Lexicon acquisition algorithms and random occupancy problems
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Lexicon acquisition algorithms involve the repeated interaction between at least two agents who
must reach a consensus on how to name N objects using H words. Here we consider minimal models
of two types of learning algorithms: cross-situational learning in which the learner determines the
meaning of a word by looking for something in common across all observed uses of that word, and
operant conditioning learning in which there is strong feedback between speaker and hearer about
the intended meaning of the words. Despite the stark differences between these learning schemes
we show that they yield the same communication accuracy in the limits of large N and H, which
coincides with result of the classical occupancy problem of randomly assigning N objects to H

words.

PACS numbers: 89.75.Da, 89.75.Fb, 02.50.Ey, 02.50.Le

How a coherent lexicon can emerge in a group of inter-
acting agents is a major open issue in the language evolu-
tion/acquisition research areas [1, 2]. In addition, it is the
topic to which mathematical modeling can contribute the
most, as the emergence of a lexicon from scratch implies
some type of self-organization and, possibly, threshold
phenomenon which can only be fully understood within
a statistical mechanics framework [3-5].

There are basically two competing schemes for lexicon
acquisition [6]. The first scheme, termed cross-situational
or observational learning, is based on the intuitive idea
that one way that a learner can determine the meaning
of a word is to find something in common across all ob-
served uses of that word [7]. Hence learning takes place
through the statistical sampling of the contexts in which
a word appears. Since the learner receives no feedback
about its inferences, we refer to this scheme as unsu-
pervised learning. The second scheme, known generally
as operant conditioning, involves the active participation
of the agents in the learning process, with intense ex-
change of non-linguistic cues to provide feedback on the
hearer inferences. This supervised learning scheme has
been applied to the design of a system for communica-
tion by autonomous robots — the so-called Talking Heads
experiments [8, 9].

Many different computational implementations and
variants of these learning schemes have been proposed
in the literature (see, e.g., [10-12] for the unsupervised
and [13, 14] for the supervised scheme). Except for the
extensive statistical analysis of a variant of the supervised
learning algorithm which reduces the problem to that of
naming a single object [4, 5], the investigation of the ef-
fects of the parameters of those models have been usually
limited to the display of the time evolution of some mea-
sure of the communication accuracy of the population.

Here we study minimal models of the supervised
and unsupervised learning schemes which preserve the
main ingredients of these classical language acquisition
paradigms. In particular, we consider only two agents
(a common assumption in language acquisition models,
such as the popular iterated learning model [15]) who
play in turns the roles of speaker and hearer. The agents
live in a fixed environment composed of N objects and
have H words available to name these objects. As we are
interested in the limit where IV and H are very large with
the ratio « = H/N finite, we do not need to account for
the possibility of creation of new words as done in some
variants of the supervised learning scheme.

We assume that each agent is characterized by a N x H
verbalization matrix P, the entries of which p,; € [0, 1]
with Zf pnh = 1, Vn yield the probability that object
n is associated with word h. This assumption rules out
the existence of objects without names, but it allows for
words which are never used to name objects. To de-
scribe the communicative behavior of the agents through
the verbalization matrix (i.e., the associations between
objects and words for use both in production and inter-
pretation) we need to specify how the speaker chooses a
word for any given object as well as how the hearer infers
the object the speaker intended to name by that word. To
name an object, say object n, the speaker simply chooses
the word h* associated to the largest entry of row n of the
matrix P, i.e. h* = maxy {pnn,h =1,...,H}. To guess
which object the speaker named by word h the hearer
selects the object that corresponds to the largest of the
N entries ppp, n = 1,..., N. In other words, the hearer
chooses the object that it itself would be most likely to
associate with word h [10, 11] (see [16] for the original
version of this inference scheme).

Effective communication takes place when the two



agents reach a consensus on which word must be assigned
to each object. To achieve this we must provide a pre-
scription to modify their initially random verbalization
matrices. Here we will consider two learning procedures
that differ basically on whether the agents receive feed-
back (supervised learning) or not (unsupervised learning)
about the success of a communication episode. However,
before doing this we need to set the language game sce-
nario where the agents interact.

From the list of N objects, the agent who plays the
speaker role chooses randomly C' objects without replace-
ment. This set of C' objects forms the context. Then the
speaker chooses randomly one object in the context and
produces the word associated to that object, according
to the procedure sketched before. The hearer has access
to that word as well as to the C objects that comprise the
context. Its task is to guess which object in the context
is named by that word. Once the verbalization matrices
are updated the two agents interchange the roles and a
new context is generated following the same procedure.

To control the convergence properties of the learning
algorithms described next we discretize the entries pj,p
so that they can take on the values 0,1/M,2/M, ..., 1—
1/M,1. In addition, as there are two agents who alter-
nate in the roles of speaker and hearer, henceforth we will
add the superscripts I or J to the verbalization matrix in
order to identify the agent it corresponds to. At the be-
ginning of the language game each agent has a different,
randomly generated verbalization matrix. More point-
edly, to generate the row n of P! we distribute with equal
probability M balls among H slots and set the value of
entry pfm as the ratio between the number of balls in
slot h and the total number of balls M. An analogous
procedure is used to set the initial value of P”.

Unsupervised learning

In this scheme, the list of objects in the context
n1,...,N¢, and the accompanying word h* is the only
information fed to the learning algorithm. Hence in the
unsupervised scheme only the hearer’s verbalization ma-
trix is updated. For concreteness, let us assume that
agent [ is the speaker and so agent J is the hearer. As
pointed out before, the idea here is to model the cross-
situational learning scenario [7] in which the agents infer
the meaning of a given word by monitoring its occurrence
in a variety of contexts. Accordingly, the learning proce-
dure increases the entries p;{l hrseeos p;{c h+ Dy the quantity
1/M. In addition, for each object in the context, say nq,
a word, say h, is chosen randomly and the entry p;{l h 18
decreased by the quantity 1/M, thus keeping the correct
normalization of the rows of the verbalization matrix.
(The possibility that A = h* is not ruled out.) This pro-
cedure which is inspired by Moran’s model of population
genetics [17] guarantees a minimum disturbance in the
verbalization matrix. We note that during this learning
stage the hearer does not need to guess which object in

the context is named by word h*. An extra rule is needed
to keep the entries p/, within the unit interval [0,1]: we
assume that once an entry reaches the values p;{h =1
or pJ, =0 it becomes fixed, so the extremes of the unit
interval act as absorbing barriers for the stochastic dy-
namics of the learning algorithm.

Supervised learning

The setting is identical to that described before ex-
cept that now the hearer must guess which object in the
context the speaker named by h* and then communi-
cate its choice to the speaker (using some nonlinguistic
means, such as pointing to the chosen object). In turn,
the speaker must provide another nonlinguistic hint to
indicate which object in the context it named by word
h*. Let us assume that the speaker associates word h*
to object ny. If the hearer’s guess happens to be the
correct one then both entries pél e and p;{l h+ are incre-
mented by the factor 1/M. Furthermore, two words hs
and hyj, are chosen randomly and the entries p. , and
Py n, are decreased by 1/M so the normalization of row
ny is preserved in both verbalization matrices. Suppose
now the hearer’s guess is wrong, say, object ns instead
of ni. Then both entries pTIL1 e and piQ h» are decreased
by the factor 1/M and, as before, two words hs and hy,
are chosen randomly and the entries pfll p, and piQ by, D=
creased by 1/M. As in the unsupervised case, the ex-
tremes pi,‘l] =1 and pfﬂ;} = 0 are absorbing barriers.

Our simulations of these learning algorithms show, not
surprisingly, that after a transient the two agents become
identical, in the sense that they are described by the same
verbalization matrix. In addition, in the case of unsu-
pervised learning the stochastic dynamics always leads
to binary verbalization matrices, i.e., matrices whose en-
tries p,, can take on the values 1 or 0 only. Of course,
once the dynamics produces a binary matrix it becomes
frozen. This same outcome characterizes the supervised
case as well, except in the cases that the lexicon size H
is on the same order of the context size C'. However, as
we focus on the regime where C' is finite and N and H
are large we can guarantee that the stochastic dynamics
leads to binary verbalization matrices regardless of the
learning procedure.

Once the dynamics becomes frozen (and so the learn-
ing stage is over) we measure the average communication
error € as follows. The speaker chooses object n in the list
of N objects and emits the corresponding word (there is
a unique word assigned to any given object, i.e., there is
a single entry 1 in any row of the verbalization matrix).
The hearer must then infer which object is named by
that word. Since the same word can name many objects
(i.e., there may be many entries 1 in a given column), the
probability ¢,, that the hearer’s guess is correct is simply
the reciprocal of the number of objects named by that
word. This probability is the communication accuracy
regarding object n. The procedure is repeated for the N
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FIG. 1: Communication error e as function of the ratio
a = H/N between the lexicon size H and number of ob-
jects N for N = 16(%7),24(A) and 96(CO). The open (filled)
symbols represent the data for the unsupervised (supervised)
algorithm. The error bars are smaller than the symbol sizes.
The solid line is the result of the extrapolation for N — oo
(see Fig. 2) whereas the dashed line represents the optimal
performance 1 — . The parameters are C = 2 and M = 10*.

objects, so the average communication error is defined as
€ =1—¢ where ¢ = > ¢,/N is the average commu-
nication accuracy of the algorithm. We note that in the
definition of these communication measures the context
plays no role.

For H < N the optimal (minimum) communication
error ¢, is obtained by making a one-to-one assignment
between H —1 words and H — 1 objects, and then assign-
ing the single remaining word to the remaining N — H +1
objects. This procedure yields €,, =1 — H/N =1 — a.
For H > N we can obtain €,, = 0 simply by discarding
H — N words and making a one-to-one word-object as-
signment with the other N words. Figure 1 shows the
comparison between this optimal result and the actual
performances of the two learning algorithms as function
of the ratio a. In this, as well as in the other figures
of this paper, each symbol stands for the average over
10* independent samples or language games. The per-
formance of the supervised algorithm deteriorates as the
number of objects IV increases, in contrast to that of the
unsupervised algorithm which actually shows a slight im-
provement in this case. For N — oo both algorithms
produce the same communication error €, (see Fig. 2),
which is shown by the solid line in Fig. 1. (A preliminary
comparative analysis of these algorithms for N = 8 led
to an incorrect claim about the general superiority of the
supervised learning scheme [18].) For small o the per-
formances of the two learning algorithms are practically
indistinguishable from the optimal performance, but as
we will show below the algorithms actually never achieve
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FIG. 2: Dependence of the communication error € on the
reciprocal of the number of objects 1/N for a = 0.5 for the
unsupervised (o) and supervised (e) learning algorithms. The
error bars are smaller than the symbol sizes. The linear fit-
tings (solid straight lines) yield ¢ = 0.5690 £ 0.0003 (unsu-
pervised) and e = 0.5677 £ 0.0004 (supervised) for N — oo.
The Monte Carlo estimate of the error for the random assign-
ment of objects to words is given by the symbols x and the
dashed horizontal line corresponds to the estimate of Eq. (3),
e = 0.5677. The parameters are C =2 and M = 3 10%.

that performance, except for o = 0.

A surprising finding was that for both supervised and
unsupervised algorithms the average communication ac-
curacy ¢ coincided with the ratio between the actual
number of words used (H. < H) and the number of ob-
jects N. This is what we expect when the objects are
assigned randomly to the words, which is a classical oc-
cupancy problem discussed at length in Feller’s book [19,
Ch. 1IV.2]. In this occupancy problem, the probability
that the number of words m not used in the assignment
of the N objects to the H words (i.e., m = H — H.) is

Pm(Nﬂ)Z(i)%(H;m)(—l)” (1—m;”

v=0
(1)
which in the limits N — oo and H — oo reduces to the
Poisson distribution

T ©)

where A = Hexp(—N/H) remains bounded [19, Ch.
IV.2]. Hence the average communication accuracy re-
sulting from the random assignment of objects to words
is simply (H — (m)) /N, which yields the communication
error

p(m;A) =e

& =1—a+ae />

3)

This equation describes perfectly the communication er-
ror of the two learning algorithms in the limit N — oo
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FIG. 3: Communication error e of the unsupervised lexi-
con acquisition algorithm for context size C = 4 and N =
24(v7),36(A),48(x), and 96(Q). The error bars are smaller
than the symbol sizes. The learning rate is 1/M = 10~* and
the solid line is the result of Eq. (3).

(solid line in Fig. 1). We note that the (small) discrep-
ancy observed in Fig. 2 for the extrapolated data of the
unsupervised algorithm and the analytical prediction can
be reduced to zero by decreasing the learning rate 1/M.
Equation (3) explains also why the performances of the
algorithms are practically indistinguishable from the op-
timal performance for small «, since the difference be-
tween them vanishes as exp (—1/«). In addition, Eq. (3)
shows that in the limit of large «, the communication
error vanishes as 1/a.

A word is in order about the effect of the context size C'
on the performance of the two learning algorithms, since
Figs. 1 and 2 exhibit the results for C = 2 only. Simula-
tions for larger values of C' show that this parameter is
completely irrelevant for the performance of the super-
vised algorithm. Of course, this is expected since regard-
less of the context size, at most two rows (object labels)
of the verbalization matrices are updated. But the situ-
ation is far from obvious for the unsupervised algorithm
since C determines the number of rows to be updated in
each round of the game. However, the results summa-
rized in Fig. 3 for C = 4 indicate that, despite strong
finite-size effects particularly for small «, the communi-
cation error ultimately tends to €, in the limit of large
N.

Therefore in the more realistic situation in which the
number of objects IV as well as the lexicon size H are very
large, both supervised and unsupervised lexicon acqui-
sition schemes yield the same communication accuracy,
namely, the accuracy obtained by a random occupancy

problem in which IV objects are assigned randomly to H
words. This surprising finding calls for a complete reap-
praisal of the current lexicon acquisition paradigms of
Cognitive Science. It would be most interesting to devise
sensible lexicon acquisition algorithms that reproduce the
optimal communication performance or, at least, that ex-
hibit an communication error that decays faster than the
random occupancy result, 1/«.
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