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Abstract 
 
In this paper we present a brief overview of research on language learning 

in cognitive robotics and describe preliminary work on language grounding 
using the iCub robotic platform. The study investigates how the language 
acquired by robotic agents can be directly grounded in perceptual and action 
representations. Interactive intelligent systems research has focused on the 
investigation of the relationship between language and action. Studies are 
characterised by the hypothesis that symbols are directly grounded into the 
agents’ own categorical representations, whilst at the same time having 
logical (e.g. syntactic) relationships with other symbols (Harnad 1990). This is 
achieved when cognitive agents and robots learn to name entities, individuals 
and states in the world whilst they interact with their environment and build 
sensorimotor representations of it. Such an approach has important 
technological implications for the design of autonomous systems capable to 
assist humans in a variety of situations including everyday tasks (e.g. 
service/household robotics), and highly-specialized situations such as with 
autonomous systems for defence (e.g. collaborative and multi-agent 
distributed tasks for exploration and navigation in unknown terrains). 
Cognitive systems are essential for integrated multi-platform systems capable 
of sensing and communicating. 

 
This report is organized as follows: Section I provides a general overview of 

the problem. It also provides a brief review of existing work on language 
grounding in cognitive robots; Section II gives a summary of the work 
accomplished up to date during the exchange visit to the IIT (Italian Institute of 
Technology) at Genoa for a new model of language learning in the iCub 
robotic platform. 

 

I – Background  
 

In the near future, we expect participation of intelligent robots to grow rapidly 
in human society. Robots will be able to learn language and world 
understanding from direct interaction with humans. Therefore, since effective 
interaction between robots and people will be essential, robots will need to be 
able to identify a speaker among a group of people and recognise speech 
signals in a real environment.  

Cognitive systems research focuses on the development of natural and 
artificial information processing systems (e.g. internet agents, adaptive 
agents, robots) capable of perception, learning, decision-making, 
communication and action. They are designed to assist humans in a variety of 



situations including everyday tasks, such as service/household robotics, and 
highly-specialized situations, such as in autonomous systems for defence. 

Interactive intelligent systems and cognitive robotics research is 
increasingly focusing on the close integration of language and other cognitive 
capabilities (Barsalou 1999; Cangelosi et al. 2005; Pecher & Zwaan 2005). 
One of the most important aspects in language and cognition integration is the 
grounding of language in perception and action. Grounding can also be 
considered as the process whereby internal representations are connected to 
external percepts (Harnad 1990). This is based on the principle that cognitive 
agents and robots learn to name entities, individuals and states in the external 
(and internal) world whilst they interact with their environment and build 
sensorimotor representations of it. For example, the strict relationship 
between language and action has been demonstrated in various empirical 
and theoretical studies, such as psycholinguistic experiments (Glenberg & 
Kaschak 2002), neuroscientific studies (Pulvermuller 2003) and language 
evolution theories (Rizzolatti & Arbib 1998). This link has also been 
demonstrated in computational models of language (Cangelosi & Parisi 2004; 
Wermter et al 2003). The use of this grounded approach to the design of 
linguistic cognitive systems is vital for overcoming the known difficulties in 
intelligent agents whose linguistic abilities are purely based on abstract 
symbolic representations. Equally important, is the reverse: learning abstract 
categories and situations, which are not directly observed in the world, can 
only be grounded in language and communications among agents (Barsalou 
1999). 

 
Much research has been recently dedicated to modelling the acquisition of 

categorical representation for the grounding of symbols and language in 
cognitive agents and robots. Here we focus on the approaches and 
techniques based on the cognitive grounding principle, i.e. when the language 
acquired by robotic agents can be directly grounded in perceptual and action 
representations autonomously developed by the agents. These studies are 
characterised by the hypothesis that symbols are directly grounded into the 
agents’ own categorical representations, whilst at the same time having 
logical (e.g. syntactic) relationships with other symbols. First, each symbol is 
directly grounded into internal categorical representations. These 
representations include perceptual categories (e.g. the concept of blue colour, 
square shape, and male face), sensorimotor categories (e.g. the action 
concept of grasping, pushing, and carrying), social representations (e.g. 
individuals, groups and relationships) and other categorizations of the agent’s 
own internal states (e.g. emotions and motivations). These categories are 
connected to the external world through our perceptual, motor and cognitive 
interactions with the environment. Second, symbols also have syntactic 
relationships with the other symbols of the lexicons used for communication. 
This allows symbols to be combined, using compositional rules such as 
grammar, to form new meanings. For example, the combination of the two 
symbols “stripes” and “horse”, which are directly grounded into the agent’s 
own sensorimotor experience of striped objects and horses in its environment, 
produces the new concept (and word) “zebra”. This new symbol becomes 
indirectly grounded in the agents’ experience of the world through the process 
of “symbol grounding transfer”. 



The approach is in opposition to other adaptive modelling systems that 
view language as an independent and autonomous capability of the agent, 
and are subject to the symbol grounding problems (Harnad, 1990). Language 
grounding models provide a new route for modelling complex cross-modal 
phenomena arising in situated, embodied language use. As early language 
acquisition is overwhelmingly concerned with objects and activities which 
occur in a child’s immediate surrounding environment, these models are of a 
significant interest for understanding situated language acquisition. 

 
 
In cognitive robotics literature, there are various language models based on 

grounded methodologies. Some use real robots interacting in physical 
environments, while others use simulated adaptive agents. In robotic models, 
communication results from the dynamical interaction between the robot’s 
physical body, its cognitive system and the external physical and social 
environment. Some studies stress the grounding in action and sensorimotor 
processes, such as Marocco’s et al. (2003) model of robotic arms and Vogt’s 
(2000) mobile robots. Other robotic models highlight the grounding through 
social interaction, such as Steels & Kaplan’s (1999; 2000) Talking Heads and 
AIBO robots. For example, Steels and collaborators have investigated the 
emergence of shared languages in group of autonomous cognitive agents that 
learn categories of objects. They use discrimination tree techniques to 
represent the formation of categories of geometric shapes and colours. 
Cangelosi and collaborators have studied the emergence of language in multi-
agent systems performing navigation and foraging tasks (Cangelosi 2001), 
and object manipulation tasks (Cangelosi & Riga 2006; Marocco et al 2003). 
They use neural networks that acquire, through evolutionary and epigenetic 
learning, categorical representations of the objects in the world that they have 
to recognise and name. 

 
Systems have also been developed which models visually-grounded object 

descriptors and spatial language to generate whole phrases and sentences in 
scene description tasks (e.g. Roy & Mukherjee 2005; Herzog & Wazinski 
1995; Roy 2002). For example, Roy and Mukherjee use word models which 
are perceptually grounded in a system capable of scene description 
understanding whereby speech interpretation is integrated with visual context 
(Spivey et al. 2001) and modelling visual attention dynamics of situated 
language comprehension (Tanenhaus et al. 1995; Chambers et al. 2004; Roy 
& Pentland 2002). Roy & Pentland (2002) have also proposed the cross-
channel early lexical learning (CELL) model for language learning in robots. 
This is capable of learning to break down speech into words and link them to 
an acquired visual shape and colour categories based on input through video 
and speech (Robinson 1994). CELL is able to draw distinctions between 
words by identifying their word boundaries and from there create visual 
categories and form semantic links between those spoken words and visual 
categories. 

Many robotics projects are looking at various aspect of language 
emergence such as the development of vocabulary and/or grammar from 
various forms of experience (Steels 1996, Fitzpatrick 2003, Werker et al 1996, 
Breazeal 2000; Yu & Ballard 2004). For example, Yu and ballard (2004) 



implemented an endpoint detection algorithm for acoustic signals to segment 
the speech stream into spoken utterances. Each spoken utterance contained 
one or more spoken words. These utterances were then converted into text 
for the speech recognition using of the shelf speech recognition software.  
Varchavskaia et al. (2001) investigated if the speech input has specialised 
characteristics comparable to those of an infant directed speech. This 
depends on the nature of the task to which the robot is being applied. 
Experiments included interactions between the Kismet robot and young 
children for the purpose of teaching the robot new words as described in 
Breazel (2000) engaging in proto-conversational turn-taking. 
 

The development and application of sensory-grounded language systems 
leads the way to a new kind of cognitive model that is able to deal directly with 
recordings from natural human environments bypassing the need for manual 
transcription or coding. These systems are able to approach learning from a 
human perspective, through dealing with natural sensory data. 

In terms of what the future holds this type of models, one important aspect 
is the design of machines which can autonomously learn and question ideas 
and concepts about the world. They would also be able to subsequently 
communicate in a natural way about these ideas and beliefs in various 
problem domains. Automated generation of weather forecasts (Reiter et al. 
2005), large-scale image database retrieval by natural language query 
(Barnard et al. 2003), verbal control of interactive robots, and other human-
machine communication systems (Roy 2003; Yu & Ballard 2004; Roy & Reiter 
2005; Herzog & Wazinski 1995) are some of the applications which could 
make use of this kind of emerging technology. 
 

II – Language learning in iCub: Ongoing work 
 
The aim of this new model is to extend previous work on language learning 

and grounding in simulated cognitive agents (Cangelosi & Riga 2006; 
Cangelosi et al. in press) to the new cognitive robotic platform iCub (Metta, G 
et al, 2006). In particular, we are interested in the scaling up issues involving 
current grounded approaches. This scaling up process also involves the 
productivity of language, i.e. the capacity to generate autonomously new 
words and concepts from the combination of previously grounded words and 
actions. The main hypothesis is that such a grounding approach will permit a 
more efficient development of language capabilities in robots. To achieve this 
goal, this research tackles the problem from a developmental infant/child point 
of view, establishing concepts and hypotheses on the psychological 
development of children including their acquisition of object knowledge and 
most importantly social skills. The research stages will include modelling the 
early acquisition of language in robots using artificial neural network 
controllers. 

In the next sections we will briefly overview the ongoing work and the 
technological choices for this language learning project in the iCub platform.  

 
 



Speech pre­processing 
 
The human ear can detect and analyse sounds/vibrations frequencies that 

originate from a sound and distribute it to different nerve cells in the auditory 
portion of the central nervous system (based on the process of resonance). 
The human ear is able to take input from the outside world, change the sound 
waves into a signal, made of nerve impulses, that is sent to the brain.  

In order to replicate this process on a computer system for sound 
processing, we have built a speech analysis software module that uses a Fast 
Fourier Transform (FFT) of the speech signal. In other words the FFT takes 
as input sound from the microphone and splits the voice/input into its 
component frequencies. This allows the system to filter out some of the 
noises produced by the microphones input.  

We have built two microphones with their respective pre-amplifiers in order 
to be placed on the iCub outer shell head. The microphones are two omni-
directional microphones (6x2.7mm) that have a flat frequency response and 
that are easy to integrate in the iCub platform. The preamplifiers had to be 
built in order to connect the microphone to the sound card of the computer 
(using the tip of a 3.5 mm stereo plug).  

Initial sound test with speech are promising as voice input is detected 
adequately, even when the speaker is situated at a distance (2 meters) and 
noise levels are considerably low. In order to recognize speech with high 
confidence, the techniques that separate speech signals from various non-
speech signals and remove noises from the speech signals have received a 
great deal of attention. 

To further improve the system we plan to place filters directly into the pre-
amplifiers in order to filter out excessive unwanted environmental 
disturbances such as the robots processor cooling fans, computers, and other 
environmental noises. 

 
 
Neural network classification of speech 
 
In order for the system to be able to learn from the sound analysis 

produced by the speech possessing module, we have constructed a self 
organizing map (SOM; Kohonen 1995), trained using unsupervised learning. 
The SOM is a single layered feedforward neural network where the output 
units are arranged in a topological 2D grid. The purpose of the learning in the 
SOM is to associate various parts of the SOM lattice to respond to different 
input patterns. This is partially inspired by how the auditory/vision and other 
sensor information are handled in distinct parts of the cerebral cortex in the 
human mind (Grossberg 2003). The learning process is competitive and 
unsupervised, meaning that no teacher is needed to define the correct output 
(or specify the cell into which the input is mapped) for an input. Only one map 
node (winner) at a time is activated corresponding to each input. The 
locations of the responses in the array tend to become ordered in the learning 
process as if some meaningful nonlinear coordinate system for the different 
input features were being created over the network (Kohonen, 1995). 

Our model has been trained using a vast amount of data collected from 
various sources. The data comprises of more than 100 single word utterances 



from two different speakers (words spoken in isolation), 544 syllable 
utterances from two different speakers, for determining the ability of the 
system to distinguish between substantially small differences.  

The data was collected using different sources such as: an “off the shelf” 
microphone, sound files gathered from various users vocalizing words, 
syllables and utterances (with and without noise) and directly (real time) from 
the robot’s “ears”. Our system was able to learn and distinguish between the 
different speech/sounds produced in a substantially small amount of time. 
Naturally our system took additional time to learn using the “noisy” data but 
was still able to learn and distinguish between the different or slightly different 
words. For example words like “ball” and “mall”.  

The results of the speech analysis and learning phase still has to be 
passed to another neural network, as in Cangelosi & Riga’s (2006) language 
grounding neural system, in order to integrate visual as well as auditory 
information. 

 

Vision 
 
In order to help the system to improve its performance in the learning 

phase, it is necessary to use a visual processing technology that can support 
robots to detect and track an object or category of objects situated in its 
environment. Moreover, using visual processing tools will make the robot not 
only able to accommodate the sound errors that may occur, but also cast 
aside unnecessary speech or noise signal/frequencies. The model will 
therefore be able to augment its performance in the learning phase. 

The vision system is still at an early stage of development but is based 
upon an algorithm that uses approximation techniques for the purpose of 
detecting round shapes using the OpenCV library. For example, the 
percentage of roundness will help the system distinguish between objects and 
categorize them as a being a ball, cube or stick/pen etc. Using OpenCV, the 
robot receives information concerning the number of objects, the percentage 
of “roundness” and the coordination of the detected objects.  

 

Simulation Software for iCub 
 
In addition to the above work on language learning, we have developed a 

prototype of the 3D dynamic simulation software of the iCub robot using Open 
Dynamics Engine (ODE). ODE is an open source physics and motor dynamic 
interface. It enables robotic simulators to consider the role of physical 
constraints within a simulated environment able to compute and resolve 
forces that emerge through the interaction of objects/entities. ODE includes 
an interface to OpenGL that facilitates the rendering or objects (boxes, sphere 
etc).  

Our simulation model is a replication, using the exact data and inertia 
matrices, of the actual iCub platform. This simulator has been developed for 
the users of the RoboCub project, as an alternative to the physical iCub 
platform for fast simulating and testing. The idea was to make the simulation 



as close as possible to the iCub using the same type of interface. 
Screenshots of the iCub prototype simulator can be seen in Figures 1 and 2. 
 

 
 

 Figure 1: Simulation setup of the iCub (wihtout head cover) and objects 
 

 
Figure 2: Right arm ball grabbing and left arm cube grabbing 

 
 

 
Future work 



 
The plan for the future work to complete this prototype model of language 

learning in iCub includes: 
- Completion of visual categorisation module 
- Integration of visual and SOM modules for language grounding as in 

Cangelosi & Riga (2006) neural architecture for language grounding 
- Experiments on grounding transfer and production of new words  
- Experiments on motor control and naming of actions 
- Experiments on object categorisation and object manipulation using 

linguistic instructions 
- Further work on the iCub simulator 
 

Conclusion 
 
The general research aim of this report is to focus on the use of grounding 

approaches and developmental robotic methodologies to study language 
acquisition and human robot interaction and communication. It also provides a 
brief description of an ongoing language learning study with the iCub robot. 

The potential technological and practical implications for this grounding 
approach to language learning are great in the fields of robotics, artificial 
intelligence and cognitive systems design. The successful design of linguistic 
cognitive agents that are able to interact with their environment (including 
humans) provides an innovative approach to the field of interactive intelligent 
system design. Such systems are need in much for example in the domains of 
service robotics, household systems, exploratory autonomous systems 
applications, and even commonly used software applications such as search 
engines and natural language interfaces.  
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