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Introduction

Two challenges for research into object detection

• Removing the need for supervision in learning

• Dealing with ambiguity and error

Explore object detection in the context of activity analysis
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Learning object categories

Supervised learning is the dominant approach…

• PASCAL Visual Object Classes Challenge 2008

• 20 classes (e.g. cow, bus, sofa, person)

• predict absence/presence of each object

• find bounding box for each object

• ~4k training images depicting ~10k target objects

This approach has a long history…

Harry Barrow and Robin Popplestone, 
Relational descriptions in picture 
processing, Machine Intelligence 6, 
1971

Relational descriptions of object 
classes + supervised learning
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…with an interesting conclusion

‘…let us consider the object recognition program in its proper 
perspective, as part of an integrated cognitive system. One of the 
simplest ways that such a system might interact with the environment 
is simply to shift its viewpoint, to walk round an object. In this way 
more information may be gathered and ambiguities resolved ......

...... Such activities involve planning, inductive generalization, and, 
indeed, most of the capacities required by an intelligent machine. To 
develop a truly integrated visual system thus becomes almost co-
extensive with the goal of producing an integrated cognitive system.’

Barrow and Popplestone, 1971.

A step in this direction…

Learning from video & text, for example:
• TV shows + subtitles + scripts (Everingham et al., BMVC 2006)
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Going all the way - simulating evolution

Karl Sims, Evolving Virtual Creatures, Siggraph 1994. 

Object detection in the context of activity 
analysis

Movement can be at least as important as appearance in what we 
perceive

Heider & Simmel, 1944
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Learning functional object categories from activity analysis
Krishna Murali, Cohn, and Hogg, ECAI-08.

Overview
• Learn event classes from patterns 

of qualitative spatio-temporal 
relations

• Cluster objects by their role in 
these activities

Focus on food preparation
• Large set of objects with a rich 

taxonomy

• Repeated patterns of events 
involving these objects
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Object discovery

Colour-based blob detection and tracking 

Spatial relations

T: touches

S: surrounds

D: disconnected
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Temporal relations and the ‘activity graph’

Allen’s relations

Using Allen’s relations facilitates dealing with gaps, partial ordering 
and parallel activities

Attention

Focus on atomic events:  maximal sub-graphs involving a constant set of 
connected (S,T) objects, at least one of which must move
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Replace activity graph by a graph over 
atomic events
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Event classes are maximal 
repeated (generalised) subgraphs

Learn functional object categories from 
event roles
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Objects within each event class (+ partially generalised classes ) 

Create matrix of roles played by each object
Reduce using PCA
Obtain object taxonomy from hierarchical clustering of rows
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Experimental Results

Noisy
Color
Patches
Of 
Non-
Objects

Video of 5 minutes: preparing breakfast with tea, and a simple vegetable curry
50 objects, ~ 3000 roles.  PCA reduces to 50 x 20

Dealing with detection errors and ambiguity
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Radar tracking

Dealing with 

• missed detections

• spurious detections

Long history from radar literature and elsewhere:
Ingemar Cox, A Review of Statistical Data Association Techniques for Motion 
Correspondence, International Journal of Computer Vision, vol. 10, pp. 53-66, 1993.

Seek

Find the optimal global explanation:

Given a set of noisy observations     over a period of time.
An explanation is a partition of these observations
where each part defines a track and      contains all spurious observations 
(false alarms)
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Standard approach

Formulation from Oh, Russell and Sastry, CDC-04
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Defining 
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Assumptions:

(1) each track behaves as a stochastic linear system:

(note that matrix A and noise term scaled 
according to the width of interval

)|( Yp ω

(2) new objects and false alarms occur as Poisson processes

(3) objects disappear and are undetected with fixed probability at each time-step

For a given      at time-step t, assume:
objects persist from t-1
new objects appear
objects disappear
objects detected
false alarms

objects undetected
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missing observations stochastic linear system
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Integer Programming
Morefield, IEEE-TAC 1977

• Create a large set of feasible tracks F (a covering), many of which will 
be inconsistent with one another.

• Seek the optimal partition from a subset of these tracks + false alarms
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from http://www.vision.ee.ethz.ch/~bleibe/index.html

Uses a trained pedestrian detector operating on each frame

Example
from Leibe, Schindler, and Van Gool , ICCV 2007
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Multiple-Hypothesis Tree (MHT)
Reid, IEEE-TAC 1979

• Iteratively extend partial tracks at each time-step

• Pursue multiple hypotheses where there is ambiguity

• Prune unlikely hypotheses to keep search tractable

k=1

Multiple-Hypothesis Tree (MHT)
Reid, IEEE-TAC 1979

• Iteratively extend partial tracks at each time-step

• Pursue multiple hypotheses where there is ambiguity

• Prune unlikely hypotheses to keep search tractable

k=1

k=2
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Multiple-Hypothesis Tree (MHT)
Reid, IEEE-TAC 1979

• Iteratively extend partial tracks at each time-step

• Pursue multiple hypotheses where there is ambiguity

• Prune unlikely hypotheses to keep search tractable

k=1
k=2
k=3

Markov Chain Monte Carlo Data Association
Oh, Russell, and Sastry, CDC-04, 2004

• Draw samples from posterior                 and select the maximum. 
Use Markov Chain Monte Carlo (MCMC) to do this efficiently.
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initialise
repeat many times

Sample w’ from proposal distribution
Replace w by w’ with (acceptance) probability:

end
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Introduction to MCMC

MCMC – Markov Chain Monte Carlo

When to use?

• You can’t sample from the distribution itself

• Can evaluate it at any point
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Introduction to MCMC
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From Oh, Russell and Sastry, CDC-04, 2004

MCMC moves

Detecting people parking and collecting bikes
Damen & Hogg, BMVC 2007

Task:  linking people dropping-off and picking-up bikes
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Method

• Track people (+/- bikes) entering and 
leaving the rack area

• Detect new clusters of dropped & 
picked bikes each time the rack area 
becomes empty

• List the possible new drop, pick and 
pass-through events, assuming 
people entering the rack, drop or pick 
no more than one bike

• Find optimal set of linked drop and 
pick events

))|((maxarg Yp ω
ω

Defining

Based on:

• Change in the area of person-blobs between entering and leaving rack

• Proximity of people to bike clusters

• Similarity of bike clusters between drop and pick

• Prior probabilities for the different events
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Likelihood of a person dropping, picking 
or passing through

Area difference of person-blob 
entering and leaving the rack

Likelihood of a drop/pick linkage

Pixel-wise comparison of 
bike-clusters

Drop

Pick
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Possible moves - 1

Connect Agent

Disconnect Agent
(A)

Change Agent
(B)

Change Bike(C)

Switch Bikes(D)

Possible moves - 2

Connect Drop-Pick

Disconnect Drop-Pick
(E)

(F) Change Drop

(G) Change Pick

(H)
Switch Drop-Pick
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Results

94.5393.759.5 hours

(39 events)

93.1093.101 hour 

(43 events)

RJMCMC 
(10 iterations)

MHT 
(k=10)

Experiments

% correct drop-pick connections

Summary

A wider scope of interest provides new ways of thinking about 
problems within a narrower focus.


