
data which is available. Thus we saw that features based
on the specific pose of the robot, which should give very
strong predictions, did not succeed because an insufficient
amount of data was available. However, it should be noted
that simply increasing the amount of data is not a cure-all.
Using more data will cause the learning algorithm to run
more slowly. Depending on the scaling properties of the
learning algorithm used, this may result in much greater
computational effort for very minor performance gains. In
order to achieve good results, we must not only use more
data, but also discover ways to handle the data more effi-
ciently.
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Abstract 
Today’s computer power enables us to create software 
agents that can process large amounts of data in very 
short time. Higher level cognitive processes, however, 
still remain the domain of humans. The aim of our 
research is to combine the power of both sides, to realize 
virtual agents that provide capable assistance to their 
users. In our approach we do not attempt to mimic human 
cognition. Rather, we enable the agents to learn via self-
experience, from positive and negative feedback by the 
user, and from communication with other agents of their 
kind using grounded and agreed upon symbols. The 
design of the agents is inspired by insights from embodied 
cognition - in particular from affordance-based robotics - 
that are transferred to a virtual context.  

The Rascalli Objective 
In the RASCALLI (Responsive Artificial Situated 
Agents that Live and Learn on the Internet) project, we 
aim at virtual agents, the Rascalli, that are capable of 
autonomously exploring the Internet, and of 
communicating with the user and with each other. The 
agents have to deal with an environment that is 
constituted of data including strings of written language, 
markup tags, audio and image files, log-files of user 
activities, etc.  

For an agent to explore its inherently dynamic 
environment according to the user’s interests it needs to 
gain a certain degree of autonomous and flexible 
behaviour. To achieve this, we transfer insights from 
affordance-based research initiated by Gibson (Gibson 
1986) and from affordance-based robotics research 
(Kintzler et al. 2007) to the design of the virtual agents 
and their environmental framework. Thus we develop 
agents whose behaviour is biologically inspired and who 
gain knowledge - clearly different from human 
knowledge, but grounded on the theory of human use of 
affordances - which amongst others forms the basis to 
realize communication between agents, and in the long 
run between agent and user.  

Affordance-based Approach 
Following the affordance approach, the environment is 
not perceived in terms of object or structure descriptions, 
but in an action oriented way, based on previously made 
experiences by the agent. The focus lies on what can be 
done with the structures in the environment - what they 

afford in relation to the acting agent. Thereby 
affordances describe the relation between the agent’s 
capabilities and its environment. For example, an action 
close fingers applied to a small object will result in an 
outcome gripped and therefore the affordance 
grippability exists between the agent and a small object 
of a certain width. Representing knowledge in that 
manner offers a basis for flexibility in performing tasks, 
e.g. if a human being wants to hammer a nail into a wall 
- has therefore a desired outcome in mind - and no 
hammer is currently present, she is flexible in finding 
objects that can be used to hammer a nail even if they do 
not have the body structure of a hammer. Solving such a 
task involves experience fragments about wall structures 
and materials, liftability of objects, how to control one’s 
own body, etc. that are combined and used for this 
particular situation. In humans this experience fragments 
are gained via a life-long interaction and learning 
process, rooted in infancy and childhood. 

To gain the mentioned flexibility in solving tasks 
requires that the represented interaction-based 
knowledge is at a level of abstraction that allows 
generalisation and dealing with novel situations. The size 
of this experience base of an agent correlates with the 
agent’s flexibility to adapt to different situations. 
Exploring the environment, the own interaction 
capabilities and outcomes of applying actions on the 
environment provide an experience base for further more 
purposeful interactions. In humans and also animals this 
is equivalent to play and exploration. 

Transferring this biologically inspired interaction-
based approach to the Rascalli agents enables the agents 
to gain knowledge about what they can do based on their 
own interaction capabilities and their own perception. 
This provides the basis for the required autonomous und 
flexible behaviour. As a very simple example, flexibility 
is required if a search engine or a database is 
unreachable. In this situation the virtual agent can choose 
a different one by knowing that the functionality and 
outcome of an alternative resource is similar. Flexibility 
is also required to adapt to different users and their 
interests – to know what types of output based on given 
input are appreciated by an individual user and what 
tools can be applied to provide the desired output. 

Virtual Agents Inspired by Robotics 
To realize an affordance based architecture for virtual 
environments, a virtual embodiment for our agents is 
created. They are equipped with a collection of sensor 
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channels geared towards the particular environment, and 
a set of specialized software tools (actions) through 
which they interact with the environment. The outcomes 
of the tools (of applying actions on the environment) are 
again treated as an input to the agent and perceived via 
the sensors channels in a way similar to a robot’s 
perception of the consequences of an action application.  

Depending on the developmental stage of the agent, 
tools are selected and executed arbitrarily, motivated by 
drives, or deliberately chosen based on the given input 
and previously made experience. Tools can be cascaded, 
whereby an output of a tool is part of the input of the 
succeeding tool. In this manner action chains are 
realized. After tool execution the environment, which 
amongst others contains the consequences of the tool 
application as well as user feedback and internal states of 
the agent, is again perceived. For each tool application 
the perceptions of the pre-application (I) and the post-
application (O) phase are stored, over time leading to 
tool-specific (T) application spaces containing all the 
episodes experienced with the individual tools. By 
finding similarities and deriving representative 
descriptions from the individual episodes of an 
application space a generalization process takes place 
(Irran et al. 2006). These I-T-O (input-tool-outcome) 
triplets form the agent’s experience base which enables 
the agent to gain representations of general input 
situations and desired outcomes of tool applications. It 
allows the agent to act more purposefully on future input. 
Since the episodes related with each tool application 
include user input and feedback, the agent does not only 
know what it can do, but also what is appreciated by the 
user and what is not. This together with the agent’s drive 
to get positive feedback from the user forms the basis for 
learning successful interactions in its environment. 

The Role of Communication 
To enrich the capabilities of the Rascalli agents they are 
equipped with symbol acquiring and communication 
mechanisms. This allows agents to share their 
experiences obtained through interaction with the 
environment. Each agent has its own experience base 
comprising generalizations over the outcomes (O) of 
action applications, and generalizations of the input types 
(I) tools (T) can apply to. Due to the differences in their 
experience bases a negotiation process between Rascalli 
takes place establishing common labels for their 
individual knowledge of inputs and outcomes. Such an 
agreement process includes several cycles of exchanging 
prototypes and/or single episodes. For instance an agent 
A provides a prototype description d to another agent B, 
B tries to match d to its own experience base. Given a 
successful match, the agents choose a common label 
depending on the existence of labels from previous 
negotiations. 

In case the match at prototype level is not successful, 
the agents resort to instance level. This may lead to the 
creation of new prototypes in the agents which form a 
new basis for establishing a common label. If the 
negotiation at instance level fails, the agents’ current 
experience bases are too distant. This however may 
change with further acquisition of knowledge. Using a 

set of labels, agents can exchange information more 
efficiently than by exchanging prototype representations 
or instance data. Since the shared labels are grounded in 
each agent’s experience due to virtual embodiment and 
the affordance approach, knowledge exchange is 
possible even though the agents do not share the same 
internal representations. 

With the agreed labels, agents can exchange task 
solving strategies: which tools or tool chains to use in a 
given situation, how to react on a given input, or reach a 
desired outcome. For example, an agent may present user 
input to another agent and ask for a recommendation 
what tool to use. This reduces the search space of 
individual agents for finding applicable tool or tool chain 
usage and increases the probability of satisfying the user. 

With the presented affordance-inspired approach, we 
have established a basis which allows us to 
systematically explore how the design of an environment 
and the sensor channels of a virtual agent influence the 
acquisition of knowledge via self-experience, how 
grounded and negotiated labels can lead to shared 
knowledge among individual agents, how the 
distribution of knowledge in groups of agents is 
influenced by different strategies of label agreement, and 
which strategies of communication and learning best 
increase the agent’s capabilities in assisting the user.  
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Understanding  language  is  a  key feature  required  by 
many  robotics  and  human  assistance  applications  in 
order  to  simplify  human-machine  interaction. 
Furthermore,  from  a  brain  researchers  perspective, 
language is  one of the most  exciting and fundamental 
features  of the  human  brain.  We have implemented  a 
biologically  inspired  approach  to  language 
understanding  utilizing  Hidden  Markov  models  and 
neural associative memories in a robotics scenario (Fay 
et al. 2005). The robot demonstrates its understanding of 
simple  command  sentences  like  “bot  show plum”  by 
performing  corresponding  actions.  The  scenario  is  a 
robot  standing  near  to  a  white  table  with  different 
objects lying on it. The robot receives spoken command 
sentences  and  has  to  determine  their  meaning  and 
perform a corresponding action (see Figure 1).
The  system  uses  a  standard  Hidden  Markov  Model 
(Rabiner  and  Juang  1993)  approach  for  basic 
recognition  of  phonetic  features  (triphones)  and 

forwards  the  extracted  feature  stream  to  a  neural 
network  system.  Besides  our  general  interest  in  brain 
research,  there are  also technical  reasons that  support 
the idea to implement a neural system: Neural networks 
are able to flexibly handle and interpret  ambiguous or 
incomplete  input  and  thus  are  a  natural  choice  for 
systems that require a high amount of fault tolerance.
The network in our system consists of several modules, 
each of which is implemented using binary associative 
memories (Palm 1982).  The networks architecture can 
roughly  be  partitioned  into  the  following  three  main 
parts:

1. word recognition network: translates the stream 
of triphones into word representations

2. sentence  recognition  network:  validates  the 
stream of words against a given grammar

3. action  planning  network:  initiates  actions 
required  to  fulfil  a  correctly  understood 
command sentence

There  is  also  a  radial  basis  function  based  object 
recognition  network  (Kaufmann  et  al.  2005)  in  the 
system that is used by the action planning part. For an 
overview of the model architecture, see  Figure 2. Note 
that  the  connections  between  the  modules  are  mainly 
going in one direction and there is not much feedback 
used  yet.  However,  each  connection  can  forward 
ambiguous states,  i.e.  if  the word recognition  network 
could  not  decide  for  a  unique  interpretation  of  the 
phonetic input, it can forward several alternatives to the 
sentence  recognition  network  which  can  then  try  to 
decide  for  one  of  the  alternatives  from  additional 
contextual information.
The word recognition network extracts words from the 
stream of triphones received from the Hidden Markov 
model. The network uses various prediction mechanisms 
in  order  to  improve  error  correction  capabilities,  for 
example, a list of all words matching the current input is 
used to predict  and probably correct input  in  the next 
step.
The sentence recognition network validates the stream 
of words received from the word recognition part with 
respect to a given grammar. This part of the network can 
also resolve ambiguities on single word level with the 
help  of  contextual  information.  For  example,  the 
sentence  “bot  lift  bwall”  with  an  ambiguous  input 
between  “ball”  and  “wall”  in  the  last  word  can  be 
resolved to “bot lift ball” because a wall is not liftable. 
Similarly,  ambiguities  on  the  grammar  level  can  be 

Figure  1:  The  robot  is  standing  near  to  a  table  with 
objects  on  it.  An  operator  gives  spoken  command 
sentences  like  "bot  show  plum".  The  robot  has  to 
demonstrate  its  understanding  by  performing  a 
corresponding action.
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resolved: Consider the sentence “bot put orange orange 
orange  plum”  which  is  valid  with  respect  to  our 
simplified  grammar  that  does  not  contain  adpositions 
such as “to”. The sentence means that the robot should 
put an orange orange to an orange plum. However, until 
the word “plum” is heard and understood by the system, 
it  is  not  clear  which  one of the  “orange”-instances  is 
going  to  be  an  object  or  an  adjective.  As  long  as  a 
unique  interpretation  is  possible,  both  types  of 
ambiguities  might  also  be  combined  and  can  still  be 
resolved.
The action planning network coordinates simple motor 
programs in order to perform various actions. The robot 
can basically drive its wheels, search for objects and lift 
and drop them, which can be combined to actions like 
“go (to) table/object”, “show object”, “lift object”, “drop 
object”  or  “put  object1  (to)  object2”.  The  action 
planning  network  initiates  the  corresponding  motor 
programs  in  order  to  perform  the  task  at  hand.  It 
constantly evaluates the sensor inputs to determine when 
a subgoal is finished and another basic action has to be 
performed in order to reach the global goal given by the 
operator.
To  our  knowledge  this  is  the  first  robot  control 
architecture  including  simple  language understanding, 
visual  object  recognition  and  action  planning,  that  is 
realized completely by neural networks and that is able 
to resolve ambiguities and to learn new words (Markert 
et  al.  2007).  It  also  represents  the  first  real-time 
functional simulation of populations of spiking neurons 
in more than seven cortex areas in cooperation.
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Figure  2:  Overview  of  the  system.  Sensory  preprocessing  (left)  is  performed  using  standard  computer  science 
algorithms, “Cortical model” (right) is built using neural networks.
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Abstract

Articulatory speech synthesis has been used recently to em-
ulate in robots the speech production and learning capabil-
ities of human infants. Acoustic to motor maps are created
by babbling strategies, exploring the available motor de-
grees of freedom and creating associations to the listened
sounds. However, the physiology of the human vocal tract
contains many redundant parameters, which poses prob-
lems in sensor-motor map learning. In this paper we show
that vocalic speech requires, in fact, a very reduced num-
ber of parameters and, based on linguistic knowledge, pro-
pose a two-dimensional articulatory space. The proposed
space is generated through the convex combination of pro-
totype vowels representing extremal points in the articula-
tory parameters. We show experimentally, using a known
articulatory synthesizer, that the proposed model produc-
tion space is enough to generate most of the vowel acoustic
subspace, in terms of the Mel Cepstral Coefficients’ vari-
ance. This provides a low-dimensional and intuitive vowel
production space, suited for automatic production, recog-
nition and learning of speech in articulatory models.

Introduction
Developmental robotics aims at studying how knowledge
on human cognitive development can be exploited to al-
low robot to learn and adapt continuously to its morphol-
ogy and environment (Lungarella et al., 2003). The de-
velopment of speech production involves the exploration
of the vocal tract capabilities during the infants early de-
velopmental stages. Also for speech perception develop-
ment, the vocal tracts articulatory information may be of
fundamental importance. The Motor Theory of Speech
Perception (Liberman and Mattingly, 1985) supports that
the basic units of speech perception are the intended pho-
netic gestures of the speaker, represented in the brain as
invariant motor commands that call for movements of the
articulator. According to this theory, speech would be per-
ceived by inferring the articulatory shape of the vocal tract
from the acoustic signal, and performing recognition in the
motor space. The rationale for this approach comes from
the fact that motor commands, on the contrary of acoustic
signals, are invariant to the environmental conditions, thus
providing stable references for recognition.

∗This work was supported by EU NEST Project 5010 - Con-
tact, and by Fundação para a Ciência e a Tecnologia (ISR/IST
plurianual funding) through the POS Conhecimento Program
that includes FEDER funds.

Initial experimental evidence for the importance of mo-
tor information in recognition tasks started with neuro-
physiological recordings in neurons of the pre-motor cor-
tex of primates, which led to the discovery of Mirror neu-
rons (Gallese et al., 1996). These neurons show spik-
ing activity both when the monkey executes and observes
a grasping movement. An experimental study, with a
robotic artifact, for the recognition of grasping gestures
(Lopes and Santos-Victor, 2005), showed drastic improve-
ments when recognition was based on the motor space
rather than the visual space. Mirror neurons are located
in the ventral premotor cortex, possibly the homologue
of Broca’s area in humans, which led to the speculation
that action recognition and language production share a
common system. Neuroimaging studies of the Broca’s re-
gion have recently supported this hypothesis in a joint ac-
tion recognition, language production and grasping task
(Hamzei et al., 2003).

Such a theory represents a novel paradigm for speech
perception but poses novel challenges since it requires
the availability of the agents’ motor signals and learn-
ing mechanisms for associating the motor and auditory
spaces. This can be achieved by exploratory learning
(spanning the agent’s motor space and observing the out-
come in auditory terms), or by imitative learning (listen-
ing to other agent’s produced sounds and trying to imi-
tate). But, depending on the dimensionality on the in-
volved spaces, this may be too complex to do in prac-
tice. A recent model for the control of speech produc-
tion in humans, the Diva Model (Guenther et al., 2006),
follows the motor theory paradigm and accounts for a
wide range of acoustic, kinematic and neuroimaging hu-
man data. Sensory-motor association is done locally by
computing the tangent spaces to the synthesis function at
some prototypical points. Mapping the whole articulatory
space would require a lot of exploratory learning which,
in high dimension spaces, becomes impractical.

In this paper we propose a methodology to create an ar-
ticulatory subspace in vowel production, allowing a com-
plete characterization of the speech synthesis function and
its properties, permitting an feasible online speech pro-
cessing and learning for robots as Chico and Chica (de-
picted in Figure 1). The method is motivated by results
of Linguistics and Phonetics, where the vowel space is
represented in motor terms in a 2D representation. We
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Figure 1: Humanoid robots must interact with each other
and with humans by spoken language. These are the
robotic platforms for the implementation of the algo-
rithm. Some work has been already done with these robots
in speech perception (vide (Hörnstein and Santos-Victor,
2007))

show that a 2-dimensional plane generated by the convex
combination of 3 extremal motor primitives is able to ade-
quately represent the vowel acoustic space. An additional
advantage is that, since the synthesis is based on two sole
articulatory parameters, it is easy and intuitive to graphi-
cally visualize the motor-to-acoustic manifold, allowing a
better characterization of its properties.

The paper is organized as follows. Section Linguis-
tic Motivation briefly presents the linguistics and pho-
netics results motivating our approach. Then, in Section
The Speech Production Model we describe the articula-
tory speech synthesizer used in this work and mathemat-
ically formulate the proposed articulatory dimensionality
reduction principle. We have performed several experi-
ments illustrating the validity of the approach, presented
in Section Experimental Results. Finally, Section Conclu-
sions present some conclusions and directions for future
research.

Linguistic Motivation
Since the beginning of Linguistics and Phonetics speech
sounds are classified mainly by articulatory parameters.
One of the pioneer works in defining where are vowels lo-
cated in the articulatory space was (Jones, 1917) in which
the mathematician and phonetician Daniel Jones first pro-
posed the Cardinal Vowel Diagram. This diagram was
subject of discussion and contributions from the phonet-
ics community and gave rise to the unanimously accepted
representation for oral vowels today.

The schematic in the International Phonetic Alphabet
(IPA) for oral vowels in Figure 2(a) shows the distribu-
tion of vocalic sounds in three dimensions relative to the
human vocal tract: height (vertical axis), backness (hori-
zontal axis) and roundedness (lip rounding)(Association,

(a) International Phonetic Alphabet chart for oral vowels.

(b) Main degrees of freedom represented in the
IPA chart. Figure from (Gray, 1918), with our
labels.

Figure 2: Articulatory degrees of freedom in the IPA chart
representation.

1999) as illustrated in Figure 2(b).
This choice of reference frame has roots in the physi-

ology of the phonatory system. The vocal tract configu-
ration for oral vowels is function of the tongue, the jaw
and the lips. The jaw and lips can have several degrees
of openness, the tongue can assume the articulatory po-
sitions in front, center or back of the oral cavity and the
lips can also change the vocal tract by rounding. So, these
three articulatory parameters are considered the main de-
grees of freedom of vocalic speech sounds, and represent
the directions that better explain the inter-vowel variation.
Nevertheless, there are other static articulatory parameters
that influence oral vowel quality, although they are not de-
terminant in most spoken languages.
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In most languages, rounded and unrounded vowels are
not minimal pairs, i.e., for the same articulatory config-
uration, roundedness alone does not create two different
phonological vowels. In addition to this, some studies
support that roundedness is perceived mainly by vision
in normal hearing-seeing subjects (Traunmüller, 2006),
For these reasons, the main articulatory dimensions con-
sidered for oral vocalic sounds in the human vocal tract
are the height and backness, motivating the approxima-
tion proposed in this paper — whatever the dimensional-
ity of the articulatory space we consider, there is an two-
dimensional subspace approximation that maps the vowel
system of most languages. The phones [i], [a] and [u] de-
fine a set of axis in the 2D plane of the articulatory parame-
ters of height and backness. These three vowels are called
corner vowels because they represent extreme placements
of the tongue forming the corners of a triangle in articula-
tory space. They also form a triangle in formant space (F1
– F2)(Titze, 1994). Therefore, we consider these phones
the extremal points in our model, and will produce the re-
maining ones by their convex combination. This will be
detailed in the following Section.

The Speech Production Model
To test and validate our proposal we use a well-known ar-
ticulatory speech synthesizer. This will allow us to do sys-
tematic tests and quantify the errors arising from the pro-
posed approximation. From realizations of the extremal
phones [i], [a] and [u], we generate a dense representa-
tion of the feasible acoustic signals. Then, to evaluate the
model, we compute the acoustic errors outside the feasible
set.

Articulatory Synthesizer
The synthesizer in use1 is a Matlab version of Shinji
Maeda’s Vocal Tract Calculator (VTCalcs) (Maeda, 1990).
The seven articulatory parameters are jaw, tongue, shape,
apex, lip ht (lip hight), lip pr, (lip protrusion), larynx.
Each one can assume any value in [−3;3]. The articu-
lator parameters are presumed independent, which is not
the case in the human vocal tract, leading sometimes to
improbable configurations of the articulators, producing a
non human sound or even no sound at all. In fact, after
a dense sampling of the six-dimensional hypercube and
feeding the samples to the synthesizer, as explained later
in this section, we realized that only 44.22% of the artic-
ulatory vectors generated sound, even if not a human-like
one.

The space of the articulators in VTCalcs is homographic
toR7, but to produce vocalic voiced sounds only 6 param-
eters are distinctive, since larynx controls the voicing.

The synthesizer’s output is a sound represented by its
temporal amplitude. To analyze the sound waveform
we use the Mel Frequency Cepstral Coefficients (MFCC)
(Davis and Mermelstein, 1980), using 12 coefficients.

1Available at the CNS Speech Lab webpage
http://speechlab.bu.edu/VTCalcs.php

Let vector v ∈ V ⊂R6 represent a configuration of the
six-dimensional synthesizer’s articulatory space and a ∈
A ⊂R12 be a vector of MFCC coefficients in the acoustic
space. We define the synthesis function as:

f : V 7→ A , a = f (v) (1)

The function is not invertible — distinct articulatory
configurations may lead to very similar sounds (in particu-
lar, many configurations generate no sound at all). There-
fore, there is ambiguity in the identification of motor con-
figurations corresponding to the listened acoustic signals,
which may pose problems to motor-based learning and
recognition algorithms. To deal with this we define a sub-
space of V where the restriction of f to this subspace is
assumed invertible.

Dimensionality Reduction
We define a two-dimensional subspace of the full articu-
latory space, generated by a convex combination of vow-
els corresponding to extremal positions in the articulatory
space. There are two major arguments that support this
approach: a linguistic argument, and a experimental one.
As mentioned in Section Linguistic Motivation, according
to Linguistics and Phonetics knowledge, most of the vowel
production capabilities of the human vocal tract can be ex-
plained by two parameters related to the height and back-
ness of the articulators. The experimental argument is that
the Isomap, as discussed in Section Experimental Results,
shows that there is a good two dimensional approximation
to the image of f .

Considering the R6 prototypes for the extremal phones
[i],[a] and [u], it is possible to generate an affine space
with all the properties of a convex space. Let a0,u0 and
i0 ∈R6 be the chosen vowel prototypes for [i], [u] and [a]
and a two-dimensional vector p ∈ V : p = (α,β), with α

and β real parameters. A convex combination of the given
points forming a 2-dimensional triangle, can be defined by
the function:

v : P ⊂R2 7→M ⊂ V
v(α,β) = α i0 +β a0 +(1−α−β) u0

where the input space P is defined as:

P = {(α,β) : α+β≤ 1∧α,β≥ 0}

Let M be the image of v, and denote it the Motor Space.
We define the function f2 as the restriction of the synthe-
sizer’s function f to the motor space, and call it’s image
A2

f2 : M 7→ A2 ⊂ A . (2)

We will denote f2 as the Motor-Acoustic Map. The im-
age of this function will produce a 2D manifold A2 in the
MFCC acoustic space. Given the choice of the Motor-
Space, the properties of the used synthesizer (assuming
smoothness), and the dense sampling made on M , there
are strong reasons to believe that f2 is invertible. There-
fore, the inverse function of f2, f−1

2 is an acoustic to motor
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Figure 3: Vowel generation diagram.

map. A schematic representation of the proposed vowel
production model is shown in Figure 3.

The twelve-dimensional acoustic space was sampled
twice; one representing the span of the reduced articula-
tory space (using the motor map f2 from the motor space
M ), and another representing the span of the full artic-
ulatory space (from V ). We will show that the former
contains most of the information present in the latter.

To estimate the acoustic manifold A2 we have sampled
the parameter space P in steps of 0.01 in the α and β pa-
rameters, generating a discrete set of 5000 samples:

Pd = {pi, i = 1, . . . ,5000}

These samples were then used to generate a motor-space
sample set, using function v:

Md = {mi = v(mi), i = 1, . . . ,5000}

Thus a discrete sampling of the acoustic manifold was cre-
ated using the synthesizer’s function:

A2d = {ai = f2(mi), i = 1, . . . ,5000} (3)

The first three coordinates of the sampled acoustic mani-
fold are plotted in Figure 4.

Figure 4: Representation of the first three Mel coefficients
of the acoustic manifold.

The VTCalcs parameter’s six-dimensional V space was
also sampled in steps of 0.6 obtaining a grid with 10 sam-
ples per dimension. The point cloud has 106 samples:

Vd =
{

vi, i = 1, . . . ,106
}

Again, the synthesizer’s function was applied to the data;

Ad =
{

ai = f (vi), i = 1, . . . ,106
}

(4)

From this data it was removed the set of samples with
zero sound amplitude, retaining 44.22% of the initial num-
ber.

Experimental Results
To validate the proposed model we generate a set of test
vowels at and compute the error in acoustic space (MFCC
coefficients) between each one and its projection on the
manifold A2d . We also consider the residual variance in-
curred in a two dimensional approximation of A .

Since we do not have a analytic expression for the A2
surface, we use its sampled version defined by equation
(3). To compute the projection of each point we use the
nearest neighbor operator:

nn(at) =
{

ai ∈ A2d : i = argmin
i

{
‖ai−at‖2

}}
(5)

The acoustic approximation error is then computed by:

Ea(at) = ‖at −nn(at)‖2 (6)

The acoustic approximation error relative to the size of
the manifold is defined as

δa(at) =
Ea(at)

max(length(A2d))
100% (7)

This measure is dimensionless and gives an indication
of how good is the approximation relative to the size of the
approximating surface. We consider acceptable to use the
maximum length of A2d to normalize the error because the
manifold’s shape is not too discrepant, as it is possible to
confirm in the Isomap embedding shown in Figure 5. This
embedding was determined with the Isomap algorithm
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Figure 5: Isomap embedding for the two-dimensional
manifold A2d .

as described in (Tenenbaum et al., 2000). The isomet-
ric feature mapping procedure or Isomap recovers low-
dimensional nonlinear structure in perceptual datasets. It
finds a space embedding for the data, preserving its in-
trinsic metrics, by conserving distances measured through
geodesic paths along the observation manifold. For A2d ,
Isomap created a reproduction, in the two-dimensional
space, of the pairwise distances measured in the acoustic
twelve-dimensional space.

Dimensionality reduction: validation
To validate the goodness of a two-dimensional approxima-
tion for the full space A , the dimensionality of the sampled
space Ad , defined in equation (4), was investigated.

Through Isomap we estimate that the dimensionality of
the image of f is 2, with a residual variance of 0.197, as
illustrated in Figure 6.

The global articulatory space M is six-dimensional,
thus the maximum possible dimensionality for A is six
because f is continuous. The residual variance of the data
for six or more dimensions can be interpreted with regard
to phenomena such as noise and numerical problems in
the MFCCs calculation.

This experimental result confirms that there is a good
two dimensional approximation to the overall acoustic
space A . The residual variance present in the 2D approx-
imation is partially due to the model simplification but its
slow decrease with dimensionality leads to the conclusion
that it is caused mainly by non informative phenomena.

Vowel prototypes: appropriateness
To investigate the performance of the approximating space
with speech sounds of real languages, some experiments
have been conducted with synthesized prototypes of sev-
eral languages. Those prototypes may lie outside the mo-

Figure 6: The Isomap algorithm provides the residual vari-
ance of the fit to the model’s dimensionality. The greatest
decrease in variance happens from one to two dimensions
of the manifold representing the global acoustic space A .

tor space M because there are many redundant articula-
tory configurations that generate the same vocalic sound.
We want to show here that M is complete, i.e. it contains
a configuration generating an (almost) identical sound.

Some prototype vowels used in the tests are included
in the VTCalcs matlab package and are preexistent to the
experiment; the other sets were constructed by us and val-
idated by naive native speakers. The speech sounds inten-
sity, fundamental frequency and duration were kept con-
stant so to validate strictly the model for vocal tract con-
figuration.

In the VTCalcs package there are eleven prototypes for
oral vowels which are found outside the two-dimensional
polygon M . They were used to evaluate the amount of er-
ror introduced in the two-dimensional approximation. The
error was measured as described above, and the results are
shown in Table 1. The oral vowels from two very distinct
european languages were also used for the same purpose:
vowels from Portuguese, an indo-european, romanic lan-
guage, and vowels from Finnish, a finno-ungric language.
Nine Portuguese prototype vowels were used. The errors
are shown in Table 2. From Finnish, the eight short vowels
were investigated, with results that can be seen in Table 3.

The sample mean over the percent error δa(at) is 2.95%
in the portuguese vowels set, 3.87% in the finnish vowels,
and 2.23% in the VTCalcs set. The standard deviation is
2.22%, 2.81% and 2.02% in the portuguese, finnish and
VTCalcs sets, respectively. The maximum value for the
percent error is 9.17% in the finnish dataset.

So, in terms of the error, the two-dimensional convex
space performs well with linguistically relevant synthe-
sized speech sounds. Acoustically, the prototypes and the
projections are hardly distinguishable. Inverting the pro-
jected points through f−1

2 back to the two dimensional mo-
tor space M , and plotting the result (Figure 7) makes it
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Table 1: Approximation error for the VTCalcs prototypes.

vowel symbol Ea(at) δa(at)%
1 iy 0.40149 1.6295
2 ey 0.17829 0.72361
3 eh 0.1522 0.61771
4 ah 0.48633 1.9738
5 aa 0.24348 0.98818
6 ao 0.51035 2.0713
7 oh 0.58974 2.3935
8 uw 1.6111 6.5389
9 iw 1.4057 5.7053

10 ew 0.29547 1.1992
11 oe 0.18119 0.73536

Table 2: Approximation error for the portuguese proto-
types.

vowel IPA symbol Ea(at) δa(at)%
1 1 0.13425 0.54487
2 5 1.2335 5.0061
3 E 0.37961 1.5406
4 O 0.50396 2.0453
5 e 0.61689 2.5037
6 o 1.4141 5.739
7 a 0.24161 0.98057
8 u 1.6211 6.5792
9 i 0.39633 1.6085

Figure 7: The inverse mapping of the vowel prototypes.
The Portuguese vowels are numbered as in Table 2, and
the Finnish as in Table 3. Some landmark IPA phonetic
symbols are also represented.

is possible to extract some similarities between the IPA
openness and backness and the motor space α and β pa-
rameters. The hypothesis that the restrictions in the con-

Table 3: Approximation error for the finnish prototypes.

vowel IPA symbol Ea(at) δa(at)%
1 i 0.28764 1.1674
2 øfl 0.7918 3.2135
3 æ 0.99949 4.0564
4 ofl 0.87593 3.555
5 A 1.6373 6.645
6 u 0.5645 2.291
7 efl 0.21044 0.85406
8 y 2.2605 9.1741

struction of M can be used to simulate physiological con-
straints, is corroborated by these experimental results.

Conclusions
In this paper we have proposed a two dimensional param-
eterization for the motor space of an available speech syn-
thesizer, VTCalcs. The approach is able to generate acous-
tic signals that represent well all the vowels produced by
the synthesizer. Namely, the euclidean error relative to the
size of the two dimensional approximating surface has an
average of about 3% and a maximum of 9.17% in the used
test sets, and the Isomap analysis of the residual variance
versus the dimensionality of the approximating manifold
confirms the validity of a two-dimensional model for the
overall acoustic space.

The proposed model is important by two main reasons:

• The motor space is two-dimensional, thus can be
densely sampled with low computational requirements.
This simplifies creation and representation of the motor
acoustic map.

• The restriction of the synthesizer’s function to the pro-
posed motor-space is invertible, allowing to map signals
back from the acoustic to motor coordinates.

In future work we will apply the proposed model in the
early stages of autonomous speech learning of humanoid
robots. The fact that this space has low dimensionality
facilitates initial bootstrapping. We will also consider the
problem of Mel Coefficients robustness and normalization
procedures on the signals.

Since the acoustic manifold appears to be smooth, we
will provide it with a differential structure and use it for
local optimization, e.g. for guided exploratory learning in
imitation tasks. In the long term we intend to apply the
proposed model in the early stages of autonomous speech
learning of an humanoid robot. The fact that this space has
a dimensionality of two, facilitates its bootstrapping role
in autonomously to produce and recognize speech. Once
the system learns a good initial model of the motor-audio
map using the low dimensional manifold, it can expand
the available degrees of freedom and refine its production
capabilities. As in the ontogenesis of humans infants, such
a developmental strategy is more likely to succeed than
learning from scratch with the whole system’s complexity.
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Abstract

In this work is introduced a set of software components
for Human Robot Interaction (HRI) based on Finite State
Grammars (FSG), like Speech Recognition, keyboard in-
put or even task scripts. Normally FSG inputs like speech
recognition based interfaces interact only with navigation
devices. In this work is presented a set of components
that allows the developer to easily extend this interaction
to any device. Task Contexts and Awareness (both spa-
tial and situational) are provided so that the system is re-
active to events in the perceived world. Components then
use this common information structure to perform actions
on the surrounding interactive environment. The synergy
obtained from different system components can be used
for interacting also with key assistive technologies, such
as domotics, emergency management, driver support aids,
etc. Is demonstrated a scenario with a user interacting with
multiple robots that demonstrates some of the concepts of
the article. The software is available on-line with a LGPL
license so that others can benefit and contribute to it as well.

Introduction
The work presented herein started as a way to increase the
interaction possibilities of the Robchair [Pires and Nunes,
2002], autonomous robotic wheelchair. Speech based in-
teraction can be one of the few possibilities people with
physical disabilities have to interact with their wheelchairs
and the appliances they use. Speech based interaction has
the advantage of leaving the hands of the user free for
other tasks, and because the commands available via voice
are broader, the interaction has more possibilities than the
limited degrees of freedom of a joystick.

A finite state grammar (FSG) is one that maps language
to a state diagram which starts in an initial state, and each
step produces a word (or element; phoneme, syllable, etc.)
with each transition. At the final state, the sequence of
words produced is a sentence or phrase. In a complete fi-
nite stage grammar, we can theoretically produce any sen-
tence by tracing a path from left to right, from the initial
state to the final state. Transitions can also be closed loops
allowing for an infinite number sentences.

Normally FSG based interfaces, that can be speech
recognition ones, interact only with the navigation of the

∗This work was partialy supported by FCT (Portuguese Foun-
dation for Science and Technology) under Grant:POSC/EEA-
SRI/58279/2004.i

robot. In this work is presented a FSG based interface
that dynamically adapts to the robot environment, where
the lexicon of the commands reflects the abilities of inter-
action with the surrounding environment, and that is not
limited to control a single robot.

A light-weight cognitive layer is presented in the form
of specialized components that provide services like spa-
tial and situational awareness and also cognitive and topo-
logical descriptions of the environment. This cognitive
layer components allow a common user to ask the robots
to execute tasks, without caring for the encapsulated low-
level algorithms that the component will use. It is possible
to define tasks and behaviors that can apply to many robots
just by modifying XML configuration files.

In the lab it is very practical for a single user to inter-
act with a large number of devices e.g. managing a robotic
soccer team; it also proves practical in experiments that re-
quire the user to stay far from the computer/robot e.g. dur-
ing camera calibration while the user is holding a chess-
board he can instruct the computer to capture images while
he moves the chessboard.

The implementation is made as a set of components
for the Experimental Robotics Framework (ERF) [Xavier,
2007]. The developed software integrates with the Player
framework [Gerkey et al., 2003] for accessing real robots
and also simulated ones in the simulators Player provides.
For speech recognition is used the library CMU Sphinx
[CMU, 2001].

In this article some words are written in CAPS and
others in teletype. Capitalized words represent FSG
words, and teletyped words represent C++ classes.

Paper structure
This article is organized as follows. Section presents the
related work. Section describes the software architecture
of the components. In Section a experiment is performed
demonstrating the concepts used in the article. Future im-
provements are suggested in Section . Final remarks are
given in Section .

Related work
This section describes the bibliography of research made
in the field of speech based interaction, multi-robot inter-
action and spatial cognition and compares those works to
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ours. In some bibliography it is possible to implement or
wrap their methods into our system.

Multi-modality, Speech interaction
The lexicon used in various speech based interfaces for
robotic wheelchairs is present in [Tellex and Roy, 2006].
A lexicon template used to control a single mobile robot
is specified in [Zelek, 1997]. In that article the commands
are formalized as specifying a verb, destination, direction,
and speed. Our approach does not enforce a template
for controlling the component or robots. Thanks to the
FSG approach our lexicon is customizable and extensible.
To allow this freedom we only specify the design of the
task context, and the context selector that are the base for
the multi-component system, and even these can be sub-
classed and still use the other components.

In [Flippo, 2003] is presented a multi-modal interface
that was built to control mobile robots for military mis-
sions using spoken language, keyboard, mouse, touch, and
gaze inputs, which can be used simultaneously. Although
we have not provided touch or gaze inputs, besides the
FSG methods we also have the possibility of interacting
with the environment using the GUI.

Multi-robot interfacing
The task of interfacing with swarms of robots is dis-
cussed in [Halme et al., 1995] where the author intro-
duces the concept of robot society. Both [Clark and Frew,
2003, Jones and Hinds, 2002] have developed 3D HRI for
interfacing of a single user to multiple robots with sup-
port for motion planning and robot trajectory generation
for target tracking. In [Makarenko et al., 2003] are stud-
ied the conditions under which the collaborative human
involvement in shared HRI will not jeopardize scalability
of the network of robots.

The multi-agent system (MAS) infrastructure, that
combines HRI with a simulation environment for Hu-
man Search and Rescue (HSR) operations is described
in [Nourbakhsh et al., 2005].

Context and Awareness
Context Acquisition is the mechanism used to understand
the robots situation. The concept was first described in
[Fong et al., 2004] but similar functionality can be identi-
fied in [Graves, 1995, Scholtz et al., 2004] that introduces
the concept of Situational Awareness.

In [Chong et al., 2000] is described a system that uses
vision to gain further spatial knowledge. In a previous
project [Xavier et al., 2005] we perceived the robot sur-
roundings, including persons, using data from a laser sen-
sor.

Qualitative and quantitative representations of space are
presented in [Kuipers, 2000]. Our approach for represen-
tations of the spatial knowledge is only based on tags,
which are only qualitative. Although components can
modify the tags of objects based on any classification al-
gorithms they implement.

Some systems like Navchair [Levine et al., 1999] have
different navigation modes depending of the situation.
These modes are general obstacle avoidance, door pas-
sage, and automatic wall following, and are selected with
a Bayesian network to decide what mode to activate based
on the chair location.

That approach is possible in our system by having the
spatial awareness load navigation components into ERF
depending of the tags of the zone the robot is in. Exam-
ples of this is the docking/parking behavior that is avail-
able when the user is in the “ROOM“ zone and issues a
”DOCK“ command. The robot then switches the naviga-
tion algorithm to one that can plan complex maneuvers of
the robot, like the ones based on Rapidly-exploring Ran-
dom Trees [LaValle and Ku, 1999].

A robotic wheelchair with a speech interface that can
understand the user intention in speech using the environ-
mental information obtained from the range sensors is pre-
sented in [T. Iwase and Kuno, 2004]. Even if the user
does not say details and issues a simple voice command,
the wheelchair takes an appropriate action that the user ex-
pects. In our work we provide a task context where all the
possible tasks of the robot can be issued according to the
robot environment. This task context can be modified by
the perception components like the one that detects per-
sons presented in [Xavier et al., 2005].

In project Coyote [Skubic et al., 2004] is presented a
mobile robot that can understand spatial commands and
generate spatial linguistic descriptions of its environment.
It can obey commands like “go to the right of the object”
and describe where objects are relative to itself. In our
system the spatial descriptions are given apriori by tagging
the zones of interest, even if the zone is just the “outside”
of another zone. The direction relative to world objects
can be implemented with a combination of querying the
position of the object and creating a new zone with tags
corresponding to the relative position of the object.

Adjustable Autonomy [Birk and Pfingsthorn, 2006] de-
fines layers of autonomy for interaction with the robots,
where the higher layers mean more decisions by the robot,
e.g. in the bottom layer the user modifies the robot veloc-
ities, while in the above layer the user just gives a target
destination, and so on. This is equivalent in our system to
the user opting to interface with a high-level task compo-
nent or directly with a low-level robot interaction compo-
nent.

System description
The system components can be organized in the follow-
ing layers as shown in Fig. 1 : a cognitive layer that all
robots have access to; a layer to organize the FSG interac-
tion; a layer of robot tasks and behaviors; the world (either
real or simulated) and the Player proxies that represent the
sensors and actuators available for each robot.

The cognitive layer common to all the world agents, is
where the perception of the world is gathered. This layer
is sub-divided in two sub-layers, that are the event layer
and the descriptive layer. The event layer contains com-
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Task Context of Robot $id
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...... ...

GO Navigation $WHERE

Services:
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Scheduler
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­ RECORD #SET
­ PLAY $SET

KeyboardSpeech
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­ Fiducial ( to identify items )
­ Gripper ( for grabbing items )
­ Position
­ Planner
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Player Proxies:
­ Position
­ Planner
­ Laser

Event layer

Spatial awareness

Services:
­ Is near/inside $zone or 
$Object3D ?
  then notify subscribers
­ Add/remove pairs of 
Object3D and 
zones/Object3D to 
monitorize

Situational awareness

Services:
­ Monitor Manager of tags 
for addition/removal of tags 
to $Object3D and message 
subscribers of that event
­ Add/remove tag 
notifications
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Manager of tags

Data:
­ Object3Ds and their tags
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­ tag Object3D
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Grab and deliver

Services:
­ go to $zone, identify and grab 
$item, deliver it to $Object3D

Augmented navigation

Services:
­ navigate the robot
­ augment zones

FSG based interaction

Graphical User Interface

Robot world and Player proxies 

Figure 1: Overview of the framework components. A cognitive layer that is common to all the robots on the top left, on the
top right the components that handle FSG inputs, on the bottom right are examples of robot tasks and on the bottom left is
the robot world, along with the robots sensors and actuators.

ponents that monitor the state of the world and notify sub-
scribers of changes. The descriptive layer as the name im-
plies is used for describing world entities, it describes the
geometry of polygon delimited zones and the tags of the
Object3D entities. These tags descriptions can edited
using the GUI.

The task and behaviors serve to encapsulate low-level
algorithms so that these tasks can be used in batch com-
mands for many robots or just for commodity. For the
execution of tasks the robot access information from both
the robot world, the cognitive layer components and can
communicate with other agents/components.

The robot world layer contains Player/Stage proxies,
such as the map, laser, sonar, position, planner, fiducial,
etc.

Follows an introduction to ERF, and after a more de-
tailed description of the components inside the main lay-
ers.

Introduction to ERF
To glue this layers together ERF is used. ERF provides
basic support for all components can use and is extended
through a component system that is modular, i.e. compo-

nents can be (un)loaded at any time.
Components can query each another for state informa-

tion or execute methods, and also of serialization so that
they can save their states. In order to remove code redun-
dancies, the components are specialized in certain tasks,
e.g. the manager of zones that comprises all the methods
relative to world zones. The queries are made exchang-
ing XML formatted data. When the query reaches a target
component, that component produces an answer, also in
XML, and a report reply that informs if the question was
acknowledged or if any error occurred.

The ERF library also contains OpenGL functions for
drawing the GUI, and use the GUI for interaction with the
world entities and robots.

Cognitive layer

This layer serves to map most environment information
that can be used in robot tasks. It has two main blocks,
one for reporting changes in the world, and the other to
describe the world itself; both are described next.

Manager of tags Every object in the robot world derives
from the class Object3D, which have a member Tags
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for distinguishing between different Object3D entities.
Tags are implemented as a list of strings to which can be
applied set theory.

Tags are added either directly by the user using the
GUI - as supervisioned learning - or by scene interpre-
tation components that make use of sensor data to create
an Object3D in the robot world and tag it accordingly to
what the algorithm perceives.

Some examples of tagging are marking a polygonal de-
limited zone with “LOUNGE”, or “STAIRS”, a moving
blob with “PERSON” or something with “TARGET”.

Components of the framework make use of the tags to
interact with the world. Examples of interaction of com-
ponent with the tags are:

• the user says “GO LOUNGE” and the robot drives
there;

• the path planner algorithms avoids the “STAIRS” and
positions the robot near “ELEVATOR BUTTON”;

• a health monitoring component queries the manager of
tags for an Object3D with a “NURSE” tag;

• the battery status monitor along with the wheelchair
weigth monitor issue a method for the robot to drive
to the “DOCK” station to recharge itself;

In order to be used between different applications the
tags provide a discrete classification of the objects. Our
approach is just qualitative, although components can
modify the tags of objects based on any classification or
fuzziness algorithms they implement.

Manager of zones This component is responsible for
delimiting polygonal zones in the robot representation of
the world. Zones derive from Object3D and so they
also have Tags. This component provides the following
services :

• get the center of a zone that contains a certain tag or
combination of tags;

• ask if a certain point lies inside the desired zone poly-
gon to answer the “are we there yet” question that path
planners may query;

• geometry operations like area and perimeter of the
zones;

• serialize a Zone in XML and describe it to other com-
ponents;

• edit zones, either from a XML message from other com-
ponents or with GUI input;

Spatial awareness This component monitors spatial re-
lations between the entities in the environment, i.e. dis-
tances between Object3D or if Object3D are inside
Zones. The idea is to include inside simple “if” condi-
tions relative to positions between the environment entities
and execute methods if they trigger. Other components
register XML messages to be delivered to any components
if events trigger. In order to trigger events the component
periodically checks the positions of the monitored entities.

Situational awareness This component monitors the
environment for generic events, that happen in the form
of new/deleted Object3D or the addiction or removal of
Tags from Object3D entities. An example is a percep-
tion component that will create a “PERSON” Object3D
using the manager of tags, the manager of tags announces
this new Object3D to any components listening for new
Object3D events. A follow behavior component can
then launch, and the “FOLLOW” prefix will be loaded
into the task context. Another more pervasive example
is the monitorization of the health of a person, that in
case the person changes its health from “HEALTHY” to
“SICK”, the component can launch an emergency man-
agement component to handle the situation.

Interaction based on FSG

FSG are the least common denominator between
a speaking-enabled, illiterate, person and a com-
puter/device. Therefore by enabling a FSG communica-
tions such as speech we are maximizing the range of po-
tential users of our system. The FSG layer of components
enable a user to communicate with any number of any de-
vices, which is just by itself a progress since most robotics
research that involves speech just uses the input to posi-
tion the robots. Next are described the components of this
layer: the inputs, the context selector and the task context.

FSG Inputs FSG inputs can come from speech recogni-
tion, keyboard input, or from a scheduler (for scripting).

A Player speech recognition proxy (also contributed by
us) is used in order to obtain utterances from the speech.

The scheduler has the option of sending commands at
specific times in the future. When acting like a FSG
recorder, the scheduler requires a context selector to se-
lect it, so that the user can direct all FSG commands ex-
clusively to the recorder component.

These text inputs are formatted in XML to ease parsing
by sequent input components.

Context selector and ignore mode This component
does two things: 1) turn on and off the ignore mode so
that the user can speak almost freely (except for the word
that starts listening again); 2) establish delivery channels
from the XML inputs to task context(s). The selected task
contexts will receive the XML formatted text.

The selection of task context can be optional if we wish
to work with only one task context (one robot), in this
case there is no need to specify the strings to select and
reset the contexts. Support for multi-casting the com-
mands to multiple robots is done using the words “ALL”
or adding together the ids of components using the con-
junction “AND” word.

The “SELECT” and “IGNORE” words are exclusive to
the context selector, i.e. words that cannot be used in the
tasks context if the context selector component is in use.
Although the user can configure which words he wants to
use for selection and ignoring commands in the configura-
tion file.
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Task context The task context component holds a list of
strings that are the prefix of command phrases. A prefix
of a command phrase T = t1 . . . tn is a phrase T̂ = t1 . . . tm,
where m≤ n. When the incoming prefixes matches a pre-
fix registered to a component, the whole command is de-
livered to that component. As example of this, the naviga-
tion component has the “GO TO”, “TURN”, “STOP” pre-
fixes registered, the X10 (home automation protocol) com-
ponent has “LIGHTS” or “DOOR” prefixes registered.

Normally commands to robots are given in the form of
verbs, but because we do not want to limit the way the
system works FSG can have any form of syntax.

Speech Contexts are dynamic, in the sense that other
components can at any time register their prefixes. When
components register their prefixes they receive an unique
id in order to remove that prefix later from the context.
Also external components can check the list of registered
prefixes and components to avoid conflicts that could re-
sult in future hazards.

The interpretation of the meaning of FSG is only done
in the task components. One advantage of postponing the
interpretation of utterances to the task components is in
avoiding the interpretation of phrases representing quanti-
ties to components that do not make use of them.

The concept of context has a broader application than
each robot having only one context. The robot can have
more than one context, where each context corresponds to
a task the robot can perform.

Robot tasks and behaviors
There are at least two ways of writing robot tasks:

1. Write a dedicated component for the task, this will en-
able a fine grained personalization of how the task is
achieved. It allows the C++ language to control the se-
quence of events. An example of this kind of task is the
“WAITRESS” component.

2. Combine existing components functionality with the
events of the cognitive layer to describe new tasks. In
this case the flow of control will be limited by the pos-
sibilities offered by other components. This has the ad-
vantage of not having to understand C++ language, be-
cause the behavior is defined by editing the XML mes-
sages between components. An example of this is the
augmented navigation task.

During initialization the components load prefixes into
the task context component, so they can be addressed us-
ing the FSG. As an example the “WAITRESS” compo-
nent adds the “DELIVER” prefix and the the navigation
component of the augmented navigation task adds typical
navigation verbs like “TURN”, “GO”, “FORWARD”, etc.

Grab and delivery This example component waits for
orders to grab an Object3D in a zone and a delivery to
another Object3D. It subscribes a Player position proxy
in order to carefully approach the item to grab. During
the grab and delivery operation it also contacts other ERF
components, that are : the manager of zones to query the

center of the grab zone; the navigation component to plan
the path and drive to the zone; the fiducial to identify the
item to grab; the gripper to grab the item; and finally the
manager of tags to locate the Object3D to deliver the
item to.

Augmented navigation The augmented navigation is
a combination of a pre-existing navigation component
and a spatial awareness configuration. This spatial
awareness configuration states that if the Object3D
“WHEELCHAIR” is inside the “MY ROOM” Zone, then
it will make available two more zone, the “TABLE” and
the “BED”.

The navigation component provides access to both a
path planner and to a velocity controller that in Player
have two distinct proxies and interfaces. It needs access
to both because the commands delivered to both Player
proxies produce actions that are not mutually exclusive,
like the “STOP” that must be given to both proxies simul-
taneously.

The internal mechanism of the navigation component
is a state machine, where each command will deliver the
mechanism to a corresponding state. Normal position in-
terface commands like “TURN” and “FORWARD” work
as expected. An operation that involves other ERF compo-
nents is the “GO” command that for parameter has the tag
of a Zone in the environment. When the “GO” is issued
this component contacts the manager of zones to query for
the center of a zone with that tag.

Robot world and Player proxies
Our voice recognition system uses the library CMU
Sphinx [CMU, 2001] which means the system is speaker
independent, and does not require training. The robot
navigation algorithm VFH [Konolige, 2000] and the path
planner Wavefront are both provided by Player [Gerkey
et al., 2003]. Player also let us work either in simulation
or in the real-world.

Example of usage
In this section is demonstrated one use case of a user
interacting with multiple robots. The scenario serves to
demonstrate how the concepts exposed in this paper work
together in a unified framework for interaction and cog-
nition. The scenario is of a nursing home with two actor
robots. One is a service robot called ”WAITRESS“ and
the other is the patient ”WHEELCHAIR“.

Because our system does not require the real-world and
the simulation simplifies the reproduction of the experi-
ment we use the Stage simulator [Gerkey et al., 2003] to
provide us with a virtual world with robots and grabable
items that the robots can interact with.

The script of action consists in an a patient in the nurs-
ing home, before meal time, when he ask the ”WAIT-
RESS“ robot to grab him a meal, while he goes to his
”ROOM“, to the ”TABLE“, before meeting the service
robot in the ”LOUNGE“, finally he takes the service robot
to his ”ROOM“, to help him with other chores.
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The order of voice commands and the final visual log
of the experiment are depicted in Fig.2. The experiment is
executed as follows:

1) First the user selects the context (in this case a robot)
with id “WAITRESS” and commands it to get a “PIZZA”
from the “KITCHEN”and deliver it to him. 2) The user
selects his “WHEELCHAIR” and asks it to go to “MY
ROOM”. 3) Then is tested the capacity to ignore com-
mands so the user can speak almost freely with other
persons. The robot starts ignoring commands when the
user says “IGNORE” and restarts listening when he un-
derstands “AWAKE”. This way the user can be more con-
fortable speaking with other persons until he is ready to
interact again. 4) When the “WHEELCHAIR” arrives
at the “ROOM” zone, new zones appear automatically,
namely the “TABLE” and “BED”. This was possible be-
cause the spatial awareness component was monitoring
the presence of the “WHEELCHAIR” Object3D inside
the zone “ROOM” and when that event triggered it sent a
XML message to the manager of zones to create the new
sub-zones, and another message to the speech recognition
proxy to add the words “TABLE” and “BED” to its recog-
nition dictionary. This way the speech recognition con-
fusion matrix is reduced by only working with with the
words possible in the current task context. Another advan-
tage is to just load new components and data when they are
needed, depending on the spatial context. 5) the user then
goes to the “LOUNGE” where the “PIZZA” is delivered to
him by the “WAITRESS”. 6) Finally we select both robots
simultaneously and asks them to go to the “ROOM”. The
experiment ends.

Future work
This paper contributes with a new branch of functionalities
to the ERF trunk, which still can be improved in many
ways:

• for a better cognitive interaction with space, the robot
should be able to better perceive itself by means of in-
trospecting the sensors and actuators it has, and the data
the algorithms produce, in order learn to perform new
actions with its hardware;

• allowing the robot to create simulations based on the
current perception it has of the world, so it can “imag-
ine” better solutions for problems;

• it should be interesting to study the possibilities of cog-
nitive architectures such as SOAR [Laird et al., 1987] in
order to execute the two previous suggestions. This can
be accomplished by creating a component that acts as a
bridge between our light-weight cognitive architecture
to the SOAR one. The SOAR architecture can solve
problems in the world that involve state changes, like
opening doors, sorting sequences of tasks to optimize
functions, and other “sokoban”1 like problems.

1a transport puzzle game in which the player pushes boxes
around a maze, and tries to put them in designated locations.

Extend the scheduler with a long-term plan of enabling
oral programming the components via FSG inputs. This
research can be ignited with the following items:

• accept verification of task results, with tickets to check
the task status;

• explore with minimal atomic primitive tasks that can be
repeated and combined to form high level tasks;

• allow the recorder to understand variables and define
methods, that are the result of grouping primitive tasks.
An advantage of this will be that by defining the vari-
ables along with the FSG, task components like the grab
and delivery component, can be made redundant as they
can be represented by a set of primitive tasks.

Suggestions that are easier to implement are:

• explore programming conditions using FSG, starting
with “IF” and “WHILE”;

• implement text completion on the keyboard input;

• study the advantages of having properties, i.e. a data
tuple that maps a text entry to any entry. Properties
which are mostly quantitative description can be harder
to parse but are more precise descriptions of the world
than tags;

• separate the cognitive layer into a global for all the
robots, and a local one exclusive to the robots the user
interacts with, to handle properties like “MY ROOM”
that in a global layer would be “$USER ROOM”.

• transpose the components to the linux desktop, so that
applications can take advantage of speech and text inter-
action, e.g. selecting pixels in image manipulation pro-
grams and say “CUT”, “COLOR BLUE”, or in text ap-
plications to format text like saying for example “FOR-
MAT BOLD”. Also it would be interesting to have a
robot interacting/talking with a desktop computer or
other home appliances speaking between them, either
via voice or by exchanging XML messages. Note that
this is not an attempt at solving the Turing test;

• plan a variety of use cases that will help to emerge some
canonical concepts relative to world description and in-
teraction.

Contributions and conclusion
In this work is introduced an interaction platform for one
user to multiple robots. This platform is multi-modal, and
in this article we describe our implementation of the FSG
inputs and how it copes with a light-weight cognitive layer
for describing and interacting with the robot environment.
The approach of using a dynamic lexicon based on FSG,
and the resulting advantages over traditional static lexi-
cons are discussed.

We describe the design and implementation of the
building blocks that are implemented as components, and
that can be put together to achieve versatile FSG based
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interactions. We explain the design of the awareness con-
texts that are essential for the spatial and the situational
awareness of the platform.

In an use case is demonstrated how all these features are
combined seamlessly together to create a dynamic com-
posed human robot interface.

Users and researchers can assign tasks and behaviors
to robots from speech, keyboard, or record scripts of ac-
tions using FSG. Components that execute these tasks and
behaviors wrap low-level algorithms and robot drivers in
order to execute the tasks. These tasks can then be applied
to many robots at once. This feature allows researchers
from other areas that do not deal with low level program-
ming languages to use our software also, as they only have
to learn the high-level operation of components.

The software is available on the Internet for free, in the
miarn [Xavier, 2007] site.
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User Commands

01 - SELECT WAITRESS
02 - DELIVER PIZZA FROM 
       KITCHEN TO WHEELCHAIR
03 - SELECT WHEELCHAIR
04 - GO MY ROOM
05 - IGNORE
06 - STOP
07 - GO HALL
08 - TURN RIGHT
09 - AWAKE
10 - GO TABLE
11 - GO LOUNGE
12 - SELECT WAITRESS 
       AND WHEELCHAIR
13 - GO ROOM

events 1 - 2 events 3 - 9

events 10 - 11

events 12 -13

(a)

(b) (c) (d)

(e) (f) (g)

Figure 2: The experiment conducted in the stage simulator controlling two robots, the tracks of the robots and the commands
that originated them are listed by order in a). In b) the WAITRESS robot is asked to grab a pizza from the kitchen and deliver
it near robot WHEELCHAIR; in c) the WHEELCHAIR has entered the ROOM and because the spatial awareness layer was
monitoring the “MY ROOM” with instructions for augmentating it, new zones, TABLE and BED are now available; in d)
the WHEELCHAIR leaves the room, the augmented zones disappear; in e) WAITRESS robot is near the WHEELCHAIR
so it delivers the PIZZA; in f) the user asks both robots simultaneously to “GO MY ROOM”; in g) the experiment ends in
the room of the user, once again with the augmented zones.
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