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Challenges for Artificial Cognitive Systems 
 
DELIVERABLE  D 2.1:  “A LIST OF CHALLENGES” 
The goal of this task was to produce a document useful for “looking into the future; 
cognitive systems research needs questions or challenges that define progress. The 
challenges are not (yet more) predictions of the future, but a guideline what are the aims 
and what would constitute progress” (DOW). 

The original conception involved a “one page list of challenges”, “articles linked to the 
challenges”, and “roadblocks and how to overcome them”. 

On the grounds of the three workshops organized (Cortona 2009, Rapperswil 2011, 
Oxford 2012), of the invited talks to the plenary meetings, and of our own research and 
vision of the field, we have finally produced the following document. We have come to 
the conclusion that a list of independent challenges would be senseless, because the 
different challenges are variously interlinked, in several respects. We have also tried to 
present the challenges in a theory- or approach-neutral way, while at the same time 
formulated in a way recognizable by the field itself. If this document is to be of any use, it 
must be capture the background self-understanding of field, rather than “imposing” a set 
of tasks. That’s why bibliographical references have been finally excluded from it: in 
order to avoid a partisan understanding of them, or taking sides according to sympathies. 
The challenges should be acknowledged by everybody, as well as the different strategies 
available at this moment to tackle them. 

In addition, we have tried to formulate them in ways that allow for measurable 
progress. In as a set of well-defined milestones, or “competition-like” benchmarks. It is 
theoretical progress that it is looked for, rather than technical; hence, progress must be 
measured in terms of degrees of complexity, or degrees of novelty, or degrees of flexibility 
–that is, degrees of theoretical progress. 
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1. The task and how to approach it 
 
a) Several ways to proceed that are to be avoided 



i) as Hilbert's formalist program for maths (more recently, DARPA's 23 challenges for 
maths): a list of problems, loosely related among them -it is possible to work in one 
disregarding the others    
> an integrated approach to cognition is required 
ii) standard way in AI-Robotics: "grand challenges" (like DARPA's driverless vehicles or 
RoboCup) -what matters in success, not how  
> not necessarily an advance in understanding cognition, task-specific “tricks” 
iii) as an internal agenda for a  theoretical approach to cognition  
> the proposed challenges may not be recognized as such by other approaches within the 
field 

 
b) The goal:  
i) Provide a conceptual map of related issues, in a theory-independent way, that can 
provide orientation regarding what it is achieved, what's next, how issues relate to one 
another –and to do so providing milestones, scalable dimensions  of progress, which are 
not bound to be dead alleys; 
ii) Do not restrict just to human-inspired, or human-like, artificial systems, even if human-
like cognitive systems may be an outstanding goal, given the central interest in interaction 
between humans and artificial systems; but even in this latter case, no need to restrict to 
humanoid robots, but any form of cognitive interaction; 
iii) Not against the best practices/research programs on offer, but taking advantage of 
them to provide a common plan and vision, a consensus on what should be done first, 
and what counts as success. 

 
2. What is a cognitive system – can there be artificial ones? 
The way this question is answered, though, is critical to the specification of challenges.   

At this basic starting point a critical split can be found in the field, between those that 
take for granted that cognition is computation, and those that, inspired by artificial life, 
establish a stronger connection between life and cognition, and view cognition as 
adaptation. 

In order to avoid getting stuck at this starting point, we propose a definition of 
cognitive system that brackets the question of implementation and allows for diversity 
(rather than a rigid hierarchy of orders of complexity for cognitive systems): a cognitive 
system is one that uses learning from experience and uses this knowledge in 
a flexible manner to achieve its goals. 

Notice the three elements in the definition: “learning from experience”, “flexible 
deployment of such knowledge”, and “autonomy” (own goals).  

Of course, this is not an innocent or ecumenical notion -as a cursory attention to the 
debate on ‘minimal cognition’ reveals. But it captures the central cases any approach to 
cognitive systems has to pay attention to (any definition involves its own borderline cases). 



Thus, it avoids considering all living beings as cognitive (reactive, reflex-like systems do 
not qualify). It allows for non-individual learning –or more precisely, it does not rule out 
evolution as a learning process at the supra-individual level-, but it emphasizes the 
connection between the learning experience and the flexible use of the knowledge (thus, 
adaptation does not guarantee flexible use of knowledge; thus, morphology by itself, even 
if it is the outcome of an evolutionary process of adaptation, does not qualify as 
knowledge). On the other hand, it requires more than computation for cognition: a 
meaning, a perspective, relative to one’s goals. 

The different aspects of this definition provide the ground to develop the challenges: 
learning from experience, knowledge, flexibility, own goals, in an integrated way.  

 
3. Dealing with an uncertain world 
Natural cognitive beings constitute a way to deal with an uncertain world (contraposed to 
the most common way: to adapt to just a robust subset of parameters in a rigid manner; 
cognitive systems exploit the information available in the environment to adapt). This 
suggests a relational understanding of world as what’s relevant for the systems (as the old 
notion of “Um Welt” proposed): those parameters that may be relevant to our goals. By 
learning, cognitive systems try to discover the regularities, constancies, and contingencies, 
that are robust enough to provide guidance. Learning, though, should not be seen 
anymore as a passive recording of regularities, but as an active exploration (just like the 
role of infant play in motor development). In addition, given the relevance of relational 
contingencies, materials become important.   

Talking of an “uncertain world” avoids the ambiguity involved in the notion of 
"impredictability", which can be applied both to the world and to the behavior of the 
system, but from an epistemic, rather than ontological, point of view. An uncertain world 
need not be a noisy one, just a complex one; on the other hand, a cognitive systems is one 
that behaves in ways that are not predictable from just the specified information about its 
structure, rules, or inputs. 

 
-> Measures of progress:   
 - Ability to deal with increasing degrees of world uncertainty -but allowing for 

increasing variability (changing lighting conditions,  distance, size,….); the jump from 
"virtual" to real environment; exploration of different environments (water, air, high 
temperature,…); 

 - Moving from “generational” ways of changing the system (as in genetic 
algorithms) to “tune up” with relevant kinds of information, to individual development of 
practical skills, of "ways to do things" in a proficient manner, through practice (rather 
than just habituation); both take time, but the time-scale is different: generational vs 
individual; 



 - In general, a motivated account of the "initial state" of the system, plus self-
organizational development, is required –rather than “ad hoc” assumptions to make the 
system work; 

 - Exploration of the properties of new materials, sensors, actuators,... as a way to 
further explore the environmental “affordances”.  

 
 

4. Learning from experience 
This is probably the area where most efforts have been dedicated. There are a 
multiplicity of techniques and algorithms (broadly, the machine learning area) that try to 
account for this basic cognitive ability: statistical learning, supervised learning, 
reinforcement learning, Hebbian learning, dynamic context adaptation, explicit 
representation,… In general, all of them work with abstract data sets, rather than with 
real environments, and assume a passive view of the system (which is conceived as 
computational). This seems far from the way natural cognitive systems learn from 
experience: in an active, situated, way; by exploring the world; and by reconfiguring one's 
own skills and capabilities. On the other hand, “annotated” data sets can be seen as a 
form of social learning, but again passive rather than active. 

 
-> Measure of progress: 

 a) Development of perceptual "representations" that can guide behavior 
(Bernstein's problem: combinatorial explosion of degrees of freedom --> via active 
exploration); 

 b) Finding structure in one's experience: the recognition of meaningful situations 
by active exploration –exploring the contingency between the data and the system’s 
actions. 

 c) Finding analogies across domains; that is, relational similarities, rather than just 
superficial (sensory) similarities. 

 
5. How to understand knowledge 
Knowledge is the outcome of learning. The current challenge concerns the classical 
problem of knowledge representation. Classical AI got stacked with the idea of explicit, 
formal logic-like, representation, and reasoning as a kind of theorem-proving. Together 
with the aim to formalize expert (or common sense) knowledge, it could not solve the 
frame problem, the grounding problem, etc.. New approaches drive attention to practical, 
embodied, context-dependent, implicit, knowledge skills. But it is not clear yet how this 
new approach can be carried out: how knowledge is implemented, is stored (and how it is 
accessed, see next section). Unrealistic success of machine learning methods for 
classification tasks (via pattern recognition). Most promising approach: brain-inspired 



dynamical models –the knowledge in the topology of the network of processing units, plus 
its coupling to body and environment. 

 
-> Measures of progress:  
 a) Advances from pattern recognition in the input data to relational laws 

(affordances) in the environment; 
 b) Advances in multisensory integration, rather than just sensor fusion; sensory-

motor contingencies taking different sensors into account, for different environmental 
dimensions (visual –spatial, auditory –temporal,...), plus propioceptive information as 
disambiguating; 

 c) Brain-inspired networks of control (relative to each kind of brain, and each kind 
of body), for sensory-motor coordination in different tasks: need to go beyond navigation; 
in particular: a metrics for increasing the repertoire of behaviors available to the system; 

 d) Development, out of this basic, relational, understanding, of a detached, 
abstract, view of the world (objective knowledge). Psychology teaches that flexible 
knowledge requires some form of recoding, which is the key to abstraction, to making it 
adequate to novel, not exactly identical, situations. It can be said the neural networks 
(specially in their sophisticated forms) account for such abstract recoding, but it is 
doubtful; a different approach is to use layers of neural networks, where the higher level 
takes as inputs the patterns of the lower, sensory, layers, but up to now this is done “by 
hand”. Still another approach, of Vygotskian inspiration, views in the use of public 
symbols the key to understand cognitive, abstract, re-coding. 

 
6. Flexible use of knowledge 
Extracting world regularities and contingencies would be useless unless such knowledge 
can guide future action in real-time in an uncertain environment. This may require in the 
end, as anticipated above, behavioral impredictibility, which is a property than runs 
contrary to the technical requirements of robustness and reliability for artificial systems 
(to guarantee safety, as the principal engineer’s command).  The critical issue for 
flexibility is related to how the knowledge is "stored" (see previous section),  and therefore, 
how it is accessed. The major roadblock to carry this out –regardless of approach- is 
combinatoral explosion.  

 
-> Measures of progress: Different strategies are actively explored as ways to 
reduce/constraint combinatorial explosion; it is not possible to establish a clear set of 
milestones at this point; need for exploration of new ideas (different programmes, but may 
be not incompatible: possible convergences):  

 a) simplifying the requirements for cognitive control (context-sensitivity of the 
"decision", distributed adaptive control architectures, potential conflicts adjudicated 
through accessibility, timing)   



 b) making the controller change in a stocastic way and select the variations that 
work better (genetic algorithms) –drawback: no individual learning, no flexible 
deployment of knowledge 

 c) dynamicist approaches, system criticalities in the state space, force-fields 
metaphors for distributed activation 

 d) exploiting the body (sensors and actuators) to constraint the options 
(morphological computation) –however, this raises a parallel problem of combinatorial 
explosion of “degrees of freedom” in the actuators; 

 e) advances in "schematization" of sensory-motor contingencies, but recoding 
(abstraction) 

 f) use of heuristics ("fast and frugal", non foul-proof, context-sensitive, procedures), 
instead of algorithms –but activation 

 g) emotions as quick valuations of situations, on simple hints –brain-inspired 
models of the reward system, of the amygdala; reinforcement-based expected reward, 
rather than calculation of expected utility 

 
7. Autonomy 
Autonomy is related to agency, and agency to own goals. It requires internal motivation, 
a sense of value. It also requires some kind of "self-monitoring": an internal grasp of one’s 
cognitive activity is required to make possible the "internal error detection" (Bickhardt), as 
the central cognitive capacity of self-monitoring (involving both whether the behavior 
matches the relevant intention, and whether it is carried out as intended). 

 In systems like us, this property is achieved by a double control architecture:  the 
autonomous nervous system (including the hormonal one), plus the central one, plus their 
links. In general, a cognitive system involves a basic regulatory system, that implicitly 
defines the needs and requirements, the motivations and homeostatic goals of the system, 
and which requires internal sensory feedback to keep the system within the range of vital 
parameters. In addition, a central system allows for more sophisticated forms of 
environmental coupling, for informational management, for memory and learning, and 
for control contingent on such previous experience. A full-blown agent, from this point of 
view, is one which is capable to generate new behavior appropiate to new circumstances 
(which seems impredictible just given the situation); it requires self-organization, a 
homeostatic relationship with the environment of self-sustained processes (very far from 
current technology). It may also require the ability to “work off-line”, to recombine 
previous experiences, and to to the test of imagination the new options. 

 
-> Measures of progress:  
 a) From programming of all possibilities (look and search strategy in the problem 

space) to let the artificial system "go beyond" the programmed, to modify itself, to choose 
among several options, to choose which knowledge to use,… 



 b) From systems with externally imposed goals in a non-previously specified 
manner in a previously specified environment (simplified, virtual); to similar systems able 
to deal with non-previously specified environments; from systems that can choose among 
several pre-specified goals according to circumstances, to systems that can develop new 
goals; from systems that can modify/change themselves according to circumstances to 
systems able to solve internal motivational conflicts (change goals) . 

 c) From “simple” systems, whose behavior depends upon a few parameters, to 
more “complex” ones –by increasing the number of parameters, and letting them to 
interact non-linearly, complexity follows. 

 
8. Social cognitive systems  
Social cognitive systems address this learning process in a facilitated way, by starting in a 
simplified, structured environment; by receiving feedback and scaffolding from others; by 
using others as models. 

Of course, this creates a specific problem of social learning: to find out in the first 
place what parts of one's world are other cognitive systems, and to discover the 
regularities, constancies, and contingencies, that are relevant in this area. 

It also opens up a promising area of interaction among cognitive beings, both natural 
and artificial. 

 
-> Measures of progress:  
 a) Systems able to interact with other systems in increasingly complex ways -from 

simple synchronization, to imitation, to emulation, to cooperation, to joint action. 
 b) Systems able to  develop "common worlds", a common understanding of how 

things go (share knowledge, distribute tasks according to abilities,…) 
 c) Increasing "mental" abilities -which cannot be dissociated from artificial systems 

abilities (to recognize "sadness" or "rage" in a human the artificial   
 d) Proficiency in linguistic interaction 
 
As intended, progress in one challenge is not independent on progress on many others 

–the typical property of cognition is an integration of capabilities and elements. It is not 
possible, though, to establish milestones at this global level, because of the intrinsic 
diversity of cognitive beings. What it does seems adviceable at this point, though, is to 
emphasize integrated systems over specialized algorithms. Classical AI has worked under 
the assumption of modularity, as engineering in general: the goal is to add new facilities to 
a system without having to change it. There is reason to doubt this assumption is going to 
work for cognitive systems –the scale-up problem is a really one. New capabilities may 
require some sort of reorganization, in non-principled ways. Hence, a final, global, 
challenge, concerns this problem of scaling-up cognitive systems –which may call for an 
evolutionary approach. 


