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Scope of the workshop 
Affect and emotion have recently become a hot topic in the study of adaptive behaviour 
and embodied cognition in both natural and artificial systems. However, the regulatory 
role of affect/emotion, the underlying mechanisms, and the interaction between 
affective/emotional and cognitive processes are still not well understood. In order to 
develop a better understanding of the role of affect/emotion in adaptive behaviour and 
cognitive robotics, this workshop will bring together research on the following themes: 
 

• Affective Mechanisms – This includes a range of mechanisms and concepts 
such as drives, motivation, reward, metabolic/homeostatic/allostatic 
regulation, appraisal, etc. We are particularly interested in 
computational/robotic models of such mechanisms, but also in neuroscience 
research and theoretical work that can inform such models. We are also 
interested in neurobiologically inspired models of emotion elicitation and 
regulation that model relevant embodied neuroanatomical structures, e.g. 
amygdala, hippocampus, prefrontal cortex. 

 
• Emotional Agents – The integration of affective mechanisms in situated and 

embodied agents (e.g. robots) provides a crucial testing ground not only for 
producing emotional artefacts but also for comparing and contrasting the 
hypotheses and results of various emotion theories. We are interested in 
understanding better the relationship between emotion constituents/affective 
mechanisms and emotional-cognitive behaviour, how these may be 
measured/analyzed and formalized. 

 
• Social Interaction and Human-Robot Interaction – The display of 

affective and emotional states is crucial to social interactions between 
people and can similarly benefit robot-robot and human-robot interactions. 
We are interested in models displaying inter-robot or human-robot 
interactions being co-ordinated or modulated by emotional expression or 
displays. How (proto-) affective phenomena and its expression can serve to 
coordinate social behaviour in more minimalist agents is also of interest.   
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SAB 2008 Emotion Workshop – Programme 
 

Day 1 – July 11th 

 

0900-0915 – Anthony Morse: Introduction from organizers 
 
0915-1025 – Invited Speaker: Lola Cañamero (University of Hertfordshire)  
   “Emotions in Autonomous and Social Robots: Four Perspectives” 
 
1025-1045 – Coffee break 1  
 
1045-1125 – Vadim Bulitko, Steven Solomon, Jonathan Gratch, Michael van Lent  
   “Modeling Culturally and Emotionally Affected Behavior” 
 
1125-1205 – John C. Murray, Lola Cañamero  
   “A Hormone Modulated Network for Influencing the Emotion   
   Expression for a Socially Interactive Robot Head”  
 
1205-1310 – Lunch break 
  
1310-1350 – Christoph Bartneck, Michael Lyons, Martin Saerbeck  
   “The Relationship Between Emotion Models and Artificial Intelligence” 
 
1350-1500 – Invited Speaker: Ron Chrisley (University of Sussex)  
   “An expectation based robotic-model of affective experience” 
 
1500-1520 – Coffee break 2  
 
1520-1600 – Ernesto Burattini, Silvia Rossi  
   “Periodic Activations of Behaviors and Motivational States” 

 
Day 2 – July 12th 

 
0900-1010 – Invited Speaker: Marc D. Lewis (University of Toronto)  
   “Neural self-organization and processes of emotion” 
 
1010-1050 – Francesco Mannella, Marco Mirolli, Gianluca Baldassarre 
            “Computational Principles Underlying the Functioning of Amygdala in 
   the Affective Regulation of Behaviour” 
 
1050-1105 – Coffee break 3  
 
1105-1145 – Rob Lowe, Pierre Philippe, Alberto Montebelli, Tony Morse, Tom Ziemke  
   “Affective Modulation of Embodied Dynamics”    
 
1145-1200 – Tom Ziemke: Summary presentation  
 
1200-1240 – Discussion session 
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Neural self-organization and processes of emotion 
 

Marc D. Lewis 
 

Department of Human Development and Applied Psychology,  
University of Toronto,  

Canada 

Abstract. One of the principal aims of emotion theory is to model the relations between appraisals 
(cognitive or perceptual evaluations) and the emotions with which they correspond.  However, the 
cognitivist approach portrays appraisals as causal antecedents of emotions in a oneway progression. 
The neurobiology of emotion suggests, in contrast, that appraisals and emotions emerge concurrently as 
self-organizing gestalts, resulting from the spontaneous coordination of multiple regions of the brain. 
The brain does not separate the cognitive and emotional components of these gestalts, but psychologists 
find these distinctions useful. In this talk, I present principles of nested feedback loops, neuromodulator 
activity, vertical integration of the neuroaxis, phase synchrony, and circular causality, as essential 
ingredients for understanding self-organizing emotional gestalts in real, living brains. I then discuss 
some of the implications of these principles for the role of emotion in human development.  

 
 
 
 

Marc D. Lewis – Biographical Sketch 
 
Marc Lewis is a Professor of Human Development and Applied Psychology at the University of 

Toronto. He specializes in the study of personality development as it relates to emotion and emotion 
regulation. His work is informed by developmental psychology, affective neuroscience, and a dynamic 
systems perspective on brain and behavior. His research has focused on transitions in emotional 
development and, in collaboration with Isabela Granic, he has developed a state space grid methodology for 
analyzing socioemotional behavior as a dynamic system. More recent work utilizes EEG methods for 
identifying the neural underpinnings of emotion regulation in normal and clinically-referred children and 
for assessing neural changes corresponding with successful treatment. His papers on the contribution of 
dynamic systems theory and affective neuroscience to understanding human development have appeared in 
high-profile journals such as Child Development, Behavioral and Brain Sciences, Journal of Abnormal 
Child Psychology, and Development and Psychopathology. 
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An expectation-based robotic model of affective 
experience 

 
Ron Chrisley  

 
 COGS/Department of Informatics, University of Sussex, England 

Abstract. Previous work in the SEER-3 project has focussed on exploring ways that one might use the 
states of a robotic model of a simple agent to serve as depictive specifications of the content of 
particular experiential episodes of the modeled agent. In particular, an expectation-based theory of the 
non-conceptual content of visual experience has been assumed as a working hypothesis, in order to 
investigate the depictive specifications that can be constructed as a result. An extension of this theory 
from non-affective to affective visual experience is proposed.  As in the non-affective model, the  
content of the experience that the robot models at a given time is taken to be the superposition of the 
expected states of the sensory manifold were the robot to perform one of a specified set of actions at 
that time. However, in the proposed extension, the expected sensory manifold includes not just the   
usual (non-affective) anticipated visual sensory values, but also anticipated affective states. The 
dynamical notion of an affective state (with positive or negative polarity) deployed here is adapted  
from (Sloman, Chrisley and Scheutz 2006), roughly: positive affect  states are sinks, negative affective  
states are sources, but the dynamic space is such that the variables that define the space are  not directly 
in the agent's control, but require indirect control via intervention in, and interaction with, the 
environment. Integrating such states into the SEER-3 expectation-based architecture allows the  
depiction of an "affective field" to be superimposed on the non-affective visual field, thus specifying  
affective aspects of visual experience. This suggests a way of overcoming one of the common critiques 
of representationalism: that it can only handle the factual, dispassionate aspects of cognition,  and must 
be silent concerning meaning and significance of the more engaged, affective variety. 

 
 
 
 

Ron Chrisley – Biographical Sketch 
 
Ron Chrisley is the Director of COGS, the Centre for Research in Cognitive Science at the University of 

Sussex, where he holds a Readership in Philosophy in the Department of Informatics. He has held various 
research positions in Artificial Intelligence, including a Leverhulme Research Fellowship at the University 
of Birmingham and a Fulbright Scholarship at the Helsinki University of Technology, as well as brief 
positions at NASA-Ames, Xerox PARC, the Stanford Knowledge Systems Laboratory and ATR 
Laboratories in Kyoto.  For the past 15 years he has also been a visiting lecturer and researcher at the 
University of Skövde in Sweden.  He was awarded his doctorate by the University of Oxford in 1997. 
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Modelling Culturally and Emotionally Affected 
Behavior 

 
Vadim Bulitko, Steven Solomon, Jonathan Gratch, Michael Van Lent  

 
1 Dept. of Computing Science, University of Alberta, Edmonton, AB, T6G2E8, CANADA 

    bulitko@ualberta.ca 
     2 USC Institute for Creative Technologies, 13274 Fiji Way, Marina del Rey, CA, 90292, USA 
              {solomon,gratch}@ict.usc.edu 
 3 Soar Technology, Inc., 3600 Green Court, Suite 600, Ann Arbor, MI, 48105, USA 
    vanlent@soartech.com 

Abstract. Culture and emotions have a profound impact on human behavior. Consequently, high-
fidelity simulated interactive environments (e.g. trainers and computer games) that involve virtual 
humans must model socio-cultural and emotional effects on agent behavior. In this paper we discuss 
two recently fielded systems that do so independently: Culturally Affected Behavior (CAB) and 
EMotion and Adapation (EMA). We then propose a simple language that combines the two systems in 
a natural way thereby enabling simultaneous simulation of culturally and emotionally affected behavior. 
The proposed language is based on matrix algebra and can be easily implemented on single- or multi-
core hardware with an off-the-shelf matrix package (e.g., MATLAB or a C++ library). We then show 
how to extend the combined culture and emotion model with an explicit representation of religion and 
personality profiles. 
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Towards a Hormone-Modulated Model for
Emotion Expression in a Socially Interactive

Robot Head

J.C. Murray and L. Cañamero

Adaptive Systems Group
University of Hertfordshire

STRI & School of Computer Science
College Lane, Hatfield, Hertfordshire

AL10 9AB, UK
john@jcmurray.com, l.canamero@herts.ac.uk

Abstract. In this paper1 we present a robot head ERWIN capable of
human-robot interaction, endowed with interactive mechanisms for al-
lowing the emotional state and expression of the robot to be directly
influenced by the social interaction process. Allowing the interaction pro-
cess to influence the expression of the robot head can in turn influence
the way the user interacts with the robot, in addition to allowing the
user to better understand the intentions of the robot during this pro-
cess. We discuss some of the interactions that are possible with ERWIN
and how this can affect the responce of the system. We show an exam-
ple scenario where the interaction process makes the robot go through
several different emotions.

1 Introduction

The concept of imbibing robots with emotional functionality, either via internal
structures and models or with the ability to express a particular emotion is a
concept that has been pondered for many years but only something that has
been researched in greater detail in recent years. With the desire to bring the in-
teraction between Robots and Humans one step closer to that of Human-Human
interaction then the interaction process needs to be as natural as possible [8].
In order to allow for better human-robot interaction, it is not only necessary for
robots to communicate but also to automatically adapt their behaviour based
on feedback from the human, and the visual and auditory modalities. This au-
tomatic adaption and learning is particularly important as it allows the human
to feel that the interaction with the robot is being conducted in a more natural
manner.
1 This research is supported by the European Commission as part of the FEELIX

GROWING project (http://www.feelix-growing.org) under contract FP6 IST-
045169. The views expressed in this paper are those of the authors, and not neces-
sarily those of the consortium.
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2 ERWIN’s Capabilities

ERWIN stands for Emotional Robot with Intelligent Networks, and is a robot
head capable of basic social interaction. ERWIN draws on several modalities in
order to provide a rich interactive system. These modalities include the visual
and acoustic domains. In addition to this, ERWIN is capable of expressing several
emotions as described in section 2.3. The head is built from a pan and tilt
mechanism, with two 1.3Mpix CCD cameras used as eyes for the system, and
two microphones used as ears. There are four servos controlling the eyebrows
and mouth (a top and bottom lip), each with 1 DOF.

2.1 Visual Tracking

Using two cameras it is possible to use many of the available visual cues [13] to
improve the social interaction ability of ERWIN. During ‘local proximity’ social
interaction, vision plays an important role, providing much-needed information
on whom we are speaking to, directing our attention towards whom we are
interacting with, and allowing for the use of gestures [17]. When we communicate
with someone, we usually expect them to give us their attention by looking at
us. Using the OpenCV library it is possible to detect faces within a visual scene;
any faces within the visual field of the robots cameras can thus be detected and
their position within the image determined. This allows for the robot to stay
focused on the person keeping the feeling of one-to-one attention, as the person
moves to the left or right of ERWIN’s Field-of-View the head will maintain a
visual track on them.

ERWIN can analyse a frame from the cameras approximately every 40 –
80ms in order to determine if a face can be detected within the scene. Once a
positive match for a face is detected, the center point of the face is calculated
and the Euclidean distance from the center point of the camera image taken.
Using this the pan and tilt of the robot head is adjusted accordingly.

Face Recognition ERWIN’s visual system is also capable of basic facial recog-
nition allowing previously seen faces to be recognised and new faces to be learnt
by the system. This adds an extra dimension to the interaction process as it
allows for the robot to react differently depending on if it recognises a face or
not, and therefore allowing ‘familiarity’ to be coded.

The first stage of the face recognition process uses the OpenCV library and
is based on Viola’s [20] rapid object detection process with improvements made
by Lienhart [12] based on Haar-like features for object detection [10]. Using an
intermediate representation of the image, termed the integral, the features are
rapidly detected. This integral contains the sums of the pixels’ intensity values
located directly to the left and above the pixel at (x,y) inclusive.

The object classifiers for face detection have been trained using the FERET
[18] database. Once a face is detected in the scene it is processed to extract cer-
tain features allowing for future recognition. For this we use the relative positions
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of significant elements present on all faces; the eyes, nose and mouth. Therefore,
we train several independent classifiers to detect these elements. Again the im-
ages used for training the classifiers are taken from the FERET database. The
extracted face image is normalised to 250px in width, maintaining a resizing
ratio of 1:1 this ensures that the distances between features remain stable even
when the distance from ERWIN changes. The second stage of processing in-
volves splitting the face image into three sections and applying the appropriate
classifier on each part. Figure 1 A) shows how the detected face is split for the
relevant features.

Fig. 1. A) The detected face split into three sections for further processing, B) The
metrics measured for facial recognition.

Once the features are detected, their positions are used to calculate a distance
metric in order to recognise a particular face. The metrics recorded are: distance
between eyes (eyeX), distance from eye level to nose (e-nX), width of mouth
(mouthX) and distance from eye level to mouth level (e-mX). These values are
given in number of pixels, and they are normalised using Eq. 1 to bring the
values to between 0 and 1.

In =
(

1 + (x−A)
B −A

− 1
)

(1)

These values are presented to a neural network which determines if the face
has been seen before. If not, the network retrains adding in this additional in-
formation to the already recognised set of faces. Fig. 1 B) shows the face fea-
ture metrics used for recognition. Network training is performed using back-
propagation as shown by equations 2 and 3, with an empirically determined
sum-squared-error tolerance of 0.02. On presenting a face for recognition, a value
below 0.9 is classed as non-recognition.

∆wij = ηδjxi (2)
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∆Wij is the update for the weight between units i and j, η is the learning
rate set to 0.2, δj is the error of unit j and xi the activation of unit i. For back-
propagation the weight change for pattern n + 1 is dependant on the weight
change for n.

∆wij(n + 1) = η(δjoi) + α∆wij(n) (3)

α is the learning rate, η is introduced to help prevent weight oscillations and
oi is the output of unit i.

2.2 Sound-Source Localisation

Acoustics is also an important modality for social interaction, especially for
humans, as our predominant form of communication is that of words and sounds
[14] [19] [1]. ERWIN is therefore equipted with stereo microphones as ears to
allow for speech processing and sound-source localisation to take place. This
dramatically improves the social interaction process by allowing for auditory
cues and abilities to be exploited by the system.

The sound-localisation capabilities of ERWIN are implemented using the
Interaural Phase Difference cue [11], that is, the phase difference of the signals
arriving at the two microphones. The received sound signals are processed for
phase by cross correlation. Cross correlation processes the two signals g(t) and
h(t) recorded by the two microphones by incrementally sliding them across each
other to determine the offset between points of maximum similarity. Equation 4
shows the formulae for computing the cross correlation of two data series.

Corr(g, h)j ≡
N−1∑
k=0

gj+kkk (4)

The largest value within this vector corresponds to the point of maximum
similarity between the two signals, i.e. the two signals being in phase with each
other. The position of this value within the vector is then used to determine
the Interaural Time Difference of the signals and ultimately the azimuth angle.
Figure 2 shows the process of cross correlation on two signals with a resultant
correlation vector. Finally, to determine the azimuth of the sound-source Eq. 5
is used.

Θ = Sin−1 a

c
= Sin−1 (∆× σ)× cair

c
(5)

where σ is the lag (number of offsets) between the signals g(t) and h(t)
determined from the correlation vector C, ∆ is the sample time increment as
determined by the sample rate, i.e. 1/44100 = 22.7µs and Θ is the angle of
incidence and the speed of sound taken to be 348m/s at 24C.
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Fig. 2. Cross correlation of the signals g(t) and h(t) with the resultant cross correlation
vector showing the maximum point of similarity.

2.3 Emotional Expression

Emotion in robotics may be a an emerging research area [2, 3] [4] [6] However,
philosophers and researchers in biology, psychology and cognative science have
debated its meaning and underlying mechanisms for many years. For this reason,
we refer to our emotional expressions in terms of Ekman’s simple emotions [5].
From these set of emotions, the ones that can be expressed by ERWIN are:
Happy, Sad, Fear, Surprised and Angry. Fig. 3 shows how each of the five different
emotional expressions look on ERWIN.

These emotions can only be expressed one at a time and independently of each
other, and are used to provide additional visual feedback about the interaction
process to the user. In our previous models these emotional expressions have
been coded directly into the system and set to activate at specific points within
an interaction determined by the code and not directly by the interaction process
per se. However, the model we present in this paper makes the system much more
dynamic allowing for the interaction process and its responses to have a more
direct influence over the emotion expression.

3 Social Interaction

One of the goals of the robot head presented in this paper is to allow the in-
teraction process between the robot and human to feel dynamic making the
human user feel that they are dealing with a system that is fluidly reacting to
their interaction [2]. This is achieved with the use of visual and acoustic cues in
addition to the displaying of various emotions by ERWIN. We hope that with
the inclusion of these cues and direct emotional feedback that the process of
social interaction will become more natural, without the need of prerequisite
knowledge on the part of the human. We also feel that this will allow the human
partner to gauge how their interaction and responses are being interpreted by
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Fig. 3. The emotions expressed by ERWIN in terms of Ekman’s basic emotions.

the robot, ultimately allowing them to adapt their behaviour to accommodate
for that of the robots. For example, they may find that their speech is being
missinterpreted and thus the robot begins to express Anger. Humans can there-
fore actively change how they are communicating with ERWIN and change their
responses accordingly.

3.1 Parameters for Emotional Expression

As previously discussed in section 1, the robot head presented within this paper
is capable of expressing several basic emotions. The main focus of this paper
is to present our model of dynamic control of these emotions and expression
via hormonal like parameters, allowing for the interaction process to change
the levels controlling each of the emotions and thus invoking a specific inter-
actively determined response. We choose to develop our model using hormonal
like parameters as it allows us to model the dynamics of emotional expressions.
Although the current parameters are not based on a biological model of hor-
monal control for emotional expression we hope that they can prove a tool to
gain initial insight into the relationship between emotional expression generation
via social interaction, and underlying biological emotional mechanisms.

The goal here is to be able to modify the functioning of the system by mod-
ulating parameters within our emotional activation model that control each of
the different emotions [7] [16]. When interacting with people, the responses we
receive via this interaction process determine or affect our current emotional
state, for example we may get frustrated if we can not understand someone,
or become sad or angry if we are ignored. To improve the interaction process,
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bringing it one step closer to that of human-human interaction, the emotional
expression of the robot should be a dynamic process based on this interaction.

Each of the five emotional expressions have a particular “hormonal” value
associated with them. The system initialises with each of the five values set to a
baseline of 0.5 with a minimum of 0.0 and maximum of 1.0. We initially attach
several pseudo emotional meanings to the possible expressions in order to better
understand what is transpiring during the interaction process. The following
scenarios are employed: Sad - when no interaction has taken place for x amount
of time or when a response is given that warrants the Sad expression. Happy
- when there is a face within the visual field of the robot, and the interaction
process goes without incident. Angry - is assigned to express when during the
interaction the responses from the user can not be interpreted. Surprised - this
emotional expression is used when ERWIN detects a face in the visual scene that
is then recognised as a face previously seen.

Activating an Emotion Currently there are six forms of interaction that can
influence the emotional expression of the system. Table 1 details the possible
interactions and their influence over the hormonal levels. As can be seen from
table 1 each of the various interaction functions affect different emotional ex-
pression hormonal parameter levels either by increasing them (excitory +) or
decreasing (inhibitory -).

Table 1. The hormonal parameter levels affected by the varying interaction modalities.

Hormonal Control

Modality Function Affects Active Inactive

Vision
Face Detection VFD σHσSA +0.4, -0.2 -0.05, +0.01
Face Tracking VFT σAσHσSA -0.04, +0.02, -0.01 +0.01, -0.01, +0.01
Face Recognition VFR σSUσSA +0.8, -0.5 -0.05, +0.0

Speech
Orientation SO σHσSU +0.4 +0.5 -0.02, -0.05
Tracking ST σHσSU +0.1, +0.2 -0.005, -0.01
Communication SC σAσH -0.1, +0.2 +0.1, -0.04

Silence Non-Interaction SNI σSA +0.05 -0.1

Currently ERWIN is only capable of expressing one emotion at a time. For
this reason, the emotion expression mechanisms is based on a winner-takes-all
approach. That is, the hormonal parameter levels with the highest value will
take control of the expression. In addition, there is a threshold that must be
reached in order to express the emotion - for initial tests we used 0.8. Each of
the various levels are in a constant flux, either being inhibited or excited by the
various interaction modalities being used. As we attribute different ‘arbitrary’
levels of importance to each of the interactive methods, their activation increases
or decreases the hormonal levels differently. Table 1 shows the effect each of the
social interaction methods have on the hormonal levels.
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4 Results and Discussion

As each interactive scenario with the robot and a user will be different, either
through the responses given in answer to questions or the general interactive
environment, the modulation of the various hormonal levels will vary accordingly.
Each of these levels have a decay rate as shown in table 1 within the ‘inactive’
column; this shows how they decay at each time step. In addition, the increase
in activity for the a number of the hormones takes place during each time step,
if that particular interaction method is active, other interactive methods only
affect their respective hormonal levels once per interaction, that is when they are
presented. These hormonal activations will then be unable to increase until they
have dropped below a particular threshold; one example of this is σSU , when a
familiar face is detected will increase dramatically, but needs to drop below a
lower threshold before it can activate again.

Figure 4 shows an interactive process between ERWIN and a human, and the
resulting emotion level responses and their effect. The interaction experiment
shown in Fig. 4 begins with no user interaction with the head and therefore
increasing the ‘Sad’ levels σSA. After five time steps the robot expresses its Sad
emotion as the level passes the 0.8 threshold. We then introduce a new face
to the system, which is detected and therefore increases the ‘Happy’ levels σH

enough to express the emotion allowing the user to know that they have been
seen by ERWIN and allowing the interaction to begin. Once a face is detected,
it is continuously tracked. ERWIN then asks a question and the first time a
response is expected the user stays silent, this occurs at between 17 and 21 time
steps. As can be seen, the level of σA increases but not enough to invoke an
expression response; then the question is repeated and again the user remains
quiet. This time the levels of σA rises above the threshold at time step 29 and
the ‘Angry’ emotion is expressed.

As is shown by this scenario, it is possible to see how dynamically changing
the emotion expressions of ERWIN informs the user as to how their interaction
is being taken. With the use of dynamically modulating the control of emotional
expression, the different interactive modalities can inhibit and excite certain
parameter levels. This can prevent the expression of an emotion, depending on
how the previous and current aspects of the interaction are proceeding, whereas
this would not be possible by statically encoding a particular interactive response
with a particular emotion.

5 Future Work

As previously mentioned, the development of the emotional expression model
will look more into the biological aspects of hormone modulation for emotions,
looking in greater detail at the underlying mechanisms that control the expres-
sion of emotion. For example, one such model using arousal levels that vary as a
function of tactile stimulation patterns has been used in [4] for robotic emotion
expression. Further to this, currently the model presented in this paper is only
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Fig. 4. Shows the response of the hormone levels during an interaction phase.

capable of expressing a single emotion at a time, and lacks an expressional model
of transitioning between expressions.

The model presented also adapts its emotional expression too quickly during
social interaction. That is, even if the current emotional level for ‘Anger’ is
very high, simply conforming to the interaction process can quickly bring back
a balance for ‘Happy’. Therefore, in further developing our model we hope to
introduce some form of hysteresis into the system; this would allow the expression
levels to change not only based on the social interaction, but also depending on
previous interactions. With the use of face recognition this could allow ERWIN
to change hormone levels not only based on the social interaction but also on
the interaction partner.
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Abstract.  Emotions play a central role in most forms of natural human 
interaction so we may expect that computational methods for the processing 
and expression of emotions will play a growing role in human-computer 
interaction. The OCC model has established itself as the standard model for 
emotion synthesis. A large number of studies employed the OCC model to 
generate emotions for their embodied characters. Many developers of such 
characters believe that the OCC model will be all they ever need to equip their 
character with emotions. This study reflects on the limitations of the OCC 
model specifically, and on the emotion models in general due to their 
dependency on artificial intelligence. 

Keywords: emotion, model, OCC, artificial intelligence 

1 Introduction 

Marvin Minsky boldly stated that "The question is not whether intelligent machines 
can have any emotions, but whether machines can be intelligent without any 
emotions" [1]. In this study, I will reflect on the relationship between emotion 
modeling and artificial intelligence and show that Minsky’s question is still open. 
Emotions are an essential part of the believability of embodied characters that interact 
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with humans [2-4]. Characters need an emotion model to synthesize emotions and 
express them. The emotion model should enable the character to argue about 
emotions the way humans do. An event that upsets humans, for example the loss of 
money, should also upset the character. The emotion model must be able to evaluate 
all situations that the character might encounter and must also provide a structure for 
variables influencing the intensity of an emotion. Such an emotion model enables the 
character to show the right emotion with the right intensity at the right time, which is 
necessary for the convincingness of its emotional expressions [5]. Creating such an 
emotion model is a daring task and in this section I will outline some of its problems. 
In particular, I will argue for the importance of the context in which the emotion 
model operates. 

Emotions are particularly important for conversational embodied characters, 
because they are an essential part of the self-revelation feature of messages. The 
messages of human communication consist of four features: facts, relationship, appeal 
and self-revelation [6]. The inability of a conversational character to reveal its 
emotional state would possibly be interpreted by the user as missing sympathy. It 
would sound strange if the character, for example, opened the front door of the house 
for the user to enter and spoke with an absolute monotonous voice: ”Welcome home”. 

The OCC Model 

From a practical point of view, the developer of a screen character of robot is wise to 
build upon existing models to avoid reinvent the wheel. Several emotion models are 
available [7, 8]. However, Ortony, Clore and Collins [9] developed a computational 
emotion model, that is often referred to as the OCC model, which has established 
itself as the standard model for emotion synthesis. A large number of studies 
employed the OCC model to generate emotions [2-4, 10, 11]. This model specifies 22 
emotion categories based on valenced reactions to situations constructed either as 
being goal relevant events, as acts of an accountable agent (including itself), or as 
attractive or unattractive objects (see Figure 1). It also offers a structure for the 
variables, such as likelihood of an event or the familiarity of an object, which 
determines the intensity of the emotion types. It contains a sufficient level of 
complexity and detail to cover most situations an emotional interface character might 
have to deal with. 
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Fig. 1. The OCC model of emotions. 

When confronted with the complexity of the OCC model many developers of 
characters believe that this model will be all they ever need to add emotions to their 
character. Only during the development process the missing features of the model and 
the problem of the context become apparent. These missing features and the context 
in which emotions arise are often underestimated and have the potential to turn the 
character into an unconvincing clown. I will point out what the OCC model is able to 
do for an embodied emotional character and what it does not. 

The OCC model is complex and this paper discusses its features in terms of the 
process that characters follow from the initial categorization of an event to the 
resulting behavior of the character. The process can be split into four phases: 

 
1. Categorization - In the categorization phase the character evaluates an event, 

action or object, resulting in information on what emotional categories are 
affected. 

2. Quantification - In the quantification phase, the character calculates the 
intensities of the affected emotional categories. 

3. Interaction - The classification and quantification define the emotional value 
of a certain event, action or object. This emotional value will interact with 
the current emotional categories of the character. 

4. Mapping - The OCC model distinguishes 22 emotional categories. These 
need to be mapped to a possibly lower number of different emotional 
expressions. 

Categorization 

In the categorization phase an event, action or object is evaluated by the character, 
which results in information on what emotional categories are affected. This 
categorization requires the character to know the relation of a particular object, for 
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example, to its attitudes. Depending on this evaluation either the “love” or “hate” 
emotional category will be affected by the object. 

Consider this example: a character likes bananas and the user gives him a whole 
bunch. The character will evaluate the consequences of the event for the user, which 
results in pity, since the user has a whole bunch of bananas less. It will also evaluate 
the consequences of the event for itself, which results in satisfaction because it 
received a bunch of bananas. Next, it evaluates the action of the user, which results in 
admiration and finally the aspect of the object, which results in love. It appears that 
ironic that the category “love” is being used in the OCC model only for objects, since 
the more important usage for this word is certainly found in human-human 
relationships. 

To do this classification the character needs an extensive amount of knowledge. 
First, it needs to know its relationship to the user, which was assumed to be good. 
Hence, pity is triggered and not resentment. Moreover, it needs to know what this 
event means to the user. Otherwise the character’s happy-for category might be 
triggered (User Model). Second, it needs to have a goal “staying alive” to which the 
bananas contribute (Goals). Third, it needs to know what to expect from the user. 
Only knowing that the user does not have to hand out bananas every other minute the 
character will feel admiration (Standards). Last, it needs to know that it likes bananas 
(Attitudes). 
The standards, goals and attitudes of the character that the OCC model requires need 
to be specified, organized and stored by the designer of the character.  A new 
character knows even less than a newborn baby. It does not even have basic instincts. 
One way to store this knowledge could be an exhaustive table in which all possible 
events, actions and objects that the character might encounter are listed together with 
information on which emotional categories they affect and how their intensity may be 
calculated. This approach is well suited for characters that act in a limited world. 
However, it would be rather difficult, for example, to create such an exhaustive list 
for all the events, actions and objects that the character might encounter at the home 
of the user. With an increasing number of events, actions and objects, it becomes 
necessary to define abstractions. The bananas could be abstracted to food, to which 
also bread and coconuts belong. The categorization for the event of receiving food 
will be the same for all types of food. Only their intensity might be different, since a 
certain food could be more nutritious or tasty. However, even this approach is 
inherently limited. The world is highly complex and this approach can only function 
in very limited “cube” worlds. 

This world model is not only necessary for the emotion model, but also for other 
components of the character. If, for example, the character uses the popular Belief, 
Desires and Intention (BDI) architecture [12], then the desires correspond to the goals 
of the emotion model. The structure of the goals is shared knowledge. So are the 
standards and attitudes. The complexity of the OCC model has a direct influence on 
the size of the required world model. However, the AI community has long given up 
the hope to be able to create extensive world models, such as the widely known Cyc 
database. The amount of information and its organization appears overwhelming. 
Only within the tight constraints of limited worlds was it possible so far to create 
operational world models. 
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As mentioned above, the OCC model distinguishes 22 emotional categories (see 
Figure 1). This rather cumbersome and to some degree arbitrary model appears to be 
too complex for the development of believable characters [13]. The OCC model was 
created to model human emotions. However, it is not necessary to model a precise 
human emotion system to develop a believable character. A “Black Box” approach 
[14] appears to be sufficient. The purpose of this approach is to produce outcomes or 
decisions that are similar to those resulting from humans, disregarding both the 
processes whereby these outcomes are attained as well as the structures involved. 
Such a “Black Box” approach is more suitable, particularly since the sensory, motoric 
and cognitive abilities of artificial characters are still far behind the ones of humans. 
The characters emotion system should be in balance with its abilities. Several reason 
speak for a simplification of the OCC model. 

First, only those emotional categories of the OCC model should be used that the 
character can actually use. If a character uses the emotional model only to change its 
facial expression then its emotion categories should be limited to the ones it can 
express. Elliot [2] implemented all 22 emotional categories in his agents because they 
were able to communicate each and every one to each other. This is of course only 
possible for character-character interaction in a virtual world. It would be impossible 
for characters that interact with humans, since characters are not able to express 22 
different emotional categories on their face. Ekman, Friesen and Ellsworth  [15] 
proposed six basic emotions that can be communicated efficiently and across cultures 
through facial expressions. 

Second, some emotional categories of the OCC model appear to be very closely 
related to others, such as gratitude and gratification, even thought the conditions that 
trigger them are different. Gratification results from a praiseworthy action the 
character did itself and gratitude from an action another character did. It is not clear if 
such a fine grained distinction has any practical advantages for the believability of 
characters. 

Last, if the character does not have a user model then it will by definition not be 
able to evaluate the consequences of an event for the user. In this case, the “fortunes 
of others” emotional categories would need to be excluded. Ortony acknowledged 
that the OCC model might be too complex for the development of believable 
characters [13]. He proposed to use five positive categories (joy, hope, relief, pride, 
gratitude and love) and five negative categories (distress, fear, disappointment 
remorse, anger and hate). Interestingly, he excluded the emotional categories that 
require a user model. These ten emotional categories might still be too much for a 
character that only uses facial expressions. Several studies simplified the emotional 
model even further to allow a one-to-one mapping of the emotion model to the 
expressions of the character [3, 16]. 

Quantification 

The intensity of an emotional category is defined separately for events, actions and 
objects. The intensity of the emotional categories resulting from an event is defined as 
the desirability and for actions and objects praiseworthiness and appealingness 
respectively (see Figure 1). One of the variables that is necessary to calculate 

Page 20 of 64



6      Christoph Bartneck1, Michael Lyons2, Martin Saerbeck1,3 

desirability is the hierarchy of the character’s goals. A certain goal, such as 
downloading a certain music album from the internet, would have several sub goals, 
such as download a specific song of that album. The completed goal of downloading 
of a whole album will evoke a higher desirability than the completed goal of 
downloading of a certain song, because it is positioned higher in the hierarchy. 
However, events might also happen outside of the character’s current goal structure. 
The character needs to be able to evaluate such events as well. Besides the goal 
hierarchy, the emotion model also needs to keep a history of events, actions and 
objects. If the user, for example, gives the character one banana after the other in a 
short interval then the desirability of each of these events must decrease over time. 
The character needs to be less and less enthusiastic about each new banana. This 
history function is not described in the original OCC model, but plays an important 
role for the believability of the character. The history function has another important 
advantage. According to the OCC model, the likelihood of an event needs to be 
considered to calculate its desirability. The history function can help calculating this 
likelihood. Lets use the banana example again: The first time the character receives a 
banana, it will use its default likelihood to calculate the desirability of the event. 
When the character receives the next banana, it will look at the history and calculate 
how often it received a banana in the last moments. The more often it received a 
banana in the past the higher is the likelihood of this event and hence the lower is its 
desirability. After a certain period of not receiving any bananas the likelihood will fall 
back to its original default value. This value should not be decreased below its default 
value, because otherwise the character might experience an overdose of desirability 
the next time it receives a banana. Another benefit of the history function is the 
possibility to monitor the progress the character makes trying to achieve a certain 
goal. According to the OCC model, the effort and realization of an event needs to be 
considered to calculate its desirability. The history function can keep track of what the 
character has done and hence be the base for the calculation of effort and realization. 

Mapping 

If the emotion model has more categories than the character has abilities to express 
them, the emotional categories need to be mapped to the available expressions. If the 
character, for example, uses only facial expression then it may focus on the six basic 
emotions of happiness, sadness, anger, disgust, fear and surprise [15]. Interestingly, 
there is only one positive facial expression to which all 11 positive OCC categories 
need to be mapped to: the smile. Ekman [17] identified several different types of 
smiles but their mapping to the positive OCC categories remains unclear. The 11 
negative OCC categories need to be mapped to four negative expressions: Anger, 
Sadness, Disgust and Fear. The facial expression of surprise cannot be linked to any 
OCC categories, since surprise is not considered to be an emotion in the OCC model. 
Even though the character might only be able to show six emotional expressions on 
its face, the user might very well be able to distinguish between the expression of love 
and pride with the help of context information. Each expression appears in a certain 
context that provides further information to the viewer. The user might interpret the 
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smile of a mother next to her son receiving an academic degree as pride, but exactly 
the same smile towards her husband as love. 

Reflection 

The main limitation of the OCC model is its reliance on world model. Such models 
have only been successfully used in very limited worlds, such as pure virtual worlds 
in which only virtual characters operate. Furthermore, the OCC model will most 
likely only be one part of a larger system architecture that controls the character or 
robot. The emotional states of the OCC model must interact with the other states. Not 
only the face of the character is influenced by the emotional state of the character, but 
also its actions. It would be unbelievable if the character showed an angry expression 
on its face, but acted cooperatively. The mapping of the emotional state should be 
based on strong theoretical foundations. Such theoretical foundations might not be 
available for every action that a character might be able to execute and thus force the 
developer of the character to invent these mappings. This procedure has the intrinsic 
disadvantage that the developer might introduce an uncontrolled bias based on his or 
her own experiences and opinions. 

Besides the actions of the character, the emotional state may also influence the 
attention and evaluation of events, actions and objects. In stress situations, for 
example, humans tend to focus their attention on the problem up to the point of 
“tunnel vision”. [13] categorized the behavioral changes of the character through its 
emotional state in self-regulation (such as calming down), other-modulation (punish 
the other to feel better) and problem solving (try to avoid repetition). The latter will 
require the history function mentioned above. The emotional state of the character 
might even create new goals, such as calming down, which would result in actions 
like meditation. 

Facial Expression Synthesis 

There is a long tradition within the Human-Computer Interaction (HCI) community of 
investigating and building screen based characters that communicate with users [18]. 
Recently, robots have also been introduced to communicate with the users and this 
area has progressed sufficiently that some review articles are available [19, 20]. The 
main advantage that robots have over screen based agents is that they are able to 
directly manipulate the world. They not only converse with users, but also perform 
embodied physical actions. 

Nevertheless, screen based characters and robots share an overlap in motivations 
for and problems with communicating with users. Bartneck et al. [21] has shown, for 
example, that there is no significant difference in the users’ perception of emotions as 
expressed by a robot or a screen based character. The main motivation for using facial 
expressions to communicate with a user is that it is, in fact, impossible not to 
communicate. If the face of a character or robot remains inert, it communicates 
indifference. To put it another way, since humans are trained to recognize and 
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interpret facial expressions it would be wasteful to ignore this rich communication 
channel. 

Compared to the state of the art in screen-based characters, such as Embodied 
Conversational Agents [18], however, the field of robot’s facial expressions is  
underdeveloped. Much attention has been paid to robot motor skills, such as 
locomotion and gesturing, but relatively little work has been done on their facial 
expression. Two main approaches can be observed in the field of robotics and screen 
based characters. In one camp are researchers and engineers who work on the 
generation of highly realistic faces. A recent example of a highly realistic robot is the 
Geminoid H1, which has 13 degrees of freedom (DOF) in its face alone. The annual 
Miss Digital award [22] may be thought of as a benchmark for the development of 
this kind of realistic computer generated face. While significant progress has been 
made in these areas, I have not yet reached human-like detail and realism, and this is 
acutely true for the animation of facial expressions. Hence, many highly realistic 
robots and character currently struggle with the phenomena of the “Uncanny Valley” 
[23], with users experiencing these artificial beings to be spooky or unnerving. Even 
the Repliee Q1Expo is only able to convince humans of the naturalness of its 
expressions for at best a few seconds [24]. In summary, natural robotic expressions 
remain in their infancy [20]. 

Major obstacles to the development of realistic robots lie with the actuators and the 
skin. At least 25 muscles are involved in the expression in the human face. These 
muscles are flexible, small and can be activated very quickly. Electric motors emit 
noise while pneumatic actuators are difficult to control. These problems often result in 
robotic heads that either have a small number of actuators or a somewhat larger-than-
normal head. The Geminoid H1 robot, for example, is approximately five percent 
larger than its human counterpart. It also remains difficult to attach skin, which is 
often made of latex, to the head. This results in unnatural and non-human looking 
wrinkles and folds in the face. 

At the other end of the spectrum, there are many researchers who are developing 
more iconic faces. Bartneck [25] showed that a robot with only two DOF in the face 
can produce a considerable repertoire of emotional expressions that make the 
interaction with the robot more enjoyable. Many popular robots, such as Asimo, Aibo 
and PaPeRo have only a schematic face with few or no actuators. Some of these only 
feature LEDs for creating facial expressions. The recently developed iCat robot is a 
good example of an iconic robot that has a simple physically-animated face. The 
eyebrows and lips of this robot move and this allows synthesis of a wide range of 
expressions. 

Another important issue that needs to be considered when designing the facial 
expression of the character is that they need to be convincing and distinct at low 
intensity levels. Most events that a character encounters will not trigger an ecstatic 
state of happiness. The evaluation of a certain event should be roughly the same as 
could be expected of a human and most events that humans encounter in everyday life 
do unfortunately not result in ecstasy. If the character managed to download a 
complete album of music it still did not save the world from global warming. Hence, 
it should only show an appropriate level of happiness. 

While there is progress in the facial expressions of robot faces, we are sill facing 
several conceptional problems that stem from the field of Artificial Intelligence. Lets 

Page 23 of 64



The Relationship Between Emotion Models and Artificial Intelligence      9 

take the example of emotions that I discussed in detailed above. The emotional state 
of the character is defined through values for each of its emotional categories. This 
emotional state needs to be expressed through all available channels. A conversational 
embodied character, for example, needs to express its emotional state through its 
speech and facial expressions. It would be unconvincing if the character would smile, 
but speak with a monotonous voice. However, the systematic manipulation of speech 
to express emotions remains a challenge for the research community. Emotional facial 
expressions are understood better, but a fundamental questions remains. Shall the 
character only express the most dominant emotional category, or shall it express every 
category at the same time and hence show a blend of emotions. The blending of 
emotional expression requires a sophisticated face, such as Baldi from the CSLU 
Toolkit. Cartoon like characters, such as eMuu [16] or Koda’s Poker Playing Agent 
[3] are not able to show blends and therefore they can only express the most dominant 
emotional category. 

 

Fig. 2. Robots with animated faces 

It becomes obvious that the problems inherited by human-robot interaction (HRI) 
researchers from the field of AI can be severe. Even if we neglect philosophical 
aspects of the AI problem and are satisfied with a computer that passes the Turing 
test, independently of how it achieves this, we will still encounter many practical 
problems. This leads us to the so-called “weak AI” position, namely claims of 
achieving human cognitive abilities are abandoned. Instead, this approach focuses on 
specific problem solving or reasoning tasks. 

There has certainly been progress in weak AI, but this has not yet matured 
sufficiently to support artificial entities. Indeed, at present, developers of artificial 
entities must to resort to scripting behaviors. Clearly, the scripting approach has its 
limits and even the most advanced common sense database, Cyc, is largely 
incomplete. Emotion modeling should therefore not bet on the arrival of strong AI 
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solutions, but focus on what weak AI solutions can offer today. Of course there is still 
hope that eventually also strong AI applications will become possible, but this may 
take a long time.    

When we look at what types of HRI solutions are currently being built, we see that 
a large number of them do barely have any facial features at all. Qrio, Asimo and 
Hoap-2, for example, are only able to turn their heads with 2 degrees of freedom 
(DOF). Other robots, such as Aibo, are able to move their head, but have only LEDs 
to express their inner states in an abstract way. While these robots are intended to 
interact with humans, they certainly avoid facial expression synthesis. When we look 
at robots that have truly animated faces, we can distinguish between two dimensions: 
DOF and iconic/realistic appearance (see Figure 2). 

Robots in the High DOF/Realistic quadrant not only have to fight with the 
uncannieness [26, 27] they also may raise user expectations of a strong AI which they 
are not able to fulfill. By contrast, the low DOF/Iconic quadrant includes robots that 
are extremely simple and perform well in their limited application domain. These 
robots lie well within the domain of the soluble. The most interesting quadrant is the 
High DOF/Iconic quadrant. These robots have rich facial expressions but avoid 
evoking associations with a strong AI through their iconic appearance. I propose that 
research on such robots has the greatest potential for significant advances in the use of 
emotions in HRI. 

 

Conclusion 

A problem that all these artificial entities have to deal with is, that while their 
expression processing has reached an almost sufficient maturity, their intelligence has 
not. This is especially problematic, since the mere presence of an animated face raises 
the expectation levels of its user. An entity that is able to express emotions is also 
expected to recognize and understand them. The same holds true for speech. If an 
artificial entity talks then we also expect it to listen and understand. As we all know, 
no artificial entity has yet passed the Turing test or claimed the Loebner Prize. All of 
the examples given in Table 1 presuppose the existence of a strong AI as described by 
John Searle [28]. 

The reasons why strong AI has not yet been achieved are manifold and the topic of 
lengthy discussion. Briefly then, there are, from the outset, conceptual problems. John 
Searle [28] pointed out that digital computers alone can never truly understand reality 
because it only manipulates syntactical symbols that do not contain semantics. The 
famous ‘Chinese room’ example points out some conceptual constraints in the 
development of strong AIs. According to his line of arguments, IBM’s chess playing 
computer “Deep Blue” does not actually understand chess. It may have beaten 
Kasparov, but it does so only by manipulating meaningless symbols. The creator of 
Deep Blue, Drew McDermott [29], replied to this criticism: "Saying Deep Blue 
doesn't really think about chess is like saying an airplane doesn't really fly because it 
doesn't flap its wings." This debate reflects different philosophical viewpoints on what 
it means to think and understand. For centuries philosophers have thought about such 
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questions and perhaps the most important conclusion is that there is no conclusion at 
this point in time. Similarly, the possibility of developing a strong AI remains an open 
question. All the same, it must be admitted that some kind of progress has been made. 
In the past, a chess-playing machine would have been regarded as intelligent. But now 
it is regarded as the feat of a calculating machine – our criteria for what constitutes an 
intelligent machine has shifted. 

In any case, suffice it to say that no sufficiently intelligent machine has yet 
emerged that would provide a foundation for many of the advanced application 
scenarios that have been imagined for emotional agents and robots. The point I hope 
to have made with the digression into AI is that the application dreams of researchers 
sometimes conceal rather unrealistic assumptions about what is possible to achieve 
with current technology. Emotion models heavily rely on the progress made in 
artificial intelligence and hence I would like to reply to Minsky’s statement with a 
question: “Will emotional machines have intelligence?” 
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Abstract. The possible modulatory influence of motivations and emo-
tions is fundamental in designing robotic adaptive systems. In this pa-
per, we will try to connect the concept of periodic behavior activations
to emotions, in order to link the variability of behaviors to the circum-
stances in which they are activated. We will study the impact of emotion,
described as timed controlled structures, on simple reactive behaviors.
We will show, through this approach, that the emergent behaviors of
a simple robot designed with a parallel or hierarchical architecture are
comparable. Finally, we will see that conflicts in behaviors may be solved
without an explicit action selection mechanism.

1 Introduction

In Robotics one of the main issues in designing a control system is to enable an
autonomous robot to react and adapt in useful time to environmental changes [1].
This reaction depends on the correct identification of objects and their properties
by appropriate sensor devices, with a strong emphasis on the concept of the
stimuli-response loop. Moreover, the robotic community, started to pay attention
not only to the robot-environment interactions, but also, so to speak, to the
interactions that may arise within the robots itself [2] and how these latter (for
example its emotional states) may influence the emergent behavior of the robot.

In these last years some researchers [2–7] started to pay attention to the role
of emotional and motivational states in order to achieve an adaptive emergent
behavior of robotics systems. In particular, the role of emotions has been intro-
duced for behavior modulations [3, 4], to provide adaptivity to environmental
changes. Moreover, cognitive psychology considers thinking, learning and mem-
ory activities as a problem of information processing. However, the description
of motivational issues and emotional states as a processing problem is not an
obvious task [3]. The interest for such “internal mechanisms” comes within the
robotic community taking inspiration from ethological, biological and neuro-
science studies. In our opinion, in order to model different and new architectures
for controlling the robot behavior, both these aspects (the interaction with the
surrounding world and the internal states) have to be considered, since they
influence each other. For example, the simple perception-action response to an
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external stimulus may produce different patterns of actions consequently to a
different internal state of the robot. This internal state may change according to
his emotional or motivational state or following its past perceptions and it will
tune and adapt both the executions of different behaviors for the robot and the
processing frequency of the sensors’ inputs. Our working hypothesis is that such
adaptive behaviors can be achieved in the control activity of a robot starting
from self-regulated periodic mechanisms.

In previous papers [8, 9] we highlighted the opportunity of managing the
frequency of processing the sensors inputs in an efficient way, because it may
have negative effects on the robot behavior. This kind of problems leads us to
find a solution for the efficient use of the Robotic sensor apparatus. Therefore,
we moved to study how rhythmic computations may be introduced in a con-
trol mechanism for robotics systems and how such introduction may lead to a
framework that will cope with some of the common problems in designing con-
trol systems for robots. In this paper we will analyze our architecture in terms
of emergent behavior driven by motivational and emotional states, and we will
describe how our architecture may deal with conflicting behaviors (for example,
predator avoidance and food acquisition) starting from the concepts of period-
ical adaptive activations of behaviors. We present a robotic architecture that
has the capability of adapting its behavior to the rate of change of a dynamic
environment - e.g. of tuning the velocity of reaction to the external stimuli co-
herently to the changes occurring in the environment. On the other hand, we
want our model to take into account that such stimuli may come not only from
the external environment (as a bottom-up process), but they can be generated
by the robot itself (top-down) [2] - e.g. the robot has to adapt its perceptual
system according to its “needs”.

2 AIRMs

A motivation-based architecture should be able to integrate a combination of
internal and external factors to select the appropriate behavior. However, these
architectures are not always sufficiently adaptive to unpredictable environmen-
tal changes [4]. What we want to achieve is the ability, for a robotic system,
of adapting its emergent behavior to the surrounding environment and to its
internal state. At the same time we want the robot to opportunely react accord-
ing to environmental changes and to efficiently spend the resources necessary to
monitor the surrounding environment. To achieve this goal we started from the
consideration that a wide type of behaviors are generated by the so called central
pattern generators [10], i.e., central oscillators whose output modulates rhythmic
movements. The role of such oscillator in coordination of motor patterns [11],
such as breathing and walking, is well accepted in neuroscience [12].

So, we would like to have a control system for the percept inputs that per-
forms a quasi-periodic activity (i.e. it has at least an active and inactive phase)
and should be flexible (i.e. dynamically adapt its period and amplitude to exter-
nal and internal constraints). In particular we would like to associate a periodic
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control system to the activation of each single behavior. Lorentz [13] and Tinber-
gen [14] identified in many animals an innate releasing or inhibiting mechanism
(IRM) able to control and coordinate behaviors. An IRM presupposes a specific
stimulus that releases a pattern of actions. For example, a prey animal may have,
as an IRM, the stimulus coming from the view of the predator, which activates
the escape behavior. IRMs were included in the schema representation of behav-
iors [15] in the form of releasers, controlling when behaviors must be activated or
deactivated. A releaser may be an activation mechanism that depends both by
exogenous factors, that trigger an emotional state (a particular environmental
condition – for example a prey that detects the presence of the predator), and
by endogenous factors (a motivational state – for example hunger).

Fig. 1. A schema representation [15] of releasers and biological clocks. The function
σr(t) represents the input coming from sensors at each time interval; π(t) is the com-
mand sent to actuators; σ(t) represents the inputs elaborated by the perceptual schema
and sampled by the function ρ(t).

The releaser’s function, somehow, recalls the notion of “internal clock”, al-
ready introduced in some approaches [7, 16] in order to activate motivational
states for a robot (for example, hunger or sleep). In fact, an internal clock, as a
releaser, is a mechanism which regulates the behavior of living organisms. More-
over, this may depend on endogenous factors (i.e., independent from external
environment) or exogenous factors. Starting from this analogy, we try, in some
sense, to abstract the concept of internal clocks and to connect it to periodic
activations of behaviors in a robotic architecture, in a similar way as a mecha-
nism for releasing is related to a behavior using any representative models well
studied and used in the Robotic community [15]. There are, however, substan-
tial differences between the two concepts. An internal clock is responsible for
the activation of a particular behavior, but has something more than a releaser
(see Fig.1). First of all, the releaser acts as a control signal for the whole be-
havior and it, somehow, may involve an elaboration of the input (for example
a releaser may be the presence of a predator). An AIRM (Adaptive Innate Re-
leasing Mechanism), instead, works only on the perceptual schema and has an
active (or inactive) state that depends also on endogenous factors (the perceptual
schema elaborates the input when the AIRM is active). Furthermore, internal
clock may imply a regular and periodic activation of the perceptual schema of a
behavior, whose activations in time may be predicted – and so, also the amount
of resources spent for the elaboration of inputs. Instead, the activity of a releaser
depends only on contingent factors. In [8, 9] we connected the concept of IRM

Page 30 of 64



to the concept of a periodical activation of behaviors (AIRM). In this way, no
computational resources are spent to elaborate not needed stimuli, because the
corresponding control systems are kept “inactive” until a new periodical acti-
vation takes place, and at the same time we are able to control the amount of
resources spent in the elaboration of the sensors’ inputs. Moreover, the intro-
duction of internal clocks, within a robotic architecture, has also the effect of
controlling behaviors that may require a fixed pattern of activation in time. This
activation of behavior may be interpreted as large time scale activities, for ex-
ample the activation of macro-behavior like feeding or sleeping, or as short time
scale activities, in the sense of central-pattern generators in controlling rhythmic
movements of a robot as walking, but also as a general mechanism for controlling
activation of simple behaviors. Finally, we foresee that the introduction of such
asynchronism in the robot control system may lead to an emergent behavior that
is able to change and adapt according to its context without having an explicit
action selection mechanism.

We assume the hypothesis of an architecture with some periodic releasing
mechanisms of activation of behaviors. Such mechanisms, according to the en-
vironment, speed up or gradually slow down the period of behaviors activation
and thereby the reading frequency of the sensors. In this system, however, the
feedback does not come only from the outside, but can also be generated by the
robot itself [2], allowing the robot to adapt itself also according to its emotional
or motivational state. An emotional state, in our work, has to be interpreted,
following the Damasio definition [17], as an unconscious and automatic response
in reaction to a stimulus that involves an adjustment in homeostatic balance as
well as the enhancement of specific behaviors. Moreover, in neuroscience, while
classical theories of sensory processing view the brain as a passive, stimulus-
driven device, more recent approaches [18] view the perception as an active and
highly selective process.

Our working hypothesis is that each behavior of a Robotic System (RS) may
be provided with clocks that control the periodic activation of behaviors. We
may think that each of the releasers, that manage the various micro/macro-
behaviors, is activated by an individual clock with a variable period pβ , as it will
be explained in the following, depending on the purpose of the behavior and on
the sensors data involved in the behavior. Timed releasing functions take data
from a perceptual schema and from the internal state of the robot and return
enabling/disabling signals to the perceptual schema itself. That is, the perceptual
schema of a behavior is regulated by an internal clock that says how frequently
the inputs have to be elaborated. For example, if the initial value of the period
of a clock is of four time units, it means that the input from the sensors for this
particular behavior will be processed only every four time units. In the other
cases, during the inactivity state of the perceptual schema, no new commands
will be send to the motor schema and so no new actions will be produced.

In our architecture, motivational behaviors have an impact on the value of
the period of each behavior and so they can regulate and modify the perceptual
abilities of the robot as well as its actions in time. Motivational and emotional
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behaviors may be induced both by internal states of the robot (for example,
hunger), coded as linear time-dependent functions, and as an emergent process
from the interaction with the environment (for example, fear).

3 Implementation and Testing

Let us assume that each behavior of the robotic system has a variable period
initially equal to a preferred value. In our experiments, we assumed that these
periods are proportional to powers of two. We designed a system whose behavior
is mainly guided by the visual information in a 3D environment. In particular,
according to [5], the reaction of the robot may be driven by moving objects.
In order to achieve the proper reaction of the robot in respect to a moving
object, we implemented a control schema to change the period of the clock
based on the Weber law of perception. We already discussed in section 2 the
perceptual schema modulation according to a periodic releasing function. In
particular we noticed that the robot can evaluate the perceptual inputs only
when the releaser/clock is on. While the reaction of the robot depends on the
perceptual inputs (for example, the robot that sees a predator will produce an
action to escape) the self-regulation mechanism, encoded in the internal clock,
will confront the current percept with the last available percept, stored in the
temporal or working memory of the robot. The change in its emotional state
(encoded as a change in the releasing period) depends on how much this value
has fluctuated. However, in order to set the appropriate thresholds for evaluating
this change, we cannot refer to absolute values. In this sense the Weber law allows
us to compute the relative change in the percept input (σ(t)) as ∆σ

σ . In figure
2 the percept input of an experiment is plotted. The dotted lines represent the
thresholds we use to adapt the period of the releasing function according to the
values of the input percept. In fact, in order to make the robot able to react
in time, for an increasing percept we want the period to decrease according to
the input changing rate. Let us remark that, in our approach, the period of a
behavior may change its value, varying among power of two values. Moreover,
also the selected thresholds for changing the period are proportional to a power
law. For example, if the percept exceeds the first threshold, the period will be
halved; instead, if the percept exceeds the second threshold, the current value
of the period will be reduced to a quarter, and so on. On the contrary, when we
have a decreasing function, we want the process for coming back to the maximum
value of the period to be slow.

In order to test our working hypotheses we used a PIONEER 3DX provided
with a blob camera (see Fig.3). The robot architecture is constituted by four
simple behaviors: WANDER, FIND FOOD, EAT and ESCAPE. In particular we were in-
terested in observing only the FIND FOOD and ESCAPE, whose perceptual schemas
were controlled by AIRMs and whose behaviors may be in conflict requiring an
action selection mechanism. We implemented both a subsumption architecture
(see figure 4(a)) with ESCAPE subsuming FIND FOOD and a parallel architecture
(see figure 4(b)) whose output was the sum of the outputs of the two behav-
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Fig. 2. Changing of the percept input plotted as ∆σ
σ

. The dotted lines represent thresh-
olds for the adaptation of the period process.

iors. The output (πi) of these two behaviors consists in a predefined velocity
and direction, except for the ESCAPE behavior whose output velocity depends on
the internal clock. In particular, if the value of the clock is equal to the initial
maximum value, the module of the velocity will be equal to the velocity set by
FIND FOOD. If this value is equal to the minimum value, the velocity will be set
to a much higher value in order to escape. In all the other cases, velocity will be
a constant value in between the maximum and the minimum values.

(a) (b) (c)

Fig. 3. Snapshots form the case study: (a) the robot wanders looking for food; (b) food
and predator are in the same direction; (c) the predator moves toward the prey.

Let us suppose that a red object represents a predator and a green object
represents food (see Fig.3(a)). What if the system is in the case of having in the
same direction both the food and the predator (see Fig.3(b))? In this situation
the emergent behavior will depend on motivational states and will be influenced
by their impact on the activations of behaviors. The FIND FOOD behavior has
an internal clock with a period whose value depends on the motivational state
of “hunger”. This state is regulated by a linear time-dependent function, and
this means that at the beginning, when the value of the hunger is low, the
FIND FOOD behavior is released with a predefined period that depends on the life
cycle of the robot. During the simulation, the hunger value will grow in time and,
accordingly, also the period of the clock of the corresponding behavior will be
reduced. When the behavior is enabled and the robot senses a green object, the
output of the FIND FOOD behavior will set the direction of movements towards
the food. The ESCAPE has an internal clock that simulates the state of “fear”. At

Page 33 of 64



the beginning of the simulation the value of the period is set in order to safely
check the presence of a predator. If the robot senses a red object (the predator)
and the behavior is enabled, the output of the behavior will be a movement in
the opposite direction of the predator. The period of this clock does not depend
on an internal variable (like in the case of FIND FOOD), but on the changing of
the value of the percept itself according to the Weber law. This means that the
“fear” of the robot will increase if the predator is moving toward the prey (i.e.,
the period will be reduced). Moreover, let us highlight that this process will have,
as a consequence, an adaptation of the behavior of the robot if the predator is
not moving. However, in the case of both the food and the predator in face of the
robot, while approaching the food the movement of the robot itself may induce
a change in the perception of the dimension of the red blob.
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Fig. 4. Subsumption (a) and parallel (b) implementations of behaviors. For each case
the plots show the changing of the input (red area), of the two clocks (fear and hunger)
and of the position of the robot towards the food at each time unit.

In figure 4 we plotted some results for the case study described above. The
first plot refers to the subsumption implementation of the behaviors, while the
second one refers to a parallel architecture. The first plot of each of the two
cases represents the percept (i.e., red blob area for the ESCAPE behavior). Such
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percept is sampled according to the corresponding internal clock that simulates
fear. Let us notice that while the internal clock is inactive the robot does not
update its perceptual input, which remains constant until the next activation of
the clock. Moreover, let us notice how the frequency of activations of the clock
is modified following the input percept. The last part of each plot represents the
internal clock of the FIND FOOD behavior, that depends on time. As soon as this
value increases more than the value of the ESCAPE behavior, the robot will start
to move toward the food with an oscillating behavior that will lead to reach the
position of the food. Let us notice that the emergent behavior of both the two
approaches, represented by the changing of the position of the robot towards the
food, is comparable, in the sense that both the approaches, if the behaviors are
controlled by internal clocks, will lead to the same oscillating pattern towards
the food. The only substantial difference between the two approaches happens
when the hunger is low: in fact, while in the subsumption architecture the robot
will move in the opposite direction of the food (and the predator), in the parallel
architecture the robot is not moving.
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Fig. 5. The robot emergent behavior with different initial values of the ESCAPE clock.

In figure 5 we compared the emergent behavior of the same robot with a
parallel architecture, changing the initial maximum value for the period of the
ESCAPE behavior. First of all, let us highlight that the emergent behaviors of the
robot seem not to depend on this initial value. The explanation of this situation,
in this particular case study, is that while approaching the food the clock of
the ESCAPE behavior frequently changes its value, also for the presence of the
predator. This oscillation pattern makes the robot not able to return the initial
value of the ESCAPE period that keeps oscillating between the minimum value
and a constant average value. However, while in this case it seems that the
maximum value of the ESCAPE period does not have any impact on the emergent
behavior, we want our robot to react in useful time to moving obstacles (i.e.,
the predator). In Fig.6 we plotted the changing of the red area and, accordingly,
the changing of the period of the clock of the ESCAPE behavior and the changing
in the velocity of the robot in the case that the red object starts to move (see
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Fig.3(c)). Let us notice that when the period reaches its minimum value the
module of the velocity is bigger in order to escape.
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Fig. 6. Robot reaction to a moving obstacle.

4 Discussion

In this paper, we started to explore the feasibility of designing robotic architec-
tures based on motivational modulation of behavior activities by means of peri-
odic releasers. The embedding of such controlled rhythms within a RS behavior
allows the realization of flexible/adaptive behavior which can realize timed acti-
vation of the behavior itself as well as modulation of its performance according to
its internal state and sensorial information. Other authors dealt with this kind
of problems. For example, in [7] the authors presented a parallel architecture
focused on the concept of activity level of each schema which determines the
priority of its thread of execution. A more active perceptual schema can process
the visual input more quickly and a more active motor schema can send more
commands to the motor controller. However, while in our approach such effects
are obtained through rhythmic activation of behaviors, in [7] the variables are
elaborated through a fuzzy based command fusion mechanism.

Moreover, behavior based robotic usually resolves conflicts by using a sub-
sumption architecture or by implementing some control mechanisms in order to
switch between tasks, selecting the action. For example, in [5] the authors pre-
sented a schema theoretic model for a praying mantis which behaviors are driven
by motivational variables such as fear, hunger and sex-drive. In this approach,
the action selection module takes into account only the motivational variable
with the high value. As in our case, when the hunger is too high the robot will
move toward the food even through there is a predator in sight. Moreover, fear
depends of the view of the predator, but when the predator is in the field of view
of the prey this variable is only set to a predefined high value.

Let notice that while a motivational behavior may have a linear model of
development, emotions are not a linear succession of events [6]. In our approach
we presented a model of an emotional behavior that does not depend only on
linear time dependent functions, but it is directly connected to the changing
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rate of the surrounding environment. However, while for a simple case study
our architecture was able, by means of asynchronous computation, to act like
an action selection mechanism and to adapt to its context, one of the problems
of more complex parallels architectures comes from the possibility of arising
interferences between different processes. Since emotions and motivation are not
independent processes, as future work we will move forward in the direction of
studying how these adaptive periodical activations of behaviors may influence
and constrain each other.
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Abstract. This paper presents a short review, compiled with a com-
putational perspective, of the empirical neuroscientific evidence related
to amygdala, a brain complex situated at the core of various brain sys-
tems underlying motivations and emotions. The functions of amygdala
are fundamental for organisms’ adaptive behaviour as they allow them to
assign subjective saliency and value to experienced world states, so en-
hancing the adaptive power of their cognitive processes. In this respect,
the major goal of the review is outlining the main computational func-
tionalities of amygdala emerging from the neuroscientific investigations
on affective processes so as to contribute to highlight the general archi-
tectural and functioning mechanisms underlying organisms’ emotional
processes. This effort is also expected to fertilise the design of robot con-
trollers exhibiting a flexibility and autonomy comparable to that of real
organisms.

1 Introduction: Exploiting the Synergies Between the

Neuroscientific Research on Amygdala and Embodied

Artificial Intelligence

In decades of research, neuroscience has produced a large amount of data and

insights relative to the neural substrates underlying emotions. These are now

seen as a fundamental product of evolution that allows organisms to suitably

regulate and flexibly modify behaviours on the basis of their survival and re-

production needs. Emotions play a central role in the behavioural flexibility

exhibited by real organisms, and for this reason their study is important not

only for the advancement of their overall scientific understanding but also for

⋆ This research was supported by the EU Project ICEA - Integrating Cognition, Emo-

tion and Autonomy, contract no. FP6-IST-IP-027819.
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the design of autonomous robots capable of tackling unpredictable and non-

stationary environments with a versatility similar to that of organisms. These

principles have been investigated in depth in some models developed within the

embodied artificial-intelligence community, for example see [1–3]. These works

have the merit of outlining the general principles underlying emotions and of

giving a general account of them in terms of embodiment and dynamic coupling

with the environment (see [4] for a review). However, they usually present models

that are only weakly related to the aforementioned empirical data. This implies

missing important synergies in the study of emotions that might stem from the

integration of the two approaches.

This paper introduces the first results of the theoretical and reviewing ef-

forts of a research agenda directed to contribute to build those synergies and

to lead the two research threads to have a stronger integration. In particular,

the paper introduces relevant empirical evidence related to amygdala (Amg),

probably the most important brain system integrating processes involving ex-

ternal stimuli, internal cognitive processes, and internal states related to organ-

ism’s needs and homeostatic regulations. In doing so, the focus will be on the

neuroscientific research showing the core functionality implemented by Amg.

In this respect, we anticipate that the general function of Amg is to associate

“unlearned behaviours”, internal body and brain states, and internal body and

brain modulations, to neutral stimuli coming from the external world so that

they can acquire a biological salience and play a role in the regulation of various

behaviours and cognitive processes. (note that, in the following, the expression

“unlearned behaviours” will be used to refer to behaviours that might be either

innate or developed during the first phases of life under strong genetic pressures

and general environmental constraints, cf. [5]).

As mentioned above, the review of Amg’s properties will be done with a com-

putational perspective in mind (adaptive functions, neural mechanisms, etc.) and

with the aim of isolating the fundamental principles underlying the functioning

of the main brain systems involved in the regulation of emotions, motivations

and learning. This effort is expected to produce insights that should be useful

as a general framework for designing and implementing detailed computational

embodied models, as it already happened in three of our previous works [6–8].

2 The Amygdala Anatomy and Core Functions

The Amg is an almond-shaped group of nuclei located within each medial tem-

poral lobe of the brain. Figure 1 illustrates the broad anatomical organisation of

Amg. In particular the figure shows that Amg is formed by three major sets of

nuclei each playing a major distinct functional role: lateral amygdala (LA), baso-

lateral amygdala (BLA) and central nucleus of amygdala (CeA). The graph also

shows the main connections of these nuclei with other brain areas with which

the Amg’s nuclei form various brain sub-systems implementing several functions

related to affective regulation of behaviour (discussed in Section 3).
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Fig. 1. Major connections between the main nuclei of Amg and between these nuclei
and other brain districts with which it forms important brain sub-systems underlying
various affective regulations of behaviour. LA receives afferent connections from many
cortical and subcortical areas and projects mainly to other nuclei of Amg. CeA receives
afferent connections from other nuclei of Amg and projects efferent connections to many
subcortical systems. BLA has complex reciprocal connections with prefrontal cortex,
hippocampus and nucleus accumbens.

The role that Amg plays in such affective regulations relies upon three func-

tions (Figure 2). The first function is based on unlearned associations existing

between a number of biologically-salient stimuli with the direct triggering of vari-

ous appetitive and aversive unlearned responses directed to the environment, the

body and the brain itself. In particular, some kinds of tastes and olfactory stim-

uli, as well as nociceptive stimuli [9], can, via unlearned Amg’s pathways, directly

contribute to trigger unlearned behaviours (e.g., salivation, freezing, startling,

and approaching), to regulate emotional body states (e.g. heart rate and blood

pressure), to broadly activate whole brain areas and regulate learning processes

(e.g., via the neuromodulation processes performed by the nuclei of the reticular

formation).

The second Amg’s function is based on the strengthening of the neural path-

ways which allow neutral stimuli from the environment to trigger the aforemen-

tioned unlearned reactions. Amg can implement this process on the basis of two

associative mechanisms.

The first associative mechanism is based on the creation of direct neural as-

sociations between the representations of neutral stimuli and the aforementioned

unlearned reactions (these are S-R types of associations). S-R learning occurs

at the level of the LA-CeA pathway, via connections that depart from LA units
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Fig. 2. Major learning processes involving the three main nuclei of Amg. Circles in-
dicate clusters of neurons representing stimuli or reactions received from or directed
to the environment, the body or the nervous system itself (for simplicity, the graph
represents only few units). Bold connections represent associations formed during learn-
ing, whereas plain connections represent unlearned associations. S-R learning is imple-
mented by the LA-CeA pathway: this allows external stimuli activating LA to directly
trigger the unlearned reactions of CeA. S-S learning is implemented within BLA. Only
few BLA units are associated with the CeA units: other BLA units representing exter-
nal stimuli can trigger CeA reactions only by forming lateral associations with those
units. Importantly, internal states, such as satiety, can modulate on the fly the trigger-
ing of Amg’s responses by acting on the representations of the unconditioned stimuli,
e.g. by inhibiting them (connections with a dot head).

representing stimuli from the world and converge to CeA which triggers the un-

learned reactions. With learning, each LA unit can become directly associated

with CeA reaction units.

The second associative mechanism is based on the formation of neural as-

sociations between internal representations of neutral stimuli and the internal

representations of the aforementioned salient stimuli (these are S-S types of asso-

ciations): the activation of these representations can then trigger the unlearned

responses. S-S learning occurs within BLA. Only few BLA units, representing

biologically salient stimuli, are associated with the CeA units. Other BLA units,

representing stimuli from the environment, can have access to CeA reactions only

by forming lateral associations with the BLA units representing salient stimuli.
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A last important function of Amg relies on its capacity to modulate the

effects of the associations that it forms in the ways just described on the fly (i.e.,

without the need of re-learning) on the basis of current homeostatic body states

and overall brain states. For example the Amg is capable of avoiding to trigger

approaching behaviours towards a source of food if this has been temporarily or

permanently devalued through satiation or poisoning.

3 The Functions that Amygdala Plays in Different Brain

Sub-Systems

Amygdala has been associated with a wide range of cognitive functions, including

emotional regulation, learning, action selection, memory, attention and percep-

tion. In particular, a large amount of studies have now firmly established the

involvement of Amg in aversive behaviours such as those involved in fear condi-

tioning and taste aversion experiments [10–12]. Recently, an increasing amount

of behavioral evidence has started to reveal an Amg’s involvement also in ap-

petitive behaviours [13–16]. This is also being corroborated by anatomical in-

vestigations that indicate the existence of Amg’s afferent neural pathways which

carry information related to both aversive and appetitive events [17, 18].

The Amg plays a function in these aversive and appetitive behaviours as

it is an important component of several brain sub-systems involving the hy-

pothalamus, insular cortex, brain stem (in particular the reticular formation),

hippocampus, basal ganglia, and prefrontal cortex. In general, the role that the

Amg plays in all these sub-systems relies on its capacity to use input information

related to internal body states to assign positive and negative emotional valence

to stimuli from the environment on the basis of the associative mechanism de-

scribed in Section 2.

The Amg exploits these associative processes to play several important affective-

regulation functions within various brain sub-systems (Figure 3). The detailed

investigation and modeling of these functions, only broadly described here, form

the main research objectives of the research agenda mentioned in Section 1.

Three of these functions involve the affective regulation of behaviours directed

to the external environment:

1. Selection and triggering of unlearned behaviours.

The Amg plays an important role in triggering unlearned behaviours (e.g.,

the “unconditioned responses”, or “URs”, used in conditioning experiments).

on the basis of biologically salient stimuli (e.g., the “unconditioned stimuli”,

or “USs”, used in conditioning experiments). In particular, studies about

both appetitive and aversive Pavlovian conditioning focused on the trigger-

ing of unlearned behaviours such as visceral responses [19], freezing [10, 20,

21], startle [22], and orienting responses [23, 24]. Behavioural and anatom-

ical evidence indicates that these kinds of reactions are triggered by CeA

activations [23, 24, 19].

Also approach and avoidance behaviours, the conditioning of which depends

on the BLA functioning [24, 19], can be included in the category of URs that
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Fig. 3. A scheme indicating the main functions played by the Amg within some of
the main affective regulatory systems of brain. Notice the core associative mechanisms
implemented by the Amg, which subserve all such functions, and the role that Amg
plays in the modulation of emotions in terms of the regulation of diffused brain states
and body homeostatic states.

animals produce in the presence of USs via unlearned neural connections

existing between their neural representations.

2. Furnishing emotional states for the generation of fast-forming episodic mem-

ories.

The BLA’s massive reciprocal connections with hippocampus might allow

Amg to influence multi-modal fast-associative episodic memory processes

taking places in it on the basis of current emotional states. In particular,

as Amg is one of the main brain loci where the information on internal

states and on the value of external stimuli is integrated, its input to the
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hippocampus might furnish the emotional context to memory formation and

consolidation processes that it supports [25, 26].

3. Emotional evaluation of stimuli for goal-oriented behaviour.

The BLA-prefrontal cortex reciprocal connections play an important role

in modulating the cognitive processes behind goal-oriented behaviours and

planning, as shown by the seminal works of Balleine and Dickinson on rats

[27] (see also [28]).

Within the neuropsychological literature, it has been proposed [29, 30] that

the essential contribution of the Amg to decision making processes consists in

evoking the emotions (the “somatic states”) that are appropriate to rewards

and punishments. The idea is that orbitofrontal cortex, part of prefrontal

cortex, elaborates the emotional value of action outcomes on the basis of

Amg’s activation. Decision making processes, having prefrontal cortex as

a principal actor, can then use this information for selecting actions with

uncertain payoffs.

The last two functions of Amg involve the regulation of body states, diffused

brain states and learning:

1. Diffused modulation of brain functioning and regulation of learning processes.

Efferent connections from CeA project to ventral tegmental area, locus coeru-

leus and Raphe nuclei, the three main systems of departure of respectively

dopaminergic, noradrenergic and serotoninergic innervations directed to vir-

tually all districts of brain.

Phasic dopaminergic responses at the timescale of milliseconds might underly

synaptic reward-based modifications, whereas tonic dopaminergic activation

at the timescale of minutes or hours might regulate the intensity of produc-

tion of neural responses of the target areas [31–33].

Also norepinephrine operates at different timescales. However, differently

from dopamine, its phasic activation does not depend on the rewarding or

aversive value of the stimuli, but only on its properties as a signal of novelty

[34].

2. Regulation of body homoeostatic states.

Animals reactions to events include unlearned patterns of modulation of

homoeostatic body parameters such as blood pressure, heart rate, gastric and

intestinal motility, and others. Efferent connections from Amg can control

these regulatory processes (URs) depending on particular biologically-salient

stimuli (USs) or neutral stimuli associated with them (e.g., the “conditioned

stimuli”, or “CSs”, used in conditioning experiments).

This kind of modulation passes through the activation of the CeA and its

connections to the hypothalamus and autonomic centers of brainstem, in-

cluding the vagal nuclei and the sympathetic system [18, 19, 21].

4 Conclusions

This paper reviewed empirical neuroscientific evidence with the goal of show-

ing that amygdala, at the core of various brain systems underlying the affective
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regulation of behaviour in organisms, can be viewed as an interface between

organisms’ cognitive processes and body homeostatic regulations. In particu-

lar, the review showed how amygdala implements some important mechanisms

that allow the association of various environmental stimuli and context with

the triggering of “behaviours” directed to regulate organisms’ body states, their

interactions with the outer environment, and the general functioning of brain it-

self. These associative functions are fundamental for adaptive behaviour as they

allow organisms to assign subjective saliency and value to experienced world

states, so enhancing the adaptive power of their cognitive processes.

We believe that the re-organisation of empirical knowledge and data on

emotions within a computational perspective, as done here, will help to both

highlight the general principles underlying emotional regulation of behaviour

in organisms and to design robots’ controllers endowed with a flexibility and

autonomy comparable to that of organisms.
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W., Mandic, D.P., eds.: Proceedings of the 17th International Conference on Ar-
tificial Neural Networks, Part II (ICANN2007). Volume 4669 of Lecture Notes in
Computer Science., Berlin, Springer-Verlag (2007) 889–898 Porto, Portugal, 9-13
September 2007.
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Abstract. The coupling of non-neural internal states essential to an agent’s 
survival with artificial nervous systems can increase adaptivity in terms of (1) 
exploitation of sensorimotor possibilities, (2) regulation of internal and 
behavioural activity and (3) behavioural emergence via complex network 
dynamics that enable the agent to contend with a challenging and unpredictable 
world. This paper provides a review of recent research on the relevance of non-
neural internal states to adaptive behaviour in the field of adaptive robotics. The 
paper derives a methodological approach that promises to further extend our 
understanding of how non-neural internal states can increase adaptivity in 
robots as relevant to the proposed core benefits extracted.   

1   Introduction 

The relative importance to adaptive behaviour of the dynamics of non-neural 
variables considered essential to organismic viability (such as systolic blood pressure 
or glucose level) has tended to be neglected by approaches to computational 
modelling that have considered neural dynamics and non-neural dynamics to be 
largely separable. The dominance of this position has, perhaps, weakened in parallel 
with an increased interest in the role embodiment plays in cognition as compared to 
the more traditional cognitivist and connectionist approaches. Nevertheless, even 
within the embodied AI/cognitive science research program emphasis has been placed 
on the link between behavioural activity and neural dynamics with the justification 
being that a degree of separability between nervous system activity and non-neural 
activity (i.e. governed by core metabolic processes) exists such that the activity of the 
former often cannot be reliably determined by that of the latter ([1]; [2]). However, in 
recent years research linking non-neural internal mechanisms to neural dynamics and 
behaviour suggests that far from providing an unnecessary burden on the adaptive 
capabilities of agents endogenously generated modulation of an agent’s internal states 
can improve adaptivity ([1]; [3]) in robotic and simulated agents.  

In a very general sense, intelligent/adaptive behaviour (behaviour beneficial to the 
agent’s ongoing needs) may be best served by the mutual modulation of neural and 
non-neural states loosely coupled according to situated (evolutionary) demands. 

In this paper, we provide evidence to suggest that relative to agents whose artificial 
nervous system dynamics are unconstrained by non-neural variables, agent design that 
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is more ‘neurophysiologically’ motivated can allow for improved adaptivity with 
respect to:  

 
1) exploitation of sensorimotor possibilities,  
2) efficient regulation of internal and sensorimotor activity, 
3) behavioural emergence via complex network dynamics.   

 
where internal here refers to both neural and non-neural states.  

The remainder of the paper is dedicated to demonstrating how these three points apply 
and subsequently a methodological approach is derived and described. This approach 
involves the use of robotic agents required to regulate behaviour and internal states 
according to a two-resource problem ([4]) necessitating an appropriate trade-off 
between task performance and maintenance of a non-neural viability constraint. This 
constraint, in directly regulating neural activity and indirectly behaviour, and in being 
both directly (neurally) and non-directly (behaviourally) regulated, is expected to 
further elucidate the extent to which points 1-3 above pertain to the generation of 
adaptive behaviour.  

The breakdown of the paper is as follows: Section 2 focuses on the relevance of 
non-neural internal states to adaptive behaviour.  How such brain-body interplay has 
been modelled in embodied agents in recent years is then evaluated with respect to the 
three points outlined above. This section provides the motivation for the agent 
architectural choice the details of which are expounded in Section 3. This section also 
provides a brief description of an appropriate task relevant to the development of 
embodied architectures that benefit in the sense of points 1-3 above.  Finally, Section 
4 briefly relates the methodological approach, essentially centred on affective 
mechanisms, to emotional regulation with respect to brain-body-behaviour dynamics. 

2   The Relevance of Non-neural Bodily States 

2.1 Essential variables in organisms – glucose as a paradigmatic example 
 

The ways in which variables essential to an organism’s viability affect and modulate 
nervous system dynamics are complex. An essential variable may be defined as one 
that must be maintained within certain limits and that if its value goes beyond such 
limits it will precipitate changes to the organism that will be seriously and sometimes 
irreversibly damaging to its prospects of survival ([5]). Variables such as systolic 
blood pressure, glucose and water levels in the blood must be maintained within fairly 
rigid limits for an organism of a given species to be able to survive. Following [6], 
Ashby proposed that adaptive behaviour entails the homeostatic maintenance of 
essential variables, i.e. “a form of behaviour is adaptive if it maintains the essential 
variables within physiological limits” ([5], p.58). 

A paradigmatic example of an essential variable related to the energetic 
capabilities of organisms whose values must be maintained within certain limits is 
glucose. Levels of glucose in the blood must remain in the region of 5mmol/l in 
humans so that the organism may continue to function (lower than 3mmol/l and 
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higher than 11mmol/l can lead to a cascade of harmful effects including diabetes – 
see, for example, [7], for further details).  

Glucose levels are regulated through the interaction of physiological, 
mental/psychological and behavioural mechanisms/processes. Physiological 
mechanisms exist to regulate blood levels of glucose to ensure a relatively stable level 
that does not impinge dramatically on other processes (e.g. brain activity). While 
glucose, once released into the blood stream, dissipates in the absence of external 
replenishment (i.e. through intestinal absorption into the blood), much glucose is 
regulated through delivery to muscle and other peripheral tissues and then ‘recycled’ 
in the form of lactate and alanine returning to the liver as substrate for 
gluconeogenesis. Glucose is also released into the bloodstream via a process of 
glycogen breakdown, which is stimulated, as for gluconeogenesis, by a decreased 
insulin/glucagon ratio (see [7]).  

As a form of energy, glucose is also oxidized in the brain, and thereafter 
irreversibly ‘lost’ (i.e. non-recycled), and this plays a vital role in cognition. The 
human brain is thought to oxidize around 120g of glucose per day which amounts to 
roughly 20% of the energy expenditure of the whole body (see [8]; [7]). Research in 
psychology indicates that there is a reciprocal relationship between mental ability and 
blood glucose regulation. There is evidence that self-control, for example, is 
correlated with glucose blood level. Self-control is impaired by low blood levels of 
glucose ([9]; [10]; [11]) whilst glucose administration to subjects has been associated 
with increased performance on a number of cognitively demanding tasks (e.g. [12]) 
such as word retrieval tasks. Kennedy and Scholey [12] observe that “Brain imaging 
studies demonstrate that both the rate of blood-to-brain glucose transport ... and 
glucose metabolism ... are stimulated in task specific areas of the brain. It follows that 
any fluctuations in the availability of blood-borne metabolic substrates may modulate 
brain metabolism and thereby cognitive function”, p.63. Glucose levels may also 
constrain/be regulated by mental effort, via the elevation of heart-rate ([12]), and by 
hormones such as cortisol.  

Finally, glucose regulation may occur through behavioural processes, e.g. energy 
invested in, and recouped, through successful foraging. When glucose levels increase 
through feeding, the body stores excess glucose as glycogen in the liver and muscle in 
order to maintain glucose levels in the blood at optimal functional levels. 
Furthermore, low glucose levels may stimulate feelings of hunger which can induce 
increased behavioural activity perhaps as an anticipatory response to ensuing low 
glucose levels. 

Therefore, the regulation of the essential variable glucose, as a form of energy, is 
achieved through a complex combination of physiological, psychological and 
behavioural mechanisms. Whilst the focus of the rest of the paper is not on a strict 
modelling of a particular essential variable such as glucose but rather on modelling 
the general effects of mutual regulation and modulation of activity of neural states and 
generic non-neural essential variables, nevertheless, the example of glucose as a form 
of energy that serves to constrain brain activity and is regulated within certain bounds 
according to physiological and behavioural processes is a source of inspiration for our 
modelling approach.  
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2.2 Exploitation of sensorimotor possibilities 

The effects of non-neural constraints on the sensorimotor activity of embodied agents 
has been tested in a number of recent experiments at different levels of abstraction in 
the form of simulated energy values. McHale and Husbands [13], for example, 
demonstrated that by accounting for energy within the coupled simulated robot-
environment system via the imposition of an additional cost carried into the fitness 
function the evolved robot tended to be more energy-efficient with respect to carrying 
out a simple sensorimotor task. It was found that the robot made better use of its 
sensors, rather than relying heavily on energy-expensive motor activity as was the 
case for robots in the control condition. Essentially, the robots exhibited an ability to 
more easily exploit sensorimotor possibilities as a consequence of the energy 
constraint. This particular model simulated the kinetic and potential energy cost of the 
entire system which, effectively, expressed itself in the form of level of motor 
activity. The energy cost did not take into account the effects of deceleration, sensor 
activity, or nervous system activity, in this case based on an arbitrarily recurrent 
artificial neural network – a so-called GasNet (see [14], and also section 3 in this 
paper). However, the results offered a simple proof of concept that the inclusion of 
energy constraints in a dynamical system need not be a hindrance but in fact a help to 
the evolvability of adaptive behaviour. While the energy cost in this particular 
experiment was restricted to motor activity, an energy constraint could easily be 
applied to nervous system activity in a similarly abstract manner. 

 Melhuish and colleagues, ([15]; [16]),  similarly adopting a heavily bio-physico-
chemically inspired approach, have developed a robot running on microbial fuel cells 
that can effectively convert fuel into biochemical energy through a digestive ‘bacterial 
sludge’ in an anode department that filters electrons through a proton exchange 
membrane into a cathode department. When the threshold of activity in a bank of 
capacitors in the cathode is exceeded, effectors are utilized that allow the robot to 
perform elementary phototaxis and light sensing behaviours in its environment and 
allow it to continue to ‘devour’ applicable substrate. The delay between ‘digestion’ 
and behavioural output could be said to represent a sort of storing of energy that leads 
to ‘pulses of behaviour’ ([16]). This might be an example of a particular non-neural 
constraint that could potentially be exploited by emergent behaviours in a robot 
endowed with a more complex nervous system. For example, the robot might use 
more energy-efficient behaviours (including, for example, simulated behaviours -
‘thoughts’) during the necessary charging period at lower thresholds of energy 
accumulation. The lack of ‘metabolic self-production’ ([17]) involved in Melhuish 
and colleagues’ use of pre-designed microbial fuel cells to generate energy might be 
viewed as a constraint on the extent to which the robots can produce adaptive 
behaviour, however, we feel that such a complex relation between non-neural 
metabolic processes, neural and behavioural processes is a step in the right direction - 
it can be argued that such a designed imposition of complex biochemical (metabolic) 
constraints may engender the types of flexible behavioural strategies not readily 
available to robots whose ‘energy’ levels are simply recharged via a battery. 

The point that these studies offer is that modulation of nervous system dynamics 
via some form of energy-relevant non-neural constraints need not restrict the 
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behavioural possibilities of the organism but, if anything, may serve to increase 
adaptive capabilities. 

2.3 Efficient regulation of sensorimotor activity  

The importance to adaptive behaviour in artificial mobile agents of linking non-neural 
internal states to neural states and sensorimotor activity has been noted by Parisi [18] 
who suggested that emphasis in the field of evolutionary robotics had been focused 
too narrowly on external behaviour. He used the term ‘internal robotics’ to emphasize 
the need to account for non-neural states and listed a number of key points that might 
constitute this sub-discipline of robotics1 which we will refer to throughout different 
sections of this paper. Work carried out by Parisi and his co-workers (e.g. [19]; [20]) 
consistent with the internal robotics approach has highlighted the extent to which 
regulation of the activity of an artificial nervous system by a non-neural state may be 
essential to adaptive behaviour. For example, Mirolli & Parisi [19] investigated the 
importance of combining a biological clock mechanism with a light sensor to regulate 
agent activity so as to maximize utilization of resources through the regulation of 
behavioural activity. A reason posited, by the researchers, as to why biological 
organisms sleep is that relative immobility in dark conditions reduces energy loss 
through ineffective foraging behaviour. Similarly, robots might do well to dampen 
their motor activity when sensor activity is noisy due to poor lighting conditions, e.g. 
when it is dark. However, it is undesirable to have robots (or biological organisms) 
remain inactive indefinitely due to constant poor lighting conditions – as might apply 
if the agent happened to dwell for a period in a poorly lit area such as a cave. To cater 
for the need to cycle activity appropriately Mirolli and Parisi [19] produced 
experiments linking a light sensor to a simulated biological clock; thus, allowance 
was made for an energy-efficient ‘sleep-wake’ cycle that was nevertheless non-
prohibitive to adaptive behaviour in conditions of more or less constant poor lighting. 
They tested a number of configurations regarding the links between the light sensor, 
biological clock, and simple feed forward artificial neural network. They found that 
independence of the biological clock mechanism and the light sensor with respect to 
their influence on the artificial neural network’s (ANN) motor output units produced 
the worst results in terms of foraging behaviour. The best results involved the use of 
the configuration whereby only the biological clock modulated the motor output units 
while the light sensor instead modulated the biological clock mechanism. Therefore, 
there is a sense in which, a non-neural bodily mechanism modulated the activity of 
the ANN through altering the mapping between sensory input and motor output.  

Essential variables that may serve to modulate neural and behavioural activity in 
agents were discussed in the previous section with respect to Ashby [5] who also has 
been a source of inspiration for a number of experiments carried out by Di Paolo (e.g. 
[21]; [22]; [23]). His research emphasis has been primarily on the modelling of 
homeostasis of neural, as opposed to non-neural, ‘essential variables’ with the 
rationale that neurons must have activity levels maintained within certain limits in 

                                                           
1 This is centred on differences between how neural systems interact with non-neural systems 

and how neural systems interact with the external environment. 
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order to remain viable (see, e.g., [24]). The aim of Di Paolo’s work has been to 
establish ways by which homeostatically regulated neural and behavioural activity 
could be achieved on different tasks.  

Di Paolo [22] suggested that while living agents may require metabolism, a more 
obviously realizable task for cognitive science and AI modellers is the producing of 
agents that conserve a way of life based on habit formation maintained in the face of 
perturbations via the use of adaptive mechanisms. In this sense, it may be the case that 
“adaptation occurs in the animal world ... not because the organismic survival is 
challenged directly but because the circular process generating a habit is” ([22], p.13). 
Di Paolo [22] also acknowledged that in evolved organisms the way of life that tends 
to be adhered to is one that matches internal stability with behavioural stability; that 
is, internal stability promotes behavioural stability and vice-versa. He provides an 
example of this phenomenon through the description of a simple experiment where an 
agent is required to regulate a non-neural variable - battery level - between upper and 
lower bounds which the agent is able to achieve via simple phototactic behaviour 
around an ‘energizing’ light source in the face of sensory perturbations – sensor 
inversion. In this particular example, deviations from the ‘homeostatic’ battery level 
led to modifications of the sensor-motor ouput mapping rather than affecting a non-
trivial internal artificial nervous system. 

McFarland and Spier [4] proposed that self-sufficient robots are required to 
perform basic cycles of behaviour, like biological organisms, that involves trading off 
energy and work. Energy may relate to the regulation of a battery level, or in the case 
of a living organism some particular nutrient, perhaps glucose, while work might 
relate to some pre-designed task for the robot, or in the case of the biological 
organism it might relate to reproductive activity or investment in offspring. This 
trade-off between energy regulation and task performance (work) was labelled the 
‘two-resource problem’ and McFarland and Spier provided a simple Cue-Deficit 
Model that enabled action selection as a function of extent of deficit of a single 
essential variable and proximity of resource. It was suggested that the model provided 
a flexible alternative to Brooks’ subsumption architecture ([25]) since it allowed for 
‘opportunistic behaviour’, i.e. a particular motivated behaviour could be interrupted 
before consummation in light of a more promising alternative. The adaptive 
capabilities of McFarland and Spier’s cue-deficit model have been further verified by 
Avila-García and Cañamero ([26]; [27]) who focused on non-neural essential 
variables the values of which were replenished via external resources. Avíla-Garcia 
and Cañamero [26] found that robots were able to deal with the ‘two-resource 
problem’ through homeostatic regulation of essential variables manifesting in 
increasingly efficient behavioural activity cycles (see [4]), even in the absence of 
neural plasticity.   

The above work by Di Paolo and Iizuka as well as Avila-García and Cañamero 
(also see [28]; [29] for highly biologically inspired approaches) might loosely be 
labelled homeostatic internal robotics or perhaps more accurately homeostatic 
interactive robotics given the focus on the interaction between sensorimotor activity 
and internal dynamics to produce regulated body-nervous system-behavioural 
activity. These approaches also demonstrate how modulation of at least behaviour, if 
not nervous system activity, by non-neural internal variables can promote adaptive 
regulatory behaviour.  
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2.4. Behavioural emergence via complex network dynamics  

The production of emergent behaviours via a minimalist coupled embodied agent-
environment system through the use of a non-neural essential (energy) variable was 
demonstrated by Montebelli et al., [30]. The authors, having “systematically selected 
the simplest available [agent body, internal dynamics, artificial nervous system, 
environment]” (p.191), found that the input of a single linearly decrementing ‘energy’ 
variable to a fully connected feed forward reactive artificial neural network (ANN) 
could modulate sensorimotor activity in such a way as to give rise to a number of 
behavioural attractor states commensurate with dynamically changing energy 
requirements. Individual agents exhibited degrees of phototactic and photophobic 
behaviour with respect to spatially displaced rewarding and non-rewarding lights, 
respectively. The slow dynamics of the decrementing energy value with respect to the 
reactive nature of the ANN, evaluated via spectral and quantitative spatio-temporal 
analyses, allowed for a complex dynamic producing “an effective non-deterministic 
action selection mechanism” (p.187) over sets of emergent behavioural attractors. 
Essentially, the ‘brain-body-environment’ self-organized relation allowed for 
complex cognitive (‘intelligent’) behaviour in spite of the intentional simplicity of the 
experimental set-up.  

The approach of Montebelli et al., [30] accords with the 4th principle of Internal 
Robotics as postulated by Parisi [18]: “For the nervous system the rest of the body is 
something that is always present and always more or less the same, whereas the 
external environment can be present or absent and it can be very different at different 
times”, p. 331. The relative stability of bodily states – that is, the latency of response 
to external events of non-neural states (e.g. visceral, metabolic) – as compared to fast 
acting neural activity provides the embodied agent with an internal dynamic that 
intrinsically integrates processes operating on different time scales. Montebelli et al., 
[30] emphasize the importance of the interplay between coupled dynamic systems 
working on such different time-scales in their work: “[O]ur major concern as 
designers should be to incorporate in our models the critical level of complexity 
sufficient to trigger and sustain the process [of ‘self-organized coupling of internal 
dynamics, neurocontrollers, bodies, and environments, all inter- and intra-operating 
on different timescales’]” ([30], p.192) in order for ‘autonomous’ and ‘meaningful’ 
cognition to emerge.  

Interestingly, regarding the issue of complexity, Di Paolo [22] similarly 
acknowledged the requirement of a degree of complexity in order to equip agents with 
behaviour that might be considered cognitive or emotional, but suggested that in order 
to understand truly intelligent and adaptive agents complexity alone is insufficient: 
“The solution ... will require more complex designs for robot bodies and controllers, 
more complex tasks, and more complex methods of synthesis. But seeking such 
complexity blindly, by typically restricting the search to achieving more complex 
behaviours, does not accomplish much.” (p.29). As referred to previously, Di Paolo 
[22] suggested that the ‘solution’ for modellers that circumvents the need to model 
living organisms from metabolism up is to model a way of life based on what we 
referred to in section 2.3 as homeostatic interactive robotics.  

 
The approach that we propose is one that:   

Page 54 of 64



 
1. accounts for the need to imbue agents with the potential for homeostatic 

regulation of both internal states and behavioural activity cycles.  
2. allows for increased complexity of the type that affords more organismically 

inspired (from [22]) behaviour.  
 

This is achieved through providing an agent with a mutually modulating 
homeostatically regulated non-neural (essential) variable and artificial nervous system 
(ANN). The ANN abstractly models both fast-acting synaptic transmission and 
slower-acting neuromodulation. This thereby produces sensorimotor activity 
regulated according to complex dynamics, reflective of the internal dynamics, 
necessary to produce cycles of behavioural activity trading off designated task 
performance and essential variable replenishment in the face of unpredictable and 
challenging life-time events. 

The next section describes the choice of ANN architecture, some details of 
implementation of the network, and the means by which the network is spatio-
temporally coupled to non-neural essential variables.  

3 Spatio-Temporal Coupling of the Essential Variable to a Neural 
Controller: A GasNet Approach 

The previous section provided evidence for how non-neural states can constrain the 
behavioural performance of robots and simulated agents, via a coupling with aspects 
of the artificial neural network, in ways that potentially allow for more intelligent and 
adaptive behaviour. It did so by recourse to three aspects deemed to be facilitated by 
such a coupling: 1) exploitation of sensorimotor possibilities, 2) efficient regulation of 
internal and sensorimotor activity, 3) behavioural emergence via complex network 
dynamics; these three aspects were essentially addressed in sections 2.2, 2.3, and 2.4, 
respectively.  

The methodological approach we propose that accounts for all three aspects 
mentioned above involves the spatio-temporal coupling of a homeostatically regulated 
non-neural essential variable to an ANN the activity of which is governed by synaptic 
transmission and neuromodulation. Consistent with the three respective identified 
aspects above, the embodied neurocontroller has the potential to provide agents with 
nervous system activity that 1) is modulated by the non-neural essential variable, and 
potentially constrained by ‘energy’ (see below), 2) regulates internal (neural/non-
neural) and sensorimotor activity in a manner that is reflective of its intrinsic needs, 3) 
provides temporally complex cycles of behavioural activity as reflected in the 
different time scales at which the essential variable, synaptic transmission, and 
neuromodulation, and their interactions, operate.   

The way in which we can model these three aspects is done with reference to a 
number of the seven key features of Internal Robotics identified by Parisi [18].  

Specifically, the first three points posited by Parisi are relevant here: 
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1. “The nervous system’s interactions with the external environment are 
predominantly physical, whereas those with the internal environment are 
predominantly chemical”, p. 329. 

2. “[There are] [t]wo kinds of influences on the nervous system [neuron-to-
neuron, diffusive/neuromodulatory]”, p.329. 

3. “The circuit ‘nervous system-rest of the body’ is entirely evolved, whereas 
the circuit ‘nervous system-external environment’ is evolved only for the 
part of the circuit that is in the nervous system”, p.330. 

 
Points 1-3 above are of critical relevance as to how we model the coupling between 

the non-neural essential variable and the artificial nervous system. Points 1. and 2. 
intimate that activity internal to the organism involving interactions between non-
neural bodily and neural states are mostly chemical as mediated by, for example, 
neurohormones. An organism’s interaction with its environment is predominantly 
physical (though may involve contact with chemical molecules via odours, tastes 
etc.). Furthermore, point 2. suggests that activity internal to the organism is mediated 
by eletrical transmission in the case of non-bodily interference and can be referred to 
as neuro-transmissory while non-neural bodily – neural interactivity may be 
considered neuro-modulatory. Neurotransmission depends less on space and more on 
the particular topology of synaptic connections whereas neuromodulation is affected 
by space, i.e. the position of neurons in relation to one another. Point 3 indicates that 
the interaction between non-neural and neural states is ‘entirely evolved’ whereas the 
interaction between neural states and the external environment is evolved only in 
relation to relevant sensory circuitry in the nervous system – the environment itself 
has not been shaped by the dynamics of the nervous system. 

As mentioned earlier, point 4. of the Internal Robotics ‘manifesto’ implies that 
non-neural states interacting with neural states allows for a shaping of behaviour that 
expresses itself according to the interactions of processes working on different time 
scales. Parisi suggests (in point 6) that affective/emotional components arise from the 
interaction between bodily states and the nervous system (whereas cognitive states 
emerge from the interaction of the nervous system with the external environment2). 
On this basis, we might suggest that such affective states tend to engender transient 
emotions, moods, personality traits that guide cognition over different time scales 
ranging from the agent’s immediate present to its entire life-history3. 

There are many candidate approaches from which we may draw inspiration 
regarding the modelling of nervous system activity that afford complex 
neurodynamics. For example, Ziemke and Thieme [36] provided a mechanism by 
which synaptic plasticity could be modulated according to a context that dynamically 
altered mappings from sensory input to motor output. This embodied ANN 
successfully resolved time-delayed presentation of a target stimulus with respect to 
presentation of a light (a sort of conditioned stimulus) during the process of 
negotiating a number of T-Maze configurations. This form of neuromodulation 

                                                           
2 The neat separation of cognition and emotion is however contested by some researchers (e.g. 

[31]; [32]; [33]; [34]). 
3 See [35] for a description of a perspective of self-organization of affective states over three 

such time-scales. 
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demonstrated how, in principle, synaptic plasticity might be relevant not just for long-
term but for short-term memory. 

Alexander and Sporns [37] adopted an approach to studying the effects of 
neuromodulation on time-varied reward prediction tasks. Their approach was heavily 
neuro-anatomically inspired in that it abstractly modelled neural structures such as the 
Prefrontal cortex, Ventral Tegmental Area (for dopamine transmission), Sensory 
Cortex, Olfactory Cortex, Motor Cortex. They were able to demonstrate the relevance 
of their model to time-varying reward conditioning through testing it in disembodied 
computational form and transferring the results to an embodied mobile robot 
(khepera) where sensorimotor activity, sensor range, and spatial configuration of 
reward-relevant resources were all accounted for. 

These embodied neuro-controllers allow for conditioning to time-relevant tasks but 
may be limited with respect to their ability to deal with more complex dynamical 
conditioning tasks; that is, tasks that require a highly nuanced sensorimotor 
interaction over time. 

Furthermore, in order to investigate complex basic cycles of activity ([4]), the 
manner in which the activity of the non-neural essential variable and artificial nervous 
system are reciprocally modulated should not be pre-designed. The aim here is not to 
impose a particular neuro-anatomically inspired structure on the network, nor to 
assume that the non-neural essential variable should interact with the ANN in any pre-
defined manner. Rather, in order to adhere to a more situated, embodied approach, 
essential variable-ANN interaction and spatio-temporal structure should be 
constrained by the choice of evolutionary algorithm and fitness function.   

On this basis, the GasNet ANN ([14]) is viewed as a suitable candidate for 
permitting a loose structural coupling between body, brain and environment. 
Interestingly, Parisi [18] himself makes reference to the work done with GasNets in 
point 2. of his key aspects to Internal Robotics.  Adherence to Parisi’s approach, 
therefore, compels us to view the manner in which the non-neural essential variable 
interacts with the ANN to be neuromodulatory (chemical), as opposed to 
neurotransmissory (electrical). GasNets fulfill this function, neuromodulation does 
not occur through neurohormonal interaction with the nervous system, but 
nevertheless interaction between activity of the non-neural essential variable and the 
(chemical) neuromodulatory activity of the GasNet allows us to follow the guidelines 
set out by Parisi in order to provide further insights into the three central points made 
in the opening section of this paper.  

3.1 The GasNet 

The algorithmic details of the GasNet can be found in [14]; [38]; [39]. One of the key 
features of the GasNet model is that unlike ANNs that depend exclusively on point-
to-point (synaptic) chemical transmissions GasNets model the gaseous diffusible 
modulatory effects of nitric oxide (NO) which permit a less localized influence on 
brain activity. The biochemical inspiration for the GasNet model can be followed in 
[14]. For the purposes of this paper, it is sufficient to understand that individual nodes 
in the network produce both localized (synaptic) and diffuse (neuromodulatory) 
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transmission of information which affect the activity of the network over different 
time scales and render relevant the notion of spatially distinguished sub-structure – 
nodes are more or less affected by gas emission, or not at all, depending on their 
position in a two-dimensional space with respect to the gas emitting node.  

Thus, rather than producing a 2-dimensional effect of activity in a network (for 
time and for a single spatial dimension) the GasNet produces a more complex spatio-
temporal dimensional effect. This effect can be fine tuned according to the particular 
environmental problem task over evolutionary time modulating the interactions 
between nodes with respect to a number of properties. In this sense, the GasNet is 
arbitrarily recurrent as connections between nodes are selected for evolutionarily.  

GasNets have been demonstrated to be particularly evolvable with respect to their 
performance on a number of tasks involving robots (and simulated embodied/robotic 
agents). Evolvability is enabled, according to Smith et al., [38]; [39], through the 
GasNet feature of ‘temporal adaptivity’. This property entails the reflection of the 
complex temporal dynamics of the network in the sensorimotor activity of the 
embodied GasNet.  

3.2 Coupling an Essential Variable with the GasNet 

The non-neural essential variable used in the approach we are proposing consists of a 
single value that decrements as a function of discrete time. At a highly abstract level 
the essential variable may be considered an essential ‘energy’ variable.    
 

The essential variable E and artificial nervous system NS can be configured in 
three ways: 

 
a. Activity of E and NS are not linked, 
b. E modulates NS, 
c. E and NS modulate each other. 

 
Figure 1 depicts the three possible E-NS configurations with respect to agent-

environment interactions. 
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Fig. 1. Three configurations relating agent non-neural essential variable (E), nervous system 

(NS) and environment according to experimental condition.  
 
This relationship in figure 1c) is essentially that depicted by [18] regarding the 

importance of body-NS-environment interplay for the emergence of cognition. 
In the case of fig. 1b) and 1c) E serves as a direct constraint on the activity of NS. 

In fig. 1c) activity in the network involves an E cost and therefore NS will affect the 
level of E which in turn can be modulated by E. How and when E should affect NS 
and, conversely, be affected by NS is a matter of contention. Here, we take inspiration 
from the approach of Di Paolo [22]. E should affect NS conditional on whether its 
homeostatic bounds have been breached thereby influencing the NS in such a way that 
effectively communicates the critical state of E. There are, therefore, two aspects 
regarding the modulation of the activity of the ANN by the essential variable E in 
these experiments: 

 
1) When? – at the point when the homeostatic boundaries of E are violated, 
2) How? – via effects of the gas emission of E-connected nodes in the GasNet 

as determined evolutionarily.  
 
With respect to 1) upper and lower homeostatic bounds are pre-designed. With 

respect to 2), given the minimalist nature of the model we are using we choose not to 
restrict the type of connectivity between E and NS to particular nodes. Instead, we 
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seek to allow the connectivity between E and NS to be initially arbitrary but sculpted 
by the evolution of the GasNet. Therefore, the direction (excitatory/inhibitory) and 
connectivity of E-input to particular nodes is genetically determined. The strength of 
activity should be pre-designed to be a function of the weighted strength 
(evolutionarily determined) of deviation from the homeostatic bounds. Figure 2 gives 
an example E-NS evolved configuration. 

 
 

 
 
Fig. 2. An example of a possible evolved E-modulated GasNet. E can have excitatory or 

inhibitory weighted inputs to nodes within the network. If the strength of activation is sufficient 
E can induce gas emission (dashed-line circles) in the connected node and affect activity of the 
network in temporally complex ways (adapted from Husbands et al., [14]). 

 
In figure 2 we have an example of how an E-modulated GasNet might evolve 

where E inputs are only made to potentially gas emitted nodes (note, nodes do not 
emit gas if the gas emitting threshold is not exceeded).   

3.3. Basic Tasks – The Two-Resource Problem 

In order for the three key benefits, as referred to in the introduction section, of a co-
dependency between the non-neural essential variable E and the artificial neural 
network (GasNet) to manifest individual agents naturally need to be motile and need 

Page 60 of 64



to carry out appropriate tasks. The two-resource problem [4] referred to in Section 2.3 
is suggested to provide a suitable candidate experimental scenario given simple 
wheeled robots (e.g. Kheperas, E-pucks). The problem simply entails the robot (or 
living organism) having to fulfill a particular utility maximizing task (as evaluated  in 
the fitness function) whilst ensuring that its essential variable level (e.g. energy or 
battery level) is appropriately (i.e. homeostatically) maintained (evaluated in the 
fitness function but its maintenance is a pre-requisite for completing tasks). Space 
precludes reference to a detailed experimental scenario and the purpose of this paper 
is to derive a general approach that could be used to explore the three key benefits of 
studying non-neural essential variable – nervous system interactive dynamics. 
Subsequently, we suggest that scenarios such as those featured in experiments by 
[26]; [27] offer a promising starting point. The approach of [26]; [27] involves mobile 
robots being required to produce behaviour that maximizes the balance and total level 
(according to a fitness function) of two essential variables, as replenished by two 
resources. Similarly, in the generic experimental scenario we propose individual 
agents inhabit environments with two resources of which one such resource would 
represent a task that requires exploitation of the temporal dynamic of the E-NS 
embodied system and for which the predictability level is varied over the agent’s life-
time. The challenge must be sufficient so that differences among the three 
configurations of the E-NS embodied system referred to in 3.2 can manifest providing 
scope for evolutionary exploitation of sensorimotor possibilities (point 1 of 
introduction). Testing the efficiency of regulation of internal and sensorimotor 
activity (point 2) can be gauged via a utility analysis of the type McFarland & Spier 
[4] used and literal cycles of behavioural activity facilitate ease of analysis for 
understanding the cycles of both internal and behavioural activity and their 
interaction. Finally, it is envisaged that behavioural emergence via complex network 
dynamics (point 3) can be afforded as a consequence of rendering tasks challenging in 
terms of predictability and the time-dependent component of their being optimally 
accomplished.  

Ongoing work is intended to demonstrate these principles in a number of 
experiments with reference to the essential variable modulated GasNet testing the 
three E-NS configurations across a range of tasks of varying difficulty with an E-puck 
robot. 

4 The Role of Emotions in Brain-Body-Behaviour Regulation 

This paper has discussed the role of the interaction between neural and non-neural 
states in regulating and producing adaptive behaviour. In a more general sense this 
relationship can be considered emotional or at least proto-emotional. Parisi [18] 
himself suggests in point 6 of his guidelines towards achieving an Internal Robotics 
that emotions emerge from interactions between bodily/non-neural states and neural 
states can be considered emotional whereas cognition emerges from interactions 
between neural states and the environment. This was referred to briefly in Section 3. 
The emphasis on the role of embodiment in emotions has driven emotions theory into 
a domain that focuses on a more dynamical systems perspective, e.g. [40]; [41]; [35], 
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while Damasio [42] views emotions as being rooted in constitutive processes (a 
nested hierarchy of homeostatic regulation) from metabolic processes ‘up’ to feeling 
states (registrations of bodily states in neural activity). We similarly view emotions as 
being rooted in non-neural variables essential to the organism that interact with neural 
states. The modelling of internal ‘affective’ states and their interaction with neural 
states at a minimalist level according to the principles we have outlined represents a 
starting point to understanding more complex emotional regulation. It might be 
suggested, for example, that the evolution of dynamic structure as evaluated via the 
emergence of stable spatio-temporal structures within the essential variable modulated 
GasNet can provide insights into the fundamental neurophysiological mechanisms 
that allow for emotional regulation. 

References 

1. Di Paolo, E.A, Autopoiesis, adaptivity, teleology, agency. Phenomenology and the 
Cognitive Sciences, 2005. 4 (4): 429-452.  

2. Barandiaran, X., and Moreno, A, On What Makes Certain Dynamical Systems Cognitive. 
Adaptive Behavior, 2006, 14(2): 171-185.  

3.  Ziemke, T, Adaptive Behavior in Autonomous Agents. Presence, 1998, 7(6): 564-587. 
4.  McFarland, D. and Spier, E, Basic cycles, utility and opportunism in self-sufficient robots.  

Robot. Autonom. Sys., 1997, 20:179–190. 
5. Ashby, W.R, Design for a brain: The origin of adaptive behaviour. 1960: Chapman and 

Hall.  
6. Cannon, W.B., Bodily Changes in Pain, Hunger, Fear and Rage. 1915: Appleton, New 

York. 
7.  Frayn, K.N., Metabolic Regulation: A Human Perspective. 1996: Portland Press. 
8.  Dunbar, R.I.M, The social brain hypothesis. Evolutionary Anthropology, 1998, 6: 178–190. 
9. Gailliot, M.T., Baumeister, R.F., DeWall, C.N., Maner, J.K., Plant, E.A., Tice, D.M., 

Brewer, L.E., and Schmeichel, B.J, Self-Control relies on glucose as a limited energy 
source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 
2007, 92: 325–336. 

10.Gailliot, M.T., and Baumeister, R.F, The physiology of willpower: Linking blood glucose to 
self-control, Personality and Social Psychology Review, 2007, 11: 303–327. 

11.Fairclough, S. H., and Houston, K, A, metabolic measure of mental effort. Biological 
Psychology, 2004, 66: 177–190. 

12.Kennedy, D.O., and Scholey, A.B, Glucose administration, heart rate and cognitive 
performance: effects of increasing mental effort, Psychopharmacology, 2000, 149:63-71. 

13.McHale, G. and Husbands, P, Incorporating Energy Expenditure into Evolutionary Robotics 
Fitness Measures, In L. Rocha et al. (Eds), Proc. Alife X, 206-212, MIT Press, 2006. 

14.Husbands, P., Smith, T., Jakobi, N., and O'Shea, M, Better Living through Chemistry: 
Evolving GasNets for Robot Control, Connection Science, 1998, 10(3/4): 185-210.  

15.Melhuish, C., Ieropolous, I., Greenman, J., and Horsfield, I, Energetically autonomous 
robots: Food for thought, Autonomous Robot, 2006, 21:187-198. 

16.Ieropoulos, I., Melhuish, C., Greenman, J., and Horsfield, I, EcoBot-II: An artificial agent 
with a natural metabolism. Int. J. Advanced Robotics Systems, 2005, 2(4): 295-300. 

17.Froese, T., and Ziemke, T, Enactive Artificial Intelligence, submitted. 
18.Parisi, D, Internal Robotics, Connection Science, 2004, 16(4): 325-338. 
19.Mirolli, M., and Parisi, D, Artificial organisms that sleep. In Advances in Artificial Life 

(New York: Springer), 2003, 377-386. 

Page 62 of 64



20.Acerbi, A., and Parisi, D, The evolution of pain, In F. Almeida e Costa (Ed), Proc. ECAL 
07, Springer , LNCS 4648, 816-824, 2007. 

21.Di Paolo, E.A, Homeostatic adaptation to inversion of the visual field and other 
sensorimotor disruptions. In J.-A. Meyer et al. (eds.), From animals to animats 6: Proc. of 
the 6th Int. Conf. on Simulation of Adaptive Behavior, Cambridge, MA: The MIT Press, 
2000, 440-449. 

22.Di Paolo, E.A, Organismically-inspired robotics: homeostatic adaptation and teleology 
beyond the closed sensorimotor loop. In K. Murase & T. Asakura (eds.), Dynamical Systems 
Approach to Embodiment and Sociality, Adelaide, Australia: Advanced Knowledge 
International, 2003, 19-42. 

23.Di Paolo, E.A., and Iizuka, H, How (not) to model autonomous behavior. Biosystems, 2008,  
91(2), 409-423. 

24.Turrigiano, G.G, Homeostatic plasticity in neuronal networks: The more things change, the 
more they stay the same. Trends Neurosci., 1999, 22:221-227. 

25.Brooks, R, A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics 
and Automation, RA-2, 1986, 14-23. 

26.Avíla-García, O., Cañamero, L., and te Boekhorst, R, Analyzing the Performance of 
"Winner-Take-All" and "Voting-Based" Action Selection Policies within the Two-Resource 
Problem. In Advances in Artificial Life, 7th European Conference, 2003, 733-742. 

27.Avíla-García, O., and Cañamero, L, Using hormonal feedback to modulate action selection 
in a competitive scenario. In From Animal to Animats 8: Proc. of the 8th International 
Conference on Simulation of Adaptive Behaviour, Cambridge, MA: MIT Press, 2004, 243-
252. 

28.Williams, H, Homeostatic plasticity in recurrent neural networks. In Schaal, S., Ijspeert, A., 
Billard, A., Vijayakumar, S., & Meyer, J. (Eds.), From Animals to Animats 8: Proceedings 
of the 8th International Conference on the Simulation of Adaptive Behavior, Cambridge 
MA: MIT Press , 2004, 344-353. 

29.Vargas, P., Moioli, R., de Castro, L.N., Timmis, J., Neal, M. and Von Zuben, F.J, Artificial 
Homeostatic System: A Novel Approach, Advances in Artificial Life, 3630, 2005, 754-764. 

30.Montebelli, A., Herrera, C., and Ziemke, T, On Cognition as Dynamical Coupling: An 
Analysis of Behavioral Attractor Dynamics, Adaptive Behavior, 2008, 16(2/3): 182-195. 

31.Lewis, M.D, Bridging emotion theory and neurobiology through dynamic systems 
modeling, Behavioral and Brain Sciences, 2005, 28: 169-245. 

32.Lewis, M.D., and Todd, R.M, Getting Emotional. Journal of Consciousness Studies, 2005, 
12(8-10): 210-235. 

33.Colombetti, G., and Thompson, E, Enacting emotional interpretations with feeling. 
Behavioural and Brain Sciences, 2005, 28: 200-201. 

34.Colombetti, G., Enactive appraisal, Phenom. Cogn. Sci., 2007, 6:527-546. 
35.Lewis, M.D, Emotional Self-Organization at Three Time Scales. In Lewis, M.D, Granic, I., 

eds., Emotion, Development, and Self-Organization, 2000, Cambridge University Press, 36-
69. 

36.Ziemke, T., and Thieme, M, Neuromodulation of Reactive Sensorimotor Mappings as a 
Short-Term Memory Mechanism in Delayed Response Tasks. Adaptive Behavior, 2002, 
10(3-4):185-199. 

37.Alexander, W.H., and Sporns, O, An Embodied Model of Learning, Plasticity, and Reward. 
Adaptive Behavior, 2002, 10(3-4):143-159. 

38.Smith, T., Husbands, P., Philippides, A., and O'Shea, M, Neuronal Plasticity and Temporal 
Adaptivity: GasNet Robot Control Networks, Adaptive Behavior, 2002, 10(3-4):161-183. 

39.Smith, T., Husbands, P., Philippides, A., and O'Shea, M, Temporally adaptive networks: 
Analysis of GasNet robot control. In  K. Standish et al. (Eds), Proc. Artificial Life VIII, MIT 
Press, 2002, 274-282. 

Page 63 of 64



40. Freeman, W.J, Emotion is Essential to All Intentional Behaviors. In Lewis, M.D, Granic, I., 
eds., Emotion, Development, and Self-Organization, 2000, Cambridge University Press, 
209-235. 

41.Panksepp, J, Affective Neuroscience: The Foundations of Human and Animal Emotions. 
1998: Oxford University Press.  

42.Damasio, A, looking for Spinoza: Joy, Sorrow and the Feeling Brain. 2003: William 
Heinemann: London. 

 
 
 
 
 
 
 
 

Page 64 of 64


	LoweEtAlFinalSubmission.pdf
	2.2 Exploitation of sensorimotor possibilities
	2.3 Efficient regulation of sensorimotor activity 
	2.4. Behavioural emergence via complex network dynamics 
	3.1 The GasNet
	3.2 Coupling an Essential Variable with the GasNet


