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continuous time

Malthough spikes are discrete events in time,
these discreteness is unrelated to discrete
behavioral events

B => cognitive processes are continuous in
time and are continuously linked to sensory
inputs. Scientific task are thus:

M to understand how discrete behavioral events may
emerge from continuous processes

M how cognitive processes are stabilized

M how instabilities release cognitive processes from
domination by input, leading to the emergence of
cognitive function

continuous space

®M neurons are discrete units, but this
discreteness is unrelated to discreteness in
behavior

B => cognitive processes are based on
continuous dimensions (space, feature
spaces, parameter spaces). Scientific tasks are
thus:

B to understand how categorical behaviors may emerge
from underlying continua

M how categories are formed

The Dynamic Field Theory program

® dynamical neural networks with strong
interaction generating stable states

M linked to the sensory and motor surfaces,
but not dominated by inputs

B sensitive to structured environments and
behavioral history through simple learning
mechanisms

M behavioral signatures provide evidence for
such neuronal mechanisms
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neural basis of activation field
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M detection from localized input
M selection-fusion
® detection from boost

®memory

detection instability

®even purely stimulus induced activation goes
through an instability that marks the detection

decision
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the detection instability helps
stabilize decisions
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empirical evidence for the
stabilization of detection decisions

® Hock...

fusion vs. selection instability

® transition from monostable fusion to bistable
selection regime as a function of metrics
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target selection on phonotaxis vehicle
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fusion/selection instability: saccades
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understanding the
time course of selection

®based on Dale’s

law

B which requires a °
separate layer of
inhibitory neurons

Wilimzig, Schneider, Schéner, Neural Networks, 2006

time course of selection
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=> early fusion, late selection

double target paradigm
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fixation and selection
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direct behavioral observation of
preshape

imperative stimulus

|
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® Timed movement < imposed SR interval

initiation paradigm

T time

move on 4th to tone

Direct behavioral observation of preshape:
account for Ghez et al.

probability in timed movement initiation
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observation of preshape through
reaction time

®time needed to go through the detection
instability depends on

M how much prior activation (e.g., probability)
M metrics of prior information (e.g., metric effect)

M relationship between prior information and current
stimulus

continuous
response mode

specific input + boost
in different conditions

% 4 -
£
LS 4 \mm &
™ specific Piramegg N preshape
—_—n N
(imperative) input
dominates and . )
drives detection s, ﬁ(
instability , \/\_\gb .
parameter, x
[Wilimzig, Schoner, 2006] % et

same metrics, different probability different metrics, same probability

— — [ {7V

&

preshaped activation field

A

t A=ty

movement parameter movement

high

IS

¥
; low

A
* low Y probabilty

. probability

maixmal activation
N

o

L ol v I
250 350 450 550 250 350 450 550 250 350 450 550
time time time

S

[from Erlhagen, Schéner: Psych. Rev. 2002]



rare
frequent rare
frequent
wide narrow
Reaction Time P300 Amplitude Fz
2 7
300 26
s5
& 280 £,
E 260 25
@ 3
g 240 25
F 220 24
200 <o
e Narrow Narrol Wide Wide Narrow Narow

ide Wi
FrequentFjlgrre Frequent Rare Frequent Rare Frequent Rare
get

[from McDowell, Jeka, Schéner, Hatfield, 2002]

activation

precue

detection instability through boost

M |eads to activation of categorical responses
from preshaped field

Moy, 3
complete g ;‘amem
n

preshaping observed neurally

X

)
CR0%

Sl

SRR

W
N

response
signal

precue

Wilimzig,
Schéner,
2006

leads to different (opposite)
prediction about metric effect

same metrics, different probability ~ same probabilty,different metrics
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memory instability

® monostable “off” regime vs. bistable regime
in which sustained activation provides

working memory
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memory & forgetting on phonotaxis vehicle

[frcen Bicho, Mallet, Schaner-Int | Rab Rea 19:424(2000)]

Piaget’s A not B paradigm
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Cognitive function emerging
from neural field dynamics

M perseverative reaching: all instabilities come
into play

M input-driven detection
M selection
B memory

M boost-driven detection

 delay A B
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B trial, young infants B trial, older infants
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=> going through the memory instability during
development

DFT of infant perseverative reaching

activation field

A location
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task  specific preshape
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but: do young infants really reach
based on low level activation?

M that would be a mechanism T
lacking stability! Does not activation @ ‘
work! field ¢

® => stabilization of the
decision at reach initiation
: A B
(when box enters reaching Zggy
space) through boost-driven
detection instability
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DFT of infant perseverative reaching
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DFT of infant perseverative reaching
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accounts for spontaneous errors

spontaneous errors

activation field

M reaches to B on
A trials leave
memory trace at
B

B which reduces
the A not B
error: behavioral
history matters!
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[Dinveva, Schéner, 2005]

emergence: suppressing A not B error
by pumping up energy

® making both
locations more
attractive:
reduced A not B
error
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[Anderson, Schoner, Thelen (2006)]

imitation (emulation): depends
on behavioral history as well !

plunging levering

®use A not B task structure

# two conditions: plunging = A, levering=B
and vice versa

[Murayama, Schoner, Spencer, Whitmyer, Thelen, 2006]

imitation: perseveration
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role of structured environment:
removing perceptual structure
leads to metric drift and
perseverative error in older
children

Sandbox version of A not B
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Schutte, Spencer, Schoner: Child Development 2003

Sandbox experiment
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DFT of spatial memory

M space ship task of John Spencer lab




spatial memory
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discrimination

M is improved near perceptual boundaries
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integrating ‘
it all... T

architecture

label-feature
field

preshape

& laid down when
activation peaks arise
in the feature label
fields

| facilitates activation if
the input matches the
preshape

M represents the variance
of an object along the
feature-dimension

Feature Dimension

robotic application: fast learning
of visual objects

& robot learns to
recognize objects
interacting with a
human user

& very few views of the
object (I to 9)

® => Christian Faubel

label-feature fields

B composed by one dynamic
field for each object label to
be represented

B competition along the
feature dimension

B but multipeak solutions possible feature dimens;
on

® competition along the labels

M tuneable: multi-peak vs. single-peak
regimes

PreShaPe ® |earns updated feature values as
p
H object is viewed in different poses
dynamics ) P

recognition trials field activity evolution of preshape

aspect-ratio



peaks from broad vs. narrow
preshape

recognition in a feature-label field

activation

* color hue value

© color hue value

recognition
competing label —
neurons |
UL LT

B receive activation
from the feature-
label fields

M forces a selection
decision by simple
majority voting

B once a label is
selected, inhibition
is send to all non-
matching labels

performance learning 30 objects




M each object presented in 3 location, and 3
rotations (0, 45, 90)

B test in new locations and rotations

emergent categories

M recognition rates in new locations stabilize by
about the 5th view, at levels of around 80 %

® terminal recognition rate after 9 views/object

83%
recognition in
) [ new poses
relearning */ o
during [* “g
learning 7] ”
phase | .,

S mhk/posms  ©

emergent categories

emergent categories

recognition is not based on
categorical information only

M e.g, red beans and the box of slide frames
are both categorically red, big and square,
but can be readily discriminated...

B recognition picks up subtle metric
properties within feature representations



what role for the interaction
between feature dimensions?

| feature “binding”: are the values along the
different feature dimensions pertaining to an
object “bound” in some way?

& not explicitly once recognition has happened

® but in the process, different feature
dimensions mutually support selection

similarity reflected in memory
traces
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to study this, need simplified
setting

M 4 objects whose similarities are overlapping
differently along different feature dimensions

A £

banana red pepper zucchini lemon

dynamics of recognition:

cobrhue

conclusion: binding

| interaction acts as a form of “binding” during
the recognition process when different
objects compete along different dimensions

M but as number of objects and of feature
dimensions scales, these special situations
become rare
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Conclusions

B DFT as a framework for understanding how
stable behavior and elementary forms of
cognition emerge from spatio-temporally
continuous neuronal dynamics

B supported by neuronal and behavioral
signatures!

® provides a process account for emergence,
multi-causality, and the dependence on
individual behavioral history
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