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Abstract 
 
This report focuses on the use of Multi-Agent Systems for modelling of Micro-
unmanned Aerial Vehicles (MAVs) in a distributed control task. The task regards a 
search scenario in the context of security and urban counter-terrorism. In the 
simulation developed, a swarm composed by four autonomous MAVs, driven by a 
neural network controller, has to approach a target placed somewhere within the given 
environment, and then carry out a detonation when close to it. In Part I of the report 
we provide an overview of the state-of-the-art literature on distributed control and 
communication in multi-agent systems. Then we introduce the domain of unmanned 
flight from a historical perspective and finally we review the most relevant work 
about autonomous aircrafts path-planning. The Part II we describe the simulation 
research. It includes a description of the MAV swarm software simulator developed 
and the results of the first set of simulations. We use genetic algorithms to evolve the 
neural controller of MAVs. In the experiments carried out to date, with the aim to 
identify the most appropriate set of sensors for the neural network inputs, the evolved 
population of MAV swarms is able to reach and destroy the target on average 93% of 
the time. 
 
 

PART I 
 

1. Distributed control and communication in Multi-Agent 
Systems (MAS) 

 
Distributed control, particularly when it requires a certain level of 
coordination/cooperation (Reynolds [19], Nitschke [20], Baldassarre et al. [21]), is a 
notably interesting problem from both a technological and scientific perspective. 
Compared to centralised control where a central controller (e.g. human operator or 
airplane’s “leader” agent) is responsible for the (pre)planning, task-assignment and 
supervision of the coordination task, in distributed control systems intelligent 
autonomous, or semi-autonomous, agents are capable of sensing, acting, cognition 
and communication and together contribute to the task solution. These network-
centric systems only require partial interaction with other agents, and may necessitate 
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simpler architectures and individual resource requirements as knowledge is 
distributed in the population. 
 
The significant advantages of this approach are that the system is more robust, 
adaptive and fault tolerant since there is no critical reliance on any specific individual, 
and that decentralization results in increased reliability, safety and speed of response 
(Baldassarre et al. [21], Eklund et al. [22]). In addition, distributed approaches have 
the benefit of not requiring the full pre-planning of the cooperative strategy. Adaptive 
solutions can emerge run-time through the interaction between autonomous 
individuals and from the task and environment requirements whose might not be fully 
accessible (known) at the beginning of the problem. 
 
Studies on distributed control greatly benefit from the utilization of Multi-Agent 
Systems (MAS), since they provide a platform for simulation and testing of various 
hypotheses based on the principle of distributed (artificial) intelligence (Weiss [23]). 
Distributed control MAS approaches have been used in various domains, such as 
unmanned air, terrestrial/underwater vehicles, search and rescue scenarios, collective 
robotics, social cognition etc. For example, Sastry and colleagues have focused on 
coordination and distributed control in unmanned underwater vehicles (Eklud et al. 
[22]); Sykara and collaborators (Koes et al. [24]) have concentrated their attention on 
the study of hybrid rescue group systems based on humans, software agents, and 
autonomous robots. What they propose is coordination architecture capable of quickly 
finding optimal solutions to the combined problems of task allocation, scheduling, 
and path planning subject to system constraints. In the SWARM-BOT project 
(Baldassarre et al. [21]; Trianni and Dorigo [25]) groups of robots evolve a 
cooperative strategy for exploratory tasks. In such a study distributed coordination 
implies that the characteristics of the group’s behaviour (e.g. individual sensorimotor 
strategies, the roles played by the different robots, the synchronization problems 
raised by their interactions) are not managed centrally by one or few “leaders” but are 
the result of self-organizing processes such as “positive feedback” (if each individual 
of a group follows a rule of the type “do what the majority does”, the individuals’ 
behaviours will tend to become homogeneous) or “consumption of building blocks” 
(e.g. if the number of individuals forming a group is limited, the process of 
convergence towards the same behaviour caused by a positive feedback mechanism 
will necessary slow down and then stop). Finally, various MAS models of social 
cognition have been proposed, such as those modelling animal collaborative tasks 
such as in ant colonies (which have inspired the SWARM-BOT application) and 
predator group behaviour (Barry and Dalrymple-Smith [26]). 
 
One important issue that has not been directly addressed in distributed control MAS is 
that of explicit communication between agents, and between agents and humans in 
hybrid systems. Most MAS models that have considered communication typically 
refer to implicit forms of communication, such as visual cues in predator models 
(Barry and Dalrymple-Smith [26]) and stigmergy communication in colonies (Trianni 
and Dorigo [25]), or to the technical aspects of agent communication protocols (Weiss 
[23]). Instead, the use of explicit forms of communication (e.g. symbolic, language-
like systems) can be crucial in tasks requiring higher level cognitive capabilities, such 
as planning and decision making, and for the integration of language and cognitive 
capabilities (Perlovsky [27] [28], Tikhanoff et al. [29]). By explicit forms of 
communication we mean the use of symbolic lexicons in which it is possible to 
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identify a clear symbol/meaning relationship grounded on the agents’ collaborative 
task properties and processes. New studies on the role of explicit communication in 
MAS have many theoretical and technological implications. First, agents that are 
allowed to communicate explicitly during the execution of collaborative task might 
benefit from the exchange of information regarding properties of the task being 
processed. Such explicit communication systems do not have to be defined a priory 
by the human designer, but can autonomously emerge from social interaction between 
agents (Cangelosi et al. [30]; Marocco and Nolfi [31]). A second advantage of 
studying symbolic communication concerns the development of human-cantered 
systems and hybrid human/agent/robot systems. This will support the reconciliation of 
human decision making schemes with machine performance and intelligent agents, 
keeping the human in the loop (Koes et al. [24]). Finally, the post-hoc analysis of the 
communication systems developed by the agents (with or without interactions with 
human users) can give meaningful insights on the optimal strategies upon which the 
distributed control strategy is based. This can be also used for the design and 
improvement of human-cantered distributed control systems. 
 

2. Unmanned flight: An overview 
 
First of all, it is important to define what an Unmanned Aerial Vehicle, also known as 
UAV, is. In order to do this we will adopt the definition provided by the Department 
of Defence Dictionary of Military and Associated Terms [W1], which states: 
 

“A powered, aerial vehicle that does not carry a human operator, uses 
aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted 
remotely, can be expandable or recoverable, and can carry a lethal or 
nonlethal payload. Ballistic or semiballistic vehicles, cruise missiles, and 
artillery projectiles are not considered unmanned aerial vehicles” 

 
The main advantages of using UAV instead of traditional manned aircrafts consist in 
avoiding risks for pilots and, at the same time, increasing the chances of success for 
the missions they take part in. In fact, as Cambon and colleagues [W2] report, UAVs 
are typically employed in the so-called “dull, dirty and dangerous” missions. The 
“dull factor” is easily understandable: during long and repetitive missions (think, for 
example, about the B-2 crews that during the recent Kosovo conflict were constrained 
to fly 30-hour roundtrip missions from Missouri to Serbia) a machine could provide a 
better alertness state in comparison with a human, improving the overall probability 
of success for the mission. The “dirty” aspect is somehow related to tasks where the 
danger doesn’t come from the enemy but from some other source instead. For 
example - despite wearing lead-lined flight suits and having their aircraft washed 
down upon landing - the U.S. pilots who flew data-gathering missions over Bikini 
Atoll in the Pacific immediately after nuclear tests in 1946 suffered radiation-relation 
sickness. At last, the “dangerous” factor might be both physical and political. Physical 
if we consider that a manned aircraft exposes human pilots to any kind of risks, 
especially during reconnaissance missions (consider that during the WWII the 
American 3rd Reconnaissance Group lost over 25% of its pilots flying missions over 
North Africa in their initial months spent in theatre in 1942). Political if we think 
about the issues related to the capture of a soldier (and, during the Vietnam War, 
practically all the soldiers seized by Viet Cong were aircraft pilots). Some sources [1], 



 4 

for example, link the growing interest of US Army in building unmanned aerial 
vehicles with the American U-2 spy plane shot down while flying over the Soviet 
Union’s sky during May 1st, 1960 and the consequent capture of its pilot, Francis 
Gary Powers, by the Russians. Leading to the so-called “U-2 crisis” this event has 
clearly demonstrated to American governors how the capture of a pilot by the enemy, 
during the cold war, was no politically tolerable. 
 
During the last few years, thanks to the quick improvements in components 
miniaturization, a new category of UAV has emerged. They are the so-called Micro-
unmanned Aerial Vehicles (MAVs), properly known as Class I UAV according to the 
definition provided by the US Army [W3] that says: 
 

“The Class I Unmanned Aerial Vehicle (UAV) provides the dismounted 
soldier with Reconnaissance, Surveillance, and Target Acquisition (RSTA). 
Estimated to weigh less than 41 pounds, the air vehicle operates in complex 
urban and wooded terrains with a vertical take-off and landing capability. It is 
interoperable with selected ground and air platforms and controlled by 
dismounted soldiers. The air vehicle also features a EO/IR/LD/LRF capability 
to perform the RSTA mission and utilizes a Heavy Fuel Engine (HFE) as its 
propulsion system. The Class I uses autonomous flight and navigation, but it 
will interact with the network and Soldier to dynamically update routes and 
target information. It provides dedicated reconnaissance support and early 
warning to the smallest echelons of the Brigade Combat Team (BCT) in 
environments not suited to larger assets. It will also perform limited 
communications relay in restricted terrain, a tremendous deficit in current 
operations. The system (which includes one air vehicle, a control device, and 
ground support equipment) is back-packable.” 

 
The MAV category is, in fact, just the natural outcome of the continuous UAV’s 
technological improvements happened during the last decades. Year by year, MAVs 
are becoming autonomous vehicles even smaller and lighter than their ancestors, 
reaching true excellence points. Think for example to the EPFL’s MC2, a 5-gram 
fixed-wing airplane, made out of carbon fibers and thin Mylar covering foils [2] [3], 
or to the MicroGlider developed by Wood and colleagues [4]. 
 
Even if we’re now facing such a race toward the most extreme possible forms of 
miniaturization (that in turn could be useful for the original purpose that earlier 
UAV’s builders were aiming: to collect the most accurate information about the 
enemy as possible), we’ve already reached a point in which MAVs can be 
successfully applied to innovative kinds of tasks. 
 

2.1 Autonomous UAVs/MAVs path-planning 
 
The fact that an aircraft is not able to carry any human pilots directly implies that it 
has to be driven in a different way. Typically, the UAVs1 used nowadays in real 
applicative scenarios are dynamically remote controlled (think for example to the 

                                                
1 In this section we will use the term UAV in a generic way, meaning any possible kind of unmanned 
aerial vehicle, including MAVs. 
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famous Predator [5] [W4]) by a human crew staying in a remote position (the TCS, 
Tactical Control Station). Many UAVs, at the same time, also have their own 
guidance systems, through which they can fly autonomously. Usually, these guidance 
systems are slightly similar to automatic pilots used within the civilian aviation 
domain as they simply provide to keep the UAVs following a given pre-planned 
route. 
 
During the last few years we’ve assisted to an increasing interest in the development 
of more intelligent autonomous UAVs’ controller systems. The focusing toward 
autonomous guidance systems is not only an economical matter, even if using flying 
robots instead of the usual combination “manned airplane plus human pilot” would 
allow to save the enormous amount of money required for pilots training, skills 
upgrading, and so on. The point is that a computer software can frequently 
outperforms human in carrying out many different tasks, both in terms of reliability 
(think, for example, to the “dull” factor already outlined in the previous paragraph) 
and accuracy (a computer software is more accurate than a human pilot to perform an 
already planned manoeuvre and, most important, it is able to perform with a stable 
and short reaction time). 
 
The problem of the limited performance that a human pilot could offer becomes even 
more serious if we think about how to drive an entire swarm of MAVs flying within 
an urban environment. To control the various formation members from a remote 
position means being able to manage an infinite flow of information that comes to the 
TCS every second, and respond to it in the correct way. This information flow is 
incomparably higher with respect to the one typically received by a pilot driving a 
Predator many kilometres higher than the sea level. It is practically impossible, for a 
human, to manage all this data. This is actually impossible if we want to employ tens 
of MAVs and move them as a real swarm. These are, in fact, the true reasons behind 
the increasing interest in autonomous robotics showed in these years. 
 
According to Richards and colleagues [6] current approaches for autonomous 
cooperative UAV control can be separated into few different groups2: 

 
• deliberative approach: focused on developing a specific flight path for each 

UAV to follow. Such flight paths are rigid and no effort is made to alter them 
in the event that new information is received (such as the discovery of a 
hostile element in a warfare environment). In other words, the entire scenario 
is assumed as already known. This approach could be successfully employed 
for civilian flying planning, but it’s too simply for our purposes; 

 
• adaptive replanning approach: in order to achieve some degrees of flexibility, 

few deliberative systems incorporate an element of adaptive replanning. In the 
adaptive replanning, a centralized controller generates a specific flight path for 
each UAV to follow based on the information that is currently available. The 
UAV follows that flight path, sending sensor information back to the 
controller as it becomes available. As the controller receives new information, 

                                                
2 In reality, Richards, Whitley and Beveridge classify these approaches in four different groups. For 
simplicity purposes, we will limit the analysis to only three of these, excluding the so-called 
“behaviour based controller systems”. 



 6 

it may generate new flight paths that are broadcasted back to the UAVs. The 
new plans may, for example, take into account the location of a previously 
unknown enemy or the fact that a UAV was lost due to mechanical failure or 
for many other reasons. It appears immediately clear that the adaptive 
replanning has a number of drawbacks. Every time a new set of flight plans is 
generated, the centralized controller must transmit them to each UAV in the 
field. A non-trivial choice must be made as to when is the appropriate time to 
replan. The replanning process is not instantaneous, and by the time the new 
plan is sent to the UAVs it may already be obsolete; 

 
• reactive strategies: rather than generate a specific flight path that must be 

updated during the missions, this approach tends to generate a so-called 
“reactive strategy” for every UAV. This kind of strategy is analogous to a 
single decision tree that controls the aircraft for the life of the mission. The 
decision tree determines changes in the UAV’s heading, based on immediate 
low-level information from sensors. 

 
In the just mentioned work made by Richards et al., where a team of UAVs has to 
explore in a cooperative way a given area, the decision tree that control the various 
aircrafts is developed through genetic programming methodologies. Even if the main 
idea - according with the controller system can’t be something external to the UAVs 
but it has to be embodied instead - could be fully agreed, a more convenient approach 
might consist in the usage of evolutionary evolved neural networks (Parisi et al. [7], 
Nolfi and Parisi [8], Floreano and Mattiussi [9], Mitchell [10]), mainly for two 
reasons. First, it is easier to use neural networks instead of GP for this kind of task 
since the behavioural repository to give to the MAVs is far simpler. Second, if 
properly trained, neural networks allow a much greater generalization capability than 
a decision tree evolved through genetic programming. 
 
Anyway, in both cases a computer simulation is required for reasons of cost and time 
(for an overview about the importance of simulations in modern science, see Casti 
[11], Parisi [12], Cecconi and Zappacosta [13]). The strategies developed have to be 
evaluated within the simulated environment, as the evolutionary process requires 
potentially thousands of strategy evaluations to converge on effective solutions. 
Evolutionary algorithms typically progress through thousands of failing solutions on 
their way to good solutions. In a simulator, these failures accrue no real cost, where 
repeated failures with real vehicles might. 
Neural networks are frequently used in terrestrial and underwater robotics, but very 
rarely as controller systems for flying robots. The main exception encountered so far, 
reviewing the literature, consist in the work that Floreano and colleagues [14] [15] are 
carrying on at the EPFL. Their project is focused on employing fully autonomous 
MAV swarms, where each swarm’s member act as a signal repeater, in order to create 
a reliable communication infrastructure between human rescuers and base station 
working into areas hit by natural disasters. At the same time, Owen Holland and his 
research group [16] [17] are studying how to employ neural networks as controllers 
for autonomous helicopters. 
 
Finally, even if this approach falls in the previously outlined category of adaptive 
replanning, other meaningful insights come from the work carried out within the 
Autonomous Flight System Laboratory, at the University of Washington. Stressing 
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the importance of using heterogeneous autonomous systems in place of traditional 
hierarchical structures, Rathbun and Capozzi [18] had developed an efficient path 
planning algorithm for situations where the UAVs need to modify their paths in order 
to avoid a number of other aircrafts flying in their vicinity. 
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PART II 
 

3. Introduction to Simulation Experiments 
 
Imagine the following situation. There is a terrorist - suppose a kamikaze - moving 
along the centre of a western city. We know that he is going to make an attack, 
detonating the explosive he is wearing, but we don’t know exactly what the target of 
his action will be. The only thing we know is that we have no choice but to stop the 
terrorist at any cost. He just needs a movement of his finger to create a blast and 
provoke a lot of deaths. So, it is too risky trying to approach him directly. A sniper 
could be used instead. But we don’t know where the attacker will move. So we need a 
big group of snipers, placed in the strategic points of the city. But it’s not so easy to 
displace dozens of snipers within an urban city while passing unnoticed at the same 
time. Again, we cannot be sure of the outcome of the snipers’ action. The attacker is 
walking, maybe frequently changing his marching direction, and there are a lot of 
people that could be hit while passing between the snipers and him. The sniper could 
also fire a non-lethal shot, leaving the terrorist able to accomplish, at least in part, his 
bloody mission. 
 
Now, imagine a MAV, a Micro-unmanned Aerial Vehicle. Even better, imagine a 
MAV swarm. Silent as snipers, but more accurate. The swarm floats unnoticed above 
the city’s sky, monitoring the movement of the attacker and using a common 
language to share important information between the various members. At a certain 
moment, the swarm decides that it’s the right time to act. They start a nosedive and, in 
a couple of seconds, they reach their target. The swarm attacks vertically - from a 
higher position – in such a way that is invisible to the terrorist. Since the MAVs are 
silent as well, we can be sure that the target, which is walking, will never pay 
attention to what’s happening above him. And even if he’s looking upward, when the 
MAVs become visible to him it is too late to react. The target is eliminated through a 
low-potential self-detonation of the swarm’s members, or the emission, by the MAVs, 
of liquid chemical inhibitors around his body makes him inoffensive. 
 
Our research aims to demonstrate how this kind of scenario is possible and how it is 
possible to design a swarm of autonomous MAVs to be employed in such a urban 
terrorist scenario. 
 

4. The MAV swarm simulator 
 
During the five months spent at the University of Plymouth - within the Adaptive 
Behaviour and Cognition Research Group lead by Professor Angelo Cangelosi - we 
developed an ALife computer simulation that aims to reproduce a scenario similar to 
the one described above. 
 
From a technical point of view, the source code of the simulation has been written in 
C++, using the Trolltech’s Qt as graphical framework. The advantage of this kind of 
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approach mainly consists in the possibility to build (and run) the simulation on all the 
most widely used operating systems (i.e., Microsoft Windows3, MacOS X and Linux). 
 

 
Figure 1 – A screenshot of the simulation’s main interface. 

 
Developing simulations where aircrafts are used in place of a more traditional 
terrestrial vehicle impose some particular constraints. The main one consists in the 
impossibility for our simulated MAVs to stop. In other words - since they are 
airplanes and not helicopters or other kinds of wheeled robots - the MAVs have 
always to move. For simplicity purpose, in first instance, they accomplish this task at 
a given and fixed speed. The MAVs do also have a given turning radius between 0° 
and 20° in the time unit, both clockwise and counter-clockwise. Moreover, flying 
requires energy. The MAVs are characterized with a certain autonomy level that 
decreases over the time (in a linear way, since the speed is fixed). 
 
In order to define the MAVs’ cruise speed and their autonomy (the turning radius had 
been instead chosen in a very conservative way), we have taken inspiration from an 
existent MAV model: the Wasp Block III. 
 

 
Figure 2 – A picture of the Wasp Block III, the MAV model produced by Aerovironment and used as a 

model for our simulator. 

                                                
3 Even if, at this moment, a known bug in the Qt framework denies the Windows’ users from correctly 
seeing the images included in our simulation, unless users have the Qt library installed on their 
machine. 
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Built by the American factory Aerovironment (famous for being the same company 
which had already produced both the widely used Pointer [W5] and the more recent 
Hunter [W6]) this aircraft model is small enough to be used within an urban 
environment and his autonomy (see the table below) allows it more than 30 
kilometres motion while waiting for the right moment when to attack the target. 
 

Length 38 cm (15 in) 
Wingspan 72 cm (28.5 in) 
Weight 430 g (0.95 lb) 
Speed 46-65 km/h (25-40 mph) 
Range 5 km (3.1 miles) 
Endurance 45 min. 
Propulsion Electric motor 

Table 1 – Technical specifications of Aerovironment Wasp Block III [W7] 

 
The environment where our simulation takes place is a rectangular area sized 
approximately 630x650 meters, representing a portion of London’s Canary Wharf 
quarter. A swarm is composed by 4 MAVs, with starting position close to the 
rectangle corners and facing the centre of the environment (with the addiction of a 
certain amount of random noise to their starting orientation). A target is placed 
somewhere in the area, occupying a random position that is always visible to the 
swarm’s members. 
 
The neural network which controls the MAV behaviour is a simple fully connected 
three-layer feed-forward network, detailed as follows: 
 
• the input layer is formed by four neurons. One of them is dedicated to receive 

the sensorial input related to the distance that separates the MAV from the 
target; the other three are dedicated to the management of the angle between the 
two items instead; 
 

• the ten neurons belonging to the hidden layer are characterized by a tan-sigmoid 
activation function, with minimum -1.0, maximum 1.0 and curve’s slope 1.0; 
 

• the output layer is composed by two neurons. One of them, continuous, is 
dedicated to the MAV steering. Its output value can vary between -1.0 and +1.0, 
according respectively to a 20° left turn and to a 20° right turn. The other 
neuron is a Boolean one instead. When it turns to 1 the MAV detonates. 

 
The training process takes place through a genetic algorithm. An initial population of 
100 different swarms is created with connection’s weights and biases randomly 
assigned (consider that the MAVs belonging to the same swarm share the same 
connection’s weights and the same biases as well; they’re, in fact, clones). Each 
swarm is tested four times within four different environments, which vary only in 
terms of the position of the target. Each test starts with the MAVs displaced in their 
starting points, with the maximum amount of energy possible (5,000 energy units4). 
                                                
4 Please consider that this value is strongly lower than the real one (that should be approximately 
33,800). The decision to keep this value low is justified by the long time required to carry out a 
simulation when the MAVs have the same autonomy than their real counterparts. Sometimes, in fact, 
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Then, each swarm’s member sequentially perceives its sensorial inputs, elaborates the 
behavioural response and actuates it (the action’s implementation actually costs 3.01 
energy units). The test ends when the target has been destroyed by a MAV detonated 
very close to it or when there are no more MAVs alive. Consider that a MAV – a part 
detonating - could also die if it moves out from the environment’s boundaries, if it 
collides against a team-mate or if it finishes its autonomy. 
 

 
Figure 3 – The neural network’s architecture of the MAVs. 

 
The fitness formula through which the performance obtained by each swarm - after 
the conclusion of the four tests made - is measured is: 
 
Fitness = -(av. dist.) + (av. en. / 50) + (nr. of succ. * 50) + (nr. of MAVs alive * 5) 
 
where: 
 
• av. dist. is the average distance between the target and the swarm’s member 

exploded closest to it, calculated basing on the four tests; 
• av. en. is the average amount of energy remained to the MAV detonated closest 

to the target, calculated basing on the four tests; 
• nr. of succ. is the number of tests concluded by the given swarm with the 

elimination of the target; 
• nr. of MAVs alive is the number of swarm’s members remained alive after the 4 

tests (maximum 3 MAVs x 4 tests = 12 MAVs); 
 
This formulae tends to favour not only that swarms able to reach and destroy the 
target, but also the ones that are both quick in doing this task and capable to perform 
it losing the lowest possible number of MAVs. 
 
The 20 swarms with the best performances according to this criterion are selected for 
the reproduction. Each of these swarm creates 5 copies of itself, which inherit its 

                                                                                                                                      
especially during the first generations, might happen that some swarm’s members move in loop, 
without reacting to the variation the sensorial perception, until the autonomy will finish. 
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connection’s weights set, along with the biases related to the hidden and to the output 
layer (the input layer’s neurons hasn’t got any bias). A certain amount of random 
mutation (ranging between -1.0 and +1.0) is added to each inherited weight and bias 
with probability .25. The elitism operator is also applied in order to preserve the 
reproduction of the swarm that - within a given generation - performs best. In fact, the 
best swarm in a certain generation creates five copies of itself, but just four of these 
are subject to random mutations. 
 

5. Experimental setup and results 
 
As already stated in the previous paragraph, the MAV’s neural network is able to 
perceive the target in terms of both angle and distance. From a technically viewpoint: 
 
• the perceived angle ranges clockwise from 0 to 360°, starting from the MAV 

facing direction; 
• the distance is measured in pixels and it’s simply calculated as the Euclidian 

Distance (since our reference environment is basically a Cartesian plan) 
between the target and the centre of the MAV. 

 
In order to find the most appropriate way to encode these sensorial inputs, a set of 
eights simulations aimed to this goal have been run. In these experimental setups, the 
evolution lasts for 500 generations. Angle and distance from the target’s information 
received in input by the MAVs have been codified as follows: 
 

Simulation Angle Distance 

A1 
Angle’s range (0°->360°) segmented in 8 

different sub-spaces, numbered according to 
a 3-bits Boolean encoding 

Distance’s range (0->1040) 
discretised in 11 intervals as 

shown in table 3 

A2 
Angle’s range (0°->360°) segmented in 8 

different sub-spaces, numbered according to 
a 3-bits Gray Code encoding 

As Simulation A1 

A3 

Angle’s range (0°->360°) encoded through 
two continuous neurons: the first receives in 
input the angle’s sin, the latter is set with the 

value corresponding to the angle’s cosine  

As Simulation A1 

A4 
Angle’s range (0°->360°) encoded through a 
single continuous neuron ranging from 0 to 

1 (0° = 0.5, 180° = 0, 360° ≅ 1) 
As Simulation A1 

A5 As Simulation A1 

Distance’s range (0->1040) 
translated in the activation 

value of a continuous 
neuron ranging from 0 to 

1(0 = 1, 1 = 0) 
A6 As Simulation A2 As Simulation A5 
A7 As Simulation A3 As Simulation A5 
A8 As Simulation A4 As Simulation A5 

Table 2 – The different kinds of input encoding used during the first set of simulations 
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Distance Normalized value 
1040 <= distance < 900 0.0 
900 <= distance < 800 0.1 
800 <= distance < 700 0.2 
700 <= distance < 600 0.3 
600 <= distance < 500 0.4 
500 <= distance < 400 0.5 
400 <= distance < 300 0.6 
300 <= distance < 200 0.7 
200 <= distance < 100 0.8 
100 <= distance < 2 0.9 
2 <= distance <= 0 1.0 

Table 3 – The rules followed to discretize the distance from the target in Simulations from A1 to A4 

 

5.1 Results 
 
Since the only genetic operator used is mutation, there is the risk that the solution 
space investigated by the evolutionary algorithms will not be the one containing the 
optimal solution. To mitigate this factor, each simulation has been repeated five times 
and the results have been then averaged. The plot and the table below show, in terms 
of average fitness, the performance comparison between the eight architectures 
analysed. 
 
Table 4 contains a brief review of the results obtained by the eight simulations 
described in the previous paragraph. 

 
Simulation Average fitness* Percentage of tests 

concluded successfully* 
A1 110.4866 75.0900 
A2 315.1785 93.4650 
A3 -152.4581 11.6800 
A4 55.3201 58.1450 
A5 111.6630 75.3300 
A6 240.1921 88.1400 
A7 -142.2044 10.8950 
A8 -287.0299 6.9700 

Table 4 – Average fitness and percentage of tests concluded successfully. Comparison between the 
eight different kinds of input coding tested (*: average value of the last ten generations)  

 
As we can easily see, both from this table and from the analysis of Figure 4, the 
encoding that has obtained the best results is the A2 (angle from the target divided in 
eight sub-spaces, numbered according to a Gray Code scale, distance discretised in 
eleven different values). 
 
Looking more in details the A2 simulation’s outcome, we can have a confirm of the 
fact that our simulated MAVs learn in a very efficient way how to reach and destroy 
the target. 
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Figure 4 – Average fitness. Comparison between the eight different kinds of input encodings tested. 

 
Figure 5 shows the fitness during the 500 generations. As expected, the average value 
grows with the time and at last tends to reach an asymptotic equilibrium state after 
300 generations. 
 

 
Figure 5 – Average and maximum fitness for Simulation A2 

 
More interesting might be to have a look to the curve related to the maximum fitness 
(i.e., the fitness’ value obtained by the best swarm within a given generation). In this 
case, we can surprisingly discover that after just few tens of generations (30-40) 
we’ve obtained swarms able to perfectly perform the given task. This conclusion is 
supported by the observation of the minimum distance’s curve in Figure 6 (where the 
minimum distance between the target and the swarm’s member detonated closest to it 
- averaged for the four tests made and related to the swarm with the better 
performance in this take - is plotted), which tends very quickly to zero. 
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Figure 6 – Average and minimum detonation distance from the target for Simulation A2 

 
The percentage of tests successfully concluded (Table 4 and Figure 7) is quite 
enthusiastic: 93.465%, on average, during the last ten generations. Considering also 
the random mutations introduced during the passage from a certain generation to the 
next one (which, practically, makes impossible to reach a 100% goal), the results is 
even more than a good one. 
 

 
Figure 7 – Percentage of tests concluded with the elimination of the target for Simulation A2 

 
Figure 8 shows us that, after a first phase during which the simulated MAVs learn 
how to accomplish the main task (to reach and destroy the target), the selective 
pressure is then exerted on a different factor: the speed. After 200 generations we’re 
able to see the a clear tendency toward the evolution of swarms capable to perform 
ever quickly the given task. 
 



 16 

 
Figure 8 – Average energy amount remained to the MAV detonated closest to the target for Simulation 

A2 

 
At the end, in Figure 9, we can find a graph where the final condition of the average 
swarm’s members, at the end of each test, is reported. The number of detonated 
MAVs, initially very high, tends to decrease over the time, reaching the final value of 
1.5 for each swarm. This value sounds a bit too high yet, but it could be improved 
modifying in a proper way the fitness formulae (assigning more importance to the 
“number of MAVs alive at the end of each test” factor). Furthermore, since the MAVs 
are not able to perceive the environment boundaries, the percentage of them dying for 
this reason remains relevant and doesn’t get lower during the evolution. Considering 
all these factors, the final amount of MAVs alive at the end of each test (2.25) might 
be considered anyway a good result. 
 

 
Figure 9 – Conditions of the MAVs belonging to the average swarm at the end of each test 
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6. Conclusions and further developments 
 
In this work we have successfully demonstrated how a neural network controller for 
MAV swarms can be successfully evolved through ALife computer simulations based 
on evolutionary algorithms. 
 
The next step will be to make our simulation more realistic, through the inclusion in 
the environment of some obstacles that the MAVs have to be able to avoid. Some 
preliminary work has already been done in this direction. As shown in Figure 10, we 
have mapped some of the buildings presents in the Canary Wharf and we have set 
them, in the context of our simulation, as “no fly zones” (a MAV that tries to enter 
into one of this areas will be immediately destroyed). We have also added to our 
simulated aircraft a ultra-sonic sensor that allows it to perceive the presence (and, in 
case, the distance as well) of any obstacle they are eventually facing. 
 

 
Figure 10 – A first mapping sketch of high buildings/obstacles.  

 
With such a more realistic environment, we would like also to add to the MAVs’ 
behaviour a social dimension, trough the substitution of the target with a more robust 
one, which needs two contemporary hits in order to be destroyed. Then we will try to 
add to the simulated aircrafts the possibility to exchange communication signals 
between them, in order to achieve a better coordination level and a better performance 
in destroy the target consequently. 
 
Another direction of study is to increase the number of MAV members belonging to a 
swarm and vary starting points. In this way we will be able to evolve a real swarm 
behaviour, like the one created by Reynolds in his classical work on flocks, herds and 
schools [19]. Moving toward a more ecological plausible scenario, we might be able 
as well to exploiting some ethological study, as the one carried out by Barry and 
Dalrymple-Smith [26] which suggest the employment of MAVs that are not clones, 
but that instead have particular individual characteristics (like, for example, a 
favourite direction to follow during the approach to their prey). 
 
Gradually we aim to proceed toward an even more realistic scenario. We will use a 
three-dimensional environment, containing objects (not only MAVs and buildings, 
but also trees, people and car moving along, and so on), characterised by real physics 
properties.  
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