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1. Introduction 
 
The internalisation of language is a thesis embraced by authors such as Vygotsky and Clark that considers public 
language to be an external cognitive resource that may be internalized. A characteristic phenomenon is described by 
Clark 
 
“When the child, confronted by a tricky challenge, is ‘talked through’ the problem by a more experienced agent, the 
child can often succeed at tasks which would otherwise prove impossible (think of learning to tie your shoelaces). Later 
on, when the adult is absent, the child can conduct a similar dialogue, but this time with herself. But even in this latter 
case, it is argued, the speech (be it vocal or `internalized') functions so as to guide behavior, to focus attention, and to 
guard against common errors. In such cases, the role of language is to guide and shape our own behavior -- it is a tool for 
structuring and controlling action and not merely a medium of information transfer between agents.” (Clark, 1998)  
 
The following experiments aim to explore how the process of internalisation might get underway. Using these minimal 
simulations, we hope to gain a better conceptual grasp on how it might be possible for language to take up a cognitive 
role. We conceive this process as involving the immersion of a developing agent in a language mediated leaning task. 
The internalisation of language can thus be explained in the context of substituting external instructions with auto-
generated ones for self-guidance.  
 

2.  Experimental background 
 
Evolution and learning are major design techniques for highly distributed artificial systems, and have been widely 
applied in the fields of neural networks and neuro-robotics. Artificial neural networks are often defined by a network 
architecture, weighted connections between neurons and neuron activation. A neural network may use different rules, 
such as the Hebbian rule or back-propagation, to alter the weights between different neurons, depending on the current 
activation of the network. This method has proven extremely successful in adjusting the network functionality to 
different patterns of stimulation, and, in the case of robots and embodied networks, interaction with the environment. 
  
Artificial evolution of neural networks, on the other hand, often assumes that weights between neurons are fixed during 
lifetime, and selects the weights that produce best overall results, given some criteria, through a selection mechanism. 
Artificial evolution, nevertheless, is not restricted to the selection of weights. It could be applied to the selection of any 
relevant parameter, for instance the network architecture, embodiment in the case of robots, or learning rules in the case 
of plastic neurocontrollers. 
 
It would be a mistake to conflate artificial evolution and learning with the phenomena as present in biological systems. 
Yamauchi and Beer (1994), for example, have shown how evolved non-plastic controllers can appear to perform 
reinforcement learning. Neural plasticity, on the other hand, can be used to shape the overall features of an agent, based 
on patterns of sensory-motor coordination with no fitness evaluation or genetic mutation (as in e.g. Morse, submitted). 
Even though some important features are present, the natural phenomena are still vaguely understood. One of the 
differences is that, in natural agents, evolution and learning are not two competing adaptive mechanisms, but necessarily 
co-occurring phenomena. The distinction between mechanisms responsible for generating behaviour and those 
responsible for learning “… is difficult to defend biologically, because many of the same biochemical processes are in 
involved in both processes” (Yamauchi and Beer 1994, p.243). 
 
The relationship between evolution and learning in neuro-robotics has been investigated by several researchers. For 
instance, (Nolfi, Elman, & Parisi, 1994) demonstrates how a population selected on one task may increase their 
performance when, at an individual level, an individual learns a task differently to the one it is selected for. The 
experimental setup in this paper follows up the one described in Floreano and Mondada 1996. Rather than evolving the 
weights of a neural network, the authors evolve a genotype that encodes how the network (with a fixed architecture) 



should modify its weights during lifetime. Concretely, they allow evolution to mutate the learning properties of each 
individual synapse, as what type of Hebbian learning rule it uses and what is the learning rate.  

3. Robot and architecture 
 
The following experiments were carried out in a modified version of Evorobot, developed by Stefano Nolfi. Evorobot is 
a Khepera simulator that incorporates a genetic algorithm and neural networks .  
 
The agent’s controller has the following 
structure. The network receives sensory inputs 
from infrared (8 sensors) and light (front and 
rear) sensors. The network has a number of 
internal neurons (8 or 12), and two motor 
outputs (left and right motors). The network also 
receives three extra inputs (intended to represent 
linguistic instructions from an external agent, in 
this case the experimenter), and produces three 
extra outputs, which can be used to replace the 
external instructions. The linguistic inputs can 
take the values of either 0 or 1. 
 
The method employed in the following 
experiments replicates the one reported in 
(Floreano and Mondada 1996), where the 
authors investigate how neural mechanisms 
underlying ontogenetic learning are themselves 
developed and shaped by the evolutionary 
process. Here we turn this method to a novel domain. 

Figure 1. Controller architecture 

 
A simple genetic algorithm is used to generate new genotypes. At the beginning of each epoch a chromosome is decoded 
into the corresponding neural controller, and its performance evaluated. Each of the genotypes contains enough 
information to generate a controller, given the architecture represented in . Where in many experiments this is 
achieved by encoding in the chromosome the weight that defines each synapse, this method the genotype encodes the 
neural architecture and learning rules of each of the 144 synapses.  

Figure 1

 
The four allowed learning rules were: pure Hebbian, Postsynaptic, Presynaptic and Covariance(based on Willshaw & 
Dayan, 1990). The learning rate could take four different values {0.0, 0.3, 0.7, 1.0}. The two other properties are 
whether each synapse is excitatory or inhibitory and whether it drives or modulates the postsynaptic neuron., and the 
weights of the network synapses are initialised to small random values. A chromosome would therefore contain 6 bits per 
synapse (2 for rule, 2 for rate, and 2 more for the other 2 properties) 
 
Given the initial random weight, each synapse changes its weight according to the conditions specified in the 
chromosome (with the exception that weights are constrained to a maximum of 1). More details on the method can be 
found in (Floreano & Mondada, 1996) 

3.2 Environment and task 
 
The environment is a maze consisting of two parallel 
corridors crossed by a transversal perpendicular corridor, 
as represented in the Fig 2. Corridors converge to two 
central areas illuminated by light bulbs, and, in the 
simulated environment, corridors are blocked with 
obstacles. At the beginning of its lifetime the robot is, 
placed at the west end of the bottom corridor, near the 
point marked as START, facing east. The task of the robot 
is to navigate towards the point marked as GOAL. 
Although different routes may be possible time constraints 
tend to impose a direct route: the task is therefore to 
navigate the corridor towards the first central area, turn left 
towards the second central area, to then turn right towards 
the east end of the top corridor. 
 



During a first stage, in addition to the inputs from the sensors embodied in the robot, the robot receives three inputs 
which are intended to represent three commands, go to light, turn left and turn right. In other words, when we want the 
robot to perform one of these actions (which depends on the location of the robot), we activate one of the three linguistic 
input nodes (input commands in fig 1).1 Given the inputs from sensory stimulation (infrared and light sensors) as well as 
the command inputs, the robot is let free to navigate the maze for a determinate amount of time. 
 
We call this phase the scaffolded phase because during its 
course external instructions are provided, and the network is trained on the task while being given external instructions. 
At the start of the scaffolded phase the network is initialised to small random weights, which are then updated at every 
time step following the evolved learning rules and rates. If, when the goal has been reached,  the robot has successfully 
completed the scaffolded phase the weights are “frozen” to their current values and are not allowed to change anymore. 
Instructions also cease, and as an alternative to the command inputs, the state of the linguistic outputs (normalised to 0 or 
1) take their place in the network structure. During the autonomous phase the navigation task is carried out in exactly the 
same manner as in the scaffolded phase but now without the 
benefit of external instructions to guide action. 

Figure 2. Maze which the robot needs to navigate.

 
During the scaffolded phase, individuals are rewarded for 
their ability to perform the first turn (1 point when the 
intermediate goal is reached), as well as reaching the GOAL 
state (3 points). This way, we encourage an incremental 
evolution of abilities. During the autonomous phase, 
rewards are increased to 5 and 6 points respectively. The 
fitness function is given in the following table 
 

 Scaffolded 
phase 

Autonomous 
phase 

Intermediate 
goal 

1 5 

GOAL 2 6 

 
Figure 3. Left, fitness assigned to each individual 
given its achivements. Right, evolution of fitness 
(maximum and average score per generation) over 
500 generations in a typical evolutionary run.
 
The rationale behind this fitness function is to allow the tracking of what tasks have been achieved, and to encourage 
agents to perform well on the 
autonomous phase. After several 
hundred generations, evolution 
consistently found genotypes that 
allowed for the learning task to be 
completed, as well as the first task 
of the autonomous phase, scoring a 
total of 8. In several occasions we 
found robots that reached the goal 
during the autonomous phase, 
scoring  14 points. These solutions, 
nevertheless, were not robust, as 
they did not allow replication, 
possibly because they could not 
overcome the randomisation of 
initial weights. Nevertheless, the 
experimental results show some 
interesting points that can inform 
current debates about how language 
takes up its cognitive role. In what 
follows we show graphical 

                                                           
1 As received by the robot, these signals have no significance, either 0 of 1 for three extra input nodes. The ascription of 
meaning rests on the potential groundi toire of the agent. We expect evolution to 
ground such symbols insofar as instructions will be given when required in skilled interaction. 

ng of these symbols in the action reperFigure 4 – The task with instructions



depictions of the robot in several trials as these help illuminate one possibility for this discussion. 

4. Results 

4.1 Scaffolded phase: grounding instructions in embodied interaction 
 
Our analysis of the evolved behaviours starts by investigating what agents do during the scaffolded phase. As we can see 
from the fitness function (Figure 3), after about 200 generations, individuals consistently complete the task during the 
scaffolded phase. As we expected, the availability of external signals at the right time allows the agent to evolve a 
controller that takes the appropriate turns, reaching the goal in good time. Since the sensory inputs are practically the 
same at both crossroads (except differences due to the position of the robot), the turns are effected in response to the 
external instructions. 
 
Figure 5 shows a breakdown of the behaviour at the two crossroads. At the left the simulated Khepera begins the 
scaffolded phase. Soon the robot receives a signal in the input node labelled centre, which is given in the scaffolded 
phase whenever we intend the robot to navigate to the light. As the Khepera enters the area in the centre of the maze, it 
receives a new instruction fed into the left node that can be glossed as turn left. The Khepera responds to this instruction 
(and the other data about the situation in which it is embedded) and turns left (Figure 5, left). 
 

 

 

Figure 5. Trajectory of the robot and activation of inputs / outputs during the two turns.  
 
 
Next (Figure 5, right) the robot faces the second crossroads, and gets an input once more signalling the robot to move 
towards the light. The robot moves forward and, as it approaches again the centre area, receives an instruction in the 
right node (the last externally generated signal it received), and it successfully responds to this by turning to the right. 
 

4.2 Autonomous phase: Re-using commands to scaffold one’s own behaviour 
 
As we mentioned above, the main differences between the scaffolded phase and the autonomous phase are that during 
the latter weights are fixed to the last value of the scaffolded phase and that instructions are not given thereafter, instead 
replaced by an internally generated input stream. During the scaffolded phase, the weights of the neural network 
(initialised to random numbers between 0 and 1), are changed given the learning type and rate. Once the agent has 
reached the goal, there are no more external instructions or Hebbian learning. The weights are fixed but the linguistic 
outputs are now connected to the linguistic inputs. Agents now have the possibility of re-using these channels to 
structure and control their own ongoing activity. Any further ‘instructions’ they receive are internally generated out of 
the agents own ongoing dynamics. 



Figure 6. Behaviour during autonomous phase.

 
The question that the experiments target is whether the internal signals produced by the robot will assist the robot in 
performing the right actions, or, in other words, whether the robot will talk to itself and find use for the commands that 
were externally given when each action was required in the scaffolding phase. It is not obvious that the robot should be 
able to do this as it has not had to learn to produce commands in the scaffolded phase, only respond to them. A further 
question is whether this re-use of instructions will allow the robot to robustly sequence its actions to complete the 
autonomous navigation task: turn left at the first crossroad, then right at the second one.  
 
In figure 6 we can note that the robot produces two signals. Most of the time, it produces the turn left signal, while only 
at certain times it produces the go_to_light signal. This production allows the robot to perform the first turn to the left, 
achieving the intermediary goal. This answers the first question, whether the robot actions will be able to reproduce self-
generated signals to control and perturb its own behaviour and indeed the capacity to produce one or two ‘utterances’ for 
self-control is a robust finding over many experimental runs. It also demonstrates a basic proof of concept in the realm of 
autonomous agents: the possibility that externally generated commands used to structure behaviour can be appropriated 
and turned to the autonomous self-structuring: the process that Vygotsky referred to as internalisation. 
 
Regarding the second question, unfortunately, the controllers could not consistently solve the whole navigation task to 
reach the goal. The robots continue delivering the same instruction (go_left) at the next stage of its task, which causes the 
robot to crash into the wall to its left. This is not to say however a different learning regime could not manage to produce 
agents that learn to complete the whole navigation task, and this is a task for further research.  
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