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1 Welcome

This workshop on Interactive Robot Learning will span the breadth of research
questions at the intersection of Machine Learning and Human-Robot Interac-
tion.

Many future applications for autonomous robots bring them into human
environments as helpful assistants to untrained users in homes, offices, hospitals,
and more. These applica- tions will often require robots to flexibly adapt to the
dynamic needs of human users. Rather than being pre-programmed at the
factory with a fixed repertoire of skills, these personal robots will need to be
able to quickly learn how to perform new tasks and skills from natural human
instruction. Moreover, it is our belief that people should not have to learn a new
form of interaction in order to teach these machines, that the robots should be
able to take advantage of communication channels that are natural and intuitive
for the human partner.

Topics:

e Human-Robot Interaction

e Machine Learning

e Learning by demonstration

e Learning by imitation

e Reinforcement learning with human input

e Active Learning

e Communication of knowledge and metaknowledge

e Identification of new requirements for ML in social domains
e Identification of suitable metrics for interactive learning

e User studies on interactive robot learning

2 Invited speakers

2.1 Jan Peters
2.1.1 Talk: Towards Motor Skill Learning in Robotics

Autonomous robots that can assist humans in situations of daily life have been
a long standing vision of robotics, artificial intelligence, and cognitive sciences.
A first step towards this goal is to create robots that can learn tasks triggered
by environmental context or higher level instruction. However, learning tech-
niques have yet to live up to this promise as only few methods manage to scale
to high-dimensional manipulator or humanoid robots. In this talk, we investi-
gate a general framework suitable for learning motor skills in robotics which is



based on the principles behind many analytical robotics approaches. It involves
generating a representation of motor skills by parameterized motor primitive
policies acting as building blocks of movement generation, and a learned task
execution module that transforms these movements into motor commands.

Learning parameterized motor primitives usually requires reward-related
self-improvement, i.e., reinforcement learning. We propose a new, task-appropriate
architecture, the Natural Actor-Critic. This algorithm is based on natural pol-
icy gradient updates for the actor while the critic estimates the natural policy
gradient. Empirical evaluations illustrate the effectiveness and applicability to
learning control on an anthropomorphic robot arm.

For the proper execution of motion, we need to learn how to realize the be-
havior prescribed by the motor primitives in their respective task space through
the generation of motor commands. This transformation corresponds to solv-
ing the classical problem of operational space control through machine learning
techniques. Such robot control problems can be reformulated as immediate re-
ward reinforcement learning problems. We derive an EM-based reinforcement
learning algorithm which reduces the problem of learning with immediate re-
wards to a reward-weighted regression problem. The resulting algorithm learns
smoothly without dangerous jumps in solution space, and works well in appli-
cation to complex high degree-of-freedom robots.

2.1.2 Bio

Jan Peters is a Senior Research Scientist at the Max-Planck Institute for Bi-
ological Cybernetics and head of the new Robot Learning Lab (RoLL) in the
Schoelkopf Department. Before joining MPI, he received a Ph.D. from the
University of Southern California, working at the Computational Learning and
Motor Control lab with Stefan Schaal, Sethu Vijyakumar and Firdaus Udwadia.
He received a M.Sc. in Computer Science and M.Sc. in Mechanical Engineering
from University of Southern California as well as a Diplom-Informatiker from
Hagen University and a Diplom-Ingenieur in Electrical Engineering from Munich
University of Technology (TU Muenchen). He has been a visiting researcher at
Advanced Telecommunication Research Center (ATR), Kyoto, Japan in 2000
and 2003, a visiting researcher at National University of Singapore (NUS) in
2001 and worked as graduate research assistant at the Institute of Robotics and
Mechatronics of the German Aerospace Research Institute (DLR) in Oberp-
faffenhofen, Germany form 1997-2000. His research interests include robotics,
nonlinear control, machine learning, and motor skill learning.
MORE INFO: http://www. jan-peters.net

2.2 Aude Billard
2.2.1 Talk: Adaptive Control and Imitation Learning in Robots

A key issue in robot imitation learning is to find "what to imitate”, i.e. to
determine the key components of a task that are relevant for its completion.



Such information is crucial for a proper generalization over a set of examples.
Moreover, it provides a way to speed up learning by reducing the dimensionality
of the features’ space. However, this issue has received scant attention so far.

In this talk, a framework for extracting the relevant components of a task is
presented. It is based on Gaussian Mixture Models (GMM) of multi-dimensional
signals in concurrent frames of reference. The relative importance of each part of
the signals is estimated through the covariance matrices of the GMM. Gaussian
Mixture Regression is then applied to infer an optimal generalized signal which
can further drive the reproduction of the task. An extension of this framework
for learning a dynamical model of the task as a second order derivative of the
end-effector’s motion is also presented.

A second crucial component to robot imitation learning is the problem of
"how to imitate”. On one hand, the robot must find a way to translate the
motions demonstrated by the human in motions feasible for its body, whose size
and range of motions differ from those of the demonstrator. On the other hand,
the robot must be able to adapt its movements to achieve a proper completion
of the task when the context differ from the one used during the demonstrations.

In the framework presented here, the control of the robot’s motions is pro-
vided by a stable dynamical system, active in a hybrid cartesian-joint angle
frame of reference. The dynamic nature of the controller ensures on-line de-
termination of the trajectory if perturbations occur and stable convergence to
the target. The redundancy of the representation of the motion offers an ele-
gant solution to the joint limit avoidance problem. Reproduction of the task
is obtained by modulating the hybrid dynamical systems using the trajectories
inferred from the demonstration.

2.2.2 Bio

Aude Billard is Associate Professor and head of the LASA Laboratory at the
School of Engineering at the Swiss Federal Institute of Technology in Lausanne.
She received her B.Sc. (1994) and M.Sc. (1995) in Physics from EPFL, with
specialization in Particle Physics at the European Center for Nuclear Research
(CERN), a MSc. in Knowledge-based Systems (1996) and a Ph.D. in Artificial
Intelligence from the Department of Artificial Intelligence at the University of
Edinburgh. She worked as a Post-doctoral Fellow at IDSTA and LAMI (EPFL,
1998-1999), then as research associate (1999-2000), Research Assistant Profes-
sor (2000-2002) at the department of Computer Sciences at the University of
Southern California, prior to joining the EPFL.

Learning Algorithm and Systems Laboratory, School of Engineering, EPFL -
Swiss Federal Institute of Technology in Lausanne, Lausanne 1015, Switzerland
http://lasa.epfl.ch Email: aude.billard@epfl.ch



2.3 Jeff Orkin

2.3.1 Talk: Learning Models of Social Behavior and Dialogue with
The Restaurant Game

We look forward to a future where robots collaborate with humans in the home
and workplace, and virtual agents collaborate with humans in games and train-
ing simulations. A representation of common ground for everyday scenarios is
essential for these agents if they are to be effective collaborators and commu-
nicators. Effective collaborators can infer a partner’s goals and predict future
actions. Effective communicators can infer the meaning of utterances based
on semantic context. This talk describes a multiplayer video game used to
collect data from thousands of people about everyday scenarios, an unsuper-
vised system that learns statistical models of language and interaction, and
first steps towards generating dialogue and behavior from these models. Specif-
ically, the talk will describe learning the restaurant scenario from data col-
lected from over 10,000 players of an online game called The Restaurant Game
(http://theRestaurantGame.net).

2.3.2 Bio

Jeff Orkin is a PhD student in Professor Deb Roy’s Cognitive Machines Group
at the MIT Media Lab. Jeff’s research focuses on Artificial Intelligence for
characters that learn to communicate and collaborate by observing humans
playing online multiplayer games. Prior to enrolling at the Media Lab, Jeff
developed several generations of A.I. systems in the game industry. As a Senior
Engineer at Monolith Productions, Jeff focused on goal-oriented autonomous
character behavior and planning, while developing A.I. systems for the award
winning titles No One Lives Forever 2 and F.E.A.R. Jeff is a Contributing
Author and Section Editor of the A.I. Game Programming Wisdom book series,
has presented at the Game Developer’s Conference and AIIDE, and holds a
Master’s degree in Computer Science from the University of Washington and
Bachelor’s degree in Computer Science from Tufts University with a minor in
Studio Art.






A robot programming by demonstration framework
Integrating statistical and social cues

Sylvain Calinon and Aude Billard

DEMONSTRATION MODEL REPRODUCTION
Abstract— We present a probabilistic approach in robot pro- g Y ¥ N
gramming by demonstration that allows to extract incrementally
the constraints of a task in a continuous form and to reproduce a Incremental
generalization of the learned skill in new situations. Throughout e —r—r
this work, we highlight the importance of including the user’s R J
teaching abilities in the machine learning process by using ﬁ%;f
different modalities to convey the demonstrations (observationa (@

learning and kinesthetic teaching), and by designing human-robot
interactive scenarios mimicking the human process of teaching.
We then present our current research towards a socially driven
statistical learning framework to reduce the complexity of the

skill transfer process.

STATISTICAL LEARNING

Tracking of
objects
(stereo-vision)

|. ROBOT PROGRAMMING BY DEMONSTRATION

Robot Programming by Demonstration (RPD) covers metht
ods by which a robot learns new skills through human (Gazing
guidance. Our research aims at bringing such user—frien@l g
human-robot teaching systems that would speed up the sl
transfer process. We present a generic probabilistic fnarie
gathering information from cross-situational observagiof
a skill with information extracted from different social ex
observed during the interaction. L

Generic approaches to transfer new skills to a robot are
those that allow the robot to extract automatically what Ay, 1. Information flow across the complete system, where tstcaints
the important features characterizing each task and ta@lseast a task are extracted statistically through the obsesmatf multiple
for a controller that optimizes the reproduction of thesgemonstrations performed in slightly different situatioms! avhere various

. social cues can be used to scaffold the teaching interactionder to speed
characteristic features. A key concept at the bottom ofetheg, the learning process.
approaches is that of determiningnaetric of imitation per-
formance A metric of imitation provides a way of expressing
quantitatively the user’s intentions during the demontsns
and to evaluate the robot's faithfulness at reproducingeh@o and tasks. The main advantage of a symbolic approach is
learn the metric (i.e. infer the task constraints), one commthat high-level skills (consisting of sequences or higras
approach consists of creating a model of the skill based 8h Symbolic cues) can be learned efficiently through an in-
several demonstrations performed in slightly differenndio teractive process. However, because of the symbolic nature
tions (cross-situational statistical learning). This gatization Of their encoding, these methods rely on a large amount
process consists of exploiting the variability inherentthe ©f prior knowledge to predefine the important cues and to
various demonstrations to extract which are the essen§@gment those efficiently. Another body of work focusses on
components of the task. These essential components sheuldepresenting the task constraints at a trajectory leveltada
those that remain invariant across the various demormtiati Putting too much prior knowledge in the controllers reqdire

A |arge body of work exp|0red the use of a Symbo“éo reprOduce a SkIPrWe follow this approach in our work by

representation to both the learning and the encoding ofsski#singGaussian Mixture ModglGMM) and Gaussian Mixture
Regressio{GMR) to respectively encode a set of trajectories

hThiisO@er was SUDp&t?d b/y/ the Euroge?n Ctommission)as dpart ahd retrieve a smooth generalized version of these trajesto
the Robot@CWE projeci p:// www. r obot - at - cwe. eu) under ; iatiliti ; N
contract FP6.2005-1ST-5, and as part of the FEELIX GROWINGjqut and associated variabilities. Fig. 1 presents the priasigf
(htt p: / / www. f eel i - gr owi ng. or g) under contract FP6 IST- OUr approach.
045169.

S. Calinon and A. Billard are with the Learning Algo-
rithms and Systems Laboratory (LASA), Ecole Polytechnique
Fécerale de Lausanne (EPFL), CH-1015 Lausanne, SwitzerlandlFor an exhaustive review and comparisons of the different ooisth
{syl vai n. cal i non, aude. bi | | ard}@pfl.ch proposed in RPD, the interested reader can refer to [1].
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Il. EXTRACTING THE TASK CONSTRAINTS THROUGH
STATISTICAL LEARNING Use of a Gaussian Mixture Model (GMM) to retriev®(z, ¢|t)

Through the use of GMM, a robot can extract autonomously
the essential characteristics of a set of trajectoriesucagt
through the demonstrations [3]. GMR can then be used tc
retrieve a generalized version of the trajectories eithgoint 8
space or in task space [2].

Fig. 2 presents the principles of the system. Fig. 3 illdsta
the generalization and reproduction methods with an exper
iment involving manipulation and displacement of objects.
In this experiment, the skill is represented as constraimts
task space by considering the right hand path relative t« |P(&1]x1)

two objects tracked by the robot in its environment. The A brs
constraints associated with the position of the right haitd w
respect to an objeat are thus represented by the generalizec'®
trajectoryz(™) and associated covariance matrices. We see th:
Tl

T

T j/'l

Dynamics componerfti Trajectory componentzi

T2

by encapsulating the task constraints through GMR, thetrobc
can reproduce the learned skill in new situations (newabhiti
positions of objects).

Influence ofiz Influence of'i

A. Scaffolding by using different modalities

A trend of research draws the attention on the role of the |
teacher as being one of the most important key component fa _|.
an efficient transfer of the skill, where the teaching intéom g
allows the user to become an active participant in the lagrni
process (i.e. not only a model of expert behaviour). Thiwvact
teaching process allows the learner to experience and ada ~——— 57
the skill for his/her particular body capacities, as sutgms
by developmental psychology studies.

In [2], we adopted this strategy and showed that the skill \
transfer process could benefit from the user's capacity to
adapt his/her teaching strategies to the particular ctntge
presented experiments where a humanoid robot learns new
manipulation skills by first observing a human demonstrator
(through motion sensors) and then gradually refining itH ski
through kinesthetic teaching (see Fig. 4). The user thus pro
vides scaffolds to the robot for the reproduction of thelskil
by moving kinesthetica”y a subset of the motors. Througﬁg. 2. Il!ustrative exa_mplg for the encoding an_d rep_rodlrctbf three
the supervision of the user who progressively dismantles emonstrations of a motiorkirst row: The set of trajectorie§t, z, <} are

. > Hirst encoded in a Gaussian Mixture Model (GMM), where the congmts
scaffolds after each reproduction attempt, the robot callfin represent respectively temporal, position and velocityuesl (the motion

reproduce the skill on its own. is represented here only in a 2D plan®econd row:Gaussian Mixture

. . . . Regression (GMR) is then used during the reproduction gte retrieve
We take the perspective that unlike observational leamm}g(m, z|t), which allows to define a dynamics compondaft] estimating the

pedagogyis required to facilitate the transfer of the skill,velocity command required at each iteration to follow the dyita learned by

which is a special type of communication used to manifest tHe system (with respect to the current position), and adtajy component
| t k led f kill. We th tt diffie (right) used by the system to come back to a known position in taskespac
relevant knowledge ot a skill. Vve thus suggest to use re(i.e. the learned trajectory is used here as an attradthiid row: Influence of

modalities to produce the demonstrations, similarly toagle the two velocity commands when used separately and by stdrtingseveral
ing process where a human teacher would first demonstrif2l positions (equally distributed in the workspac®n the one hand, the

th let kil to the | foll d b tice Ii dynamics component follows the learned motion but tends torbeamstable
€ complete skill to the learner, Tollowe Yy Practice I51a yfer 5 few iterations or by starting from an unexplored posi On the other

performed by the learner under the supervision of the teacheind, the trajectory component acts as an attractor to tisestipoint of the
In our Setup the user can first control Slmultaneously ae|argenerallzed trajectoryFourth row: Reproduction behaviour by considering

b f C,i f freed th h th ti imultaneously at each iteration the influence of the twoarsi@omponents.
nu_m €r or degrees or freedom throug € motion _Senscﬁ% dynamics component allows to follow the demonstrated dyceamhile
suit to demonstrate natural gestures. Then, he/she caitdprowhe trajectory component prevents the robot from moving famyafrom an
partial demonstrations through kinesthetic teaching (r_;jge unlearne(_j situation and to come back to an already encodnperstion if a

. . , . .. , perturbation occurs.

5), i.e. by using the robot’s own kinematics in the robot’snow

environment, which allows him/her to feel the robot’s body

)

T

'4

Final reproduction behaviour

T2

T
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Incremental refinement of a stacking task that consfaggasping a first object (a cylinder) and putting it on a setobject (a cube). The robot learns

generalized trajectories coded in frames of referenceddcah the objects that are manipulated. The three columns @fréipdh correspond respectively to a
representation of the task constraints after 1, 3 and 6 denatings. The first two rows show the refinement of the GMR modptesenting the constraints
for the cylinder first row) and for the cubegecond roy along the movement. After a few demonstrations, the trajestaelative to the two objects are
highly constrained for particular subparts of the task, fgmden reaching for the cylinder (thin envelope around tirtep30) and when placing it on the
cube (thin envelope around time step 100). The last row shbe/sabot’s reproduction attempts (after 1, 3 and 6 demonshsjtifor a new situation that
has not been demonstrated. After 6 demonstrations, the rolpectly reproduces the essential characteristics of kile samely reaching for the cylinder

and dropping it on the cube (see [2] for a complete descriptiotine results).

Fig. 4.

Different modalities are used to convey the demonstratand

scaffolds required by the robot to learn a skill. The uset fimmonstrates
the whole movement while wearing motion sensdop)(and then helps the
robot refine its skill through kinesthetic teachirgpfton), that is, by grasping
the robot’s arms and moving them through the motion. The mot@sser

to passive mode, which allows the user to move freely the qooreting

degrees of freedom while the robot executes the task, thmsdimg partial
demonstrations while the robot executes the remaining mosesa (2] for

details).

limitations and provide appropriate examples that takedhe
limitations into consideration.

B. Extending the approach to the use of social cues

The system presented above requires to observe the skill
in slightly different situations. Even if this variation gars
naturally when executing the skill several times, the rgbot
capacity to generalize over different contexts also depemd
the pedagogical quality of the demonstrations provided. (e.
gradual variability of the situations and exaggerationghaf
key features to reproduce).

This fact shares similarities with the human way of teach-
ing. Indeed, a good teacher also extends the demonstrations
progressively so that the learner can more easily infer time ¢
nections between the different examples and the range of the
possible situations where the skill may apply. In the agpion
presented above, an expert user displaces progressively th
objects after each demonstration to provide variabilitythia
exposures of the skill. In such a situation, it is nearly alsva
possible for the robot to extract the task constraints witly a
few demonstrations (from four to ten for most of the tasks tha
we have considered). However, it may happen that untrained
users provide a set of demonstrations remaining either too
similar or too different from one example to the other.

To weaken the drawback of such situations, we propose
to enhance the statistical learning strategy with inforomat
coming from various social cues, and show that these cues
can be represented statistically as priors in the GMM/GMR
framework. We provide two examples with gaze and speech



« youtake THIS andyouputit THERE — »
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Fig. 5. lllustration of the scaffolding process where tharhed motion is
represented in thick line with an associated surroundinglepe, resulting
from the Gaussian Mixture Regression process describedgin2F1. The 1
robot begins to reproduce the learned skill by starting frarmew initial o,
position.2. At some point during the reproduction, the user holds thett®ebo =
arm and provides support for the reproduction of the sRillThe robot lets 0 . . . . . ‘ . ‘ :
the user move manually the selected motors (kinesthetic teg)chnd records 0 ! 2 ° ¢ time (sei) ° ! ° °
proprioceptive information about its own body motion, whitging to follow

the demonstrated motion with the remaining motors that are nttated by
the user4. By releasing the robot’s arm, the user then lets the roboueuitse
remaining part of the motion on its own. We see here that thetraioothly
comes back to the learned motion. This new demonstration isuked by
the robot to refine its model of the skill.

Fig. 7. Extraction of priors from speech for the task depicie Fig. 3
by extracting attentional events in the vocal trace thropgbh and energy
information (the temporal window of siz&/ used to detect attentional
cues is represented in dashed line). The first row shows thedseignal
corresponding to the sententéou take THIS and you put it THEREbId
by the user when executing the skill (while observed by theotosee top
snapshot in Fig. 4). We see that the particular events in #meodstration,
corresponding respectively to the subparts when the usepgrone object
("THIS”) and drops it on the other objectTHERE”), are highlighted
through the user’s voice. These events correspond roughlgcal patterns
characterized by a higher energy and a larger pitch amplititeconsecutive
rising and falling intonation contours, which are typicalgrosodic patterns

a}(l) L ~N(ﬂ E) serving as spotlights during the interaction, and which amomatically

o i captured through the Hidden Markov Model encoding. The dmotgraph

"""" represents the extracted probabiljii at time ¢; of hearing an attentional
utterance.

Fig. 6. Estimation of the user’s gaze direction during the destration of a

task as an additional source of information to speed up thaiteprocess. robot teaching interaction context.

The orientation of the head is recorded through the use ofomatensors Further work will extend the proposed scenarios to more
(see also Fig. 4). The focus of attention is first estimatedepyeasenting the . . .

gaze direction as a cone of vision which intersects with #eet (forming an  COMplex interactions where the robot can also refine a learne
ellipse that can also be represented as a covariance m&yiRnowing the motion on its own by exploring its environment, and by

position of the objects through the robot's stereoscopgioni system, it is i ; ; i
then possible to associate at each time step weighting fatadthe different deSIQnmg leammg scenarios where the teaChmg phase and

objects observed by the robot in order to highlight the usthese different €production phase are more closely intertwined, allowing
objects for the particular sub-tasks of the demonstration. richer interactions where the user can provide advices and

feedbacks to the robot on its reproduction attempts. Lenger
_ _ _ o ~ term goals focalize on developing robots that would have the
information. By representing gaze direction as a cone @nis capability to understand and predict the user’s intent rikhi

turned towards several objects on a table, the intersecfionhjs/her demonstrations, which would for example allow them
the cone with the surface can be represented as a Gausgdjearn new skills even from failed attempts.

distribution that can be incorporated easily in the leagnin
framework, see Fig. 6. Similarly, by extracting energy and REFERENCES
pitch information from the vocal tracélidden Markov Models [1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Rolpsbgramming

; i by demonstration,” irHandbook of Roboti¢dB. Siciliano and O. Khatib,
(HMMs) can be used to sort out attentional bids from neutral Eds. Springer, 2008, pp. 1371-1394.

utterances, see Fig. 7. ) ) . [2] S. Calinon and A. Billard, “What is the teacher’s role irboi program-
These early results show that the integration of social cues ming by demonstration? - Toward benchmarks for improved legrhin
ithi ot ; i ici Interaction Studiesvol. 8, no. 3, pp. 441-464, 2007.

within Ol.'lr ;tatlstlcal learning approach is promising. Agyo gg S. Calinon, F. Guenter, and A. Billard, “On learning, regenting and

a very limited data_set has been used so far, the rObus_tn Seneralizing a task in a humanoid robdEEE Trans. on Systems, Man

of the approach still needs to be evaluated with untrained and Cybernetics, Part Bvol. 37, no. 2, pp. 286-298, 2007.

users teaching new skills in real-world experimental s&tup

One direction of ongoing work is thus to investigate the

dependencies and relevance of these different cues in athuma



Robust Recognition of Complex Gestures
for Natural Human-Robot Interaction

Maren Bennewitz*, Tobias Axenbeck*, Sven Behnke', and Wolfram Burgard*
*Institute for Computer Science, University of Freiburg, D-79110 Freiburg, Germany
Fnstitute for Computer Science, University of Bonn, D-53117 Bonn, Germany

Abstract— Robots coexisting with humans in everyday envi-
ronments should be able to interact with them in an intuitive
way. This requires that the robots are able to recognize typical
gestures performed by humans such as pointing gestures, waving,
or head shaking/nodding. We present a system that is able to
spot and recognize complex, parameterized gestures from data
of a monocular camera. To represent people, we locate their
faces and hands using trained classifiers and track them over
time. We use few, expressive features extracted from this compact
representation as input to hidden Markov models (HMMs). First,
we segment the gestures into distinct phases and train HMMs
for each phase separately. Then, we construct composed HMMs,
which consist of the individual phase-HMMs. Once a specific
phase is recognized, we estimate the parameter of a gesture such
as the target of a pointing gesture. As we demonstrate in the
experiments, our system is able to robustly spot and recognize a
variety of complex gestures.

I. INTRODUCTION

Robotic assistants designed to communicate with untrained
users must be able to interact with them in a natural way.
Our humanoid robot (see Fig. 1) is able to generate a variety
of natural arm and head gestures that support its speech [1].
When evaluating questionnaires filled out by people who
interacted with the robot at former public demonstrations, we
discovered that they were confused by the asymmetry between
action generation and perception. The robot’s visual perception
of people was limited to head position and size at that time.
To reduce this asymmetry, it is necessary that the robot also
recognizes gestures performed by humans. This requires robust
and accurate tracking of human body parts as well as the
ability to spot and recognize typical gestures in order to infer
non-verbal signals of attention and intention.

We present a system that is able to spot and recognize
complex gestures from data of a monocular camera. We
consider gestures performed with head and arms, such as head
shaking/nodding or hand waving as well as parameterized
gestures, such as pointing gestures or gestures indicating the
size of objects. Figure 2 shows examples of such typical
gestures performed by humans during an interaction.

The contribution of our work is a robust and fast gesture
recognition method that relies only on data of a monocular
camera (no stereo). In contrast to previous approaches relying
on monocular image sequences (e.g., [7, 4]), our system works
under realistic settings such as varying and difficult lighting
conditions, multiple people, and cluttered background. On a
notebook computer, we achieve a frame rate of 20 fps and are
able to spot gestures as well as to recognize them, i.e., our

Fig. 1. Our humanoid robot interacts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.

(b)

Fig. 2. Snapshots of typical gestures analyzed in our experiments: (a) waving,
(b) indicating the size of an object, and (c) pointing to an object. Our system
works robustly even with cluttered background and under different lighting
conditions. The bounding boxes highlight detected faces and hands.

system distinguishes between previously learned gestures and
irrelevant or unconscious movements.

Our approach proceeds in three stages. First, we locate faces
and hands in the images and update a probabilistic belief
which tracks detected faces and hands over time. Second, we
extract features from this compact representation of humans.
Finally, these features are used as input to Hidden Markov
Models (HMMs) which are trained for individual phases of the
gestures. Our system recognizes a variety of complex gestures
and can estimate their parameters. Existing techniques for
parameter estimation of gestures either concentrate on pointing
gestures only [3, 5] or rely on the assumption that the whole
gesture can be observed [11]. In contrast to that, our approach
allows for the estimation of parameters for general gestures
once a specific phase is recognized.

II. REPRESENTATION AND TRACKING OF HUMANS

For locating faces and hands in the images, we use the
object detection framework proposed by Viola and Jones [9]
and train reliable and fast classifiers which operate on grey-
scale images. To speed-up the search for hands and to increase
robustness, we use an adaptive skin color model (which is
initially based on the detected face) and constrain the search
to skin-colored regions.



We train two kinds of hand classifiers: a generic classi-
fier that detects hands and rejects non-hands and a specific
classifier that is able to discriminate right hands from left
ones. Our hand detection system proceeds in two stages. First,
the generic hand detector is applied to skin-colored regions.
In case it succeeds, the specific hand classifier is applied.
In contrast to other approaches [2, 6], our system is able
to robustly locate and track hands with a large number of
substantially different shapes and to furthermore determine
whether a hand is a left or right one.

We maintain a probabilistic belief about the existence of
people and the positions of their faces and hands over time.
Using this belief, our system improves robustness, can deal
with false detections, and is not restricted to a single person.

Additionally, we track the 3D head pose of people. We use
an appearance-based approach [8] which locates distinctive
facial features. The positions of the features within the face
bounding box serve as input to a neural network which
computes the three Euler angles of rotation around the neck.

III. LEARNING AND RECOGNIZING COMPLEX GESTURES

In our work, we focus on typical gestures performed by hu-
mans during an interaction. We currently consider six different
types of gestures:

1) Waving: One-handed gesture.

2) Pointing: Parametric one-handed gesture.

3) Thisbig: This parametric two-handed gesture is carried
out to indicate the size of an object.

4) Dunno: This two-handed gesture is used to express
ignorance (informal short for don’t know).

5) Head shaking.

6) Head nodding.

A. Gesture Modeling

To model the complex arm gestures Waving, Pointing, and
Thisbig, we use three phases: the preparation phase which
is an initial movement before the main gesture, the hold
phase which characterizes the gesture, and the retraction phase
in which the hand moves back to a resting position. Our
motivation behind this segmentation is that once the hold
phase is recognized, the parameters of Pointing and Thisbig
can be estimated. Furthermore, this segmentation supports
the modeling of Waving during which similar movements
are repeated several times. The less complex gestures Dunno
and Head shaking/nodding are modeled monolithically. We
train individual HMMs for each phase of a gesture separately.
Accordingly, we train an overall number of 12 HMMs for the
gestures/gesture phases.

In our experiments, continuous left-right HMMs with 3-
5 (non-skip) states and a mixture of two Gaussians as output
distribution performed best to learn the gestures. We use
Viterbi training and the Baum-Welch algorithm to estimate
for an HMM M the transition probabilities af‘j between states %
and j and the observation probabilities b;‘ (o) for a state j given
an observation o.

To be able to identify movements not corresponding to any
learned gesture, we train an additional model. Here, we follow
the approach presented by Yang et al. [12] and build a HMM
by copying all states from all trained models and arrange them
in a fully connected HMM with smoothed output probabilities.

B. Gesture Recognition via Composed HMMs

The gesture phases appear in a specific order which has to
be considered during recognition. Fig. 3 illustrates the HMM
topology for one- and two-handed gestures as well as for
head gestures. As indicated by the arrow, the hold phase can
occur several times or last differently long. To identify the
most likely gesture given a composed HMM, we apply the
Viterbi algorithm [10]. The Viterbi algorithm computes the
state sequence with maximum likelihood given an observation
sequence O1.7 = 01, ...,o0r. For the HMM ), the likelihood
of the best state sequence of length ¢ ending in state j is
recursively defined as

5(j) = max &_1(i)ap;b}(or),01(j) = m}b} (01).(1)

1<i<NA e
Here, a” and b* are the parameters of A\, N* is the number of
states, and 7rj>-‘ specifies the initial state distribution. The algo-
rithm terminates with the computation of the most likely path
2% (which is found via backtracking) and its probability P*

P* = max or(7). (2)

1<i<NA

In theory, it would be possible to model one- and two-
handed gestures in one large HMM. However, to reduce the
amount of necessary training data and to improve recognition
accuracy, we use separate HMMs for one- and two-handed
gestures. Since the HMMs with differently dimensional input
features cannot be compared directly, we consider the two-
handed HMM if and only if the HMMs for the right and left
hand report the same most-likely gesture. This heuristics is
applicable since all our two-handed gestures are symmetric.

C. Input Features

As input to the HMMs, we use few, expressive features
extracted from the trajectories of head and hands. First, we
transform the position of the hands into coordinates relative
to the head position and normalize the coordinates with respect
to the size of the face bounding box. For one-handed gestures,
we use polar coordinates in the image with the head as origin
and the velocity. Accordingly, the feature vector f,,,. is defined
as

fone = (7", ¢7 U)- (3)

Here, r is the distance of the hand to the head, ¢ is the angle,
and v is the velocity.

Since the two-handed gestures we consider are symmet-
ric, we measure the difference in x/y-direction of their left
and right hand coordinates (z/”,y!/") at time ¢ in the fea-
tures d, = |zl| — |27| and d, = y! — yI. Furthermore,
we record the sum of the y-coordinates of the hands in the
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feature y'" = y! + y7 and consider the change of the hand
coordinates in x-direction
I l l
Az'a” = |zy| — |wy_q| + 2] — [2f_4]. 4)
As a final feature, we consider the velocities of the hands v'" =
v,{ + vy. Thus, the feature vector f;,,, is defined as
ftwo = (daivdy7ylr7Axlxravlr)' (5)
The head gestures nodding and shaking are described by a
feature vector f}.,q which consists of the three Euler angles
of rotation roll, pitch, and yaw as well as their velocities

fheaa = (07,07, 0, 00 o0 f).

(6)

D. Estimating Parameters of Gestures

Currently, we consider two parameterized gestures: Thisbig
and Pointing. The corresponding parameters are estimated dur-
ing the hold phase of the respective gesture. For Thisbig, the
estimation is done straightforwardly using a learned mapping
to estimate the distance of the person to the camera given the
bounding box size of the face.

For the estimation of pointing targets, we use of the three
rotation angles of the head pose. We assume that people are
looking to the object of interest they want to draw the attention
to and that the head pose coincides with the gaze direction.
Furthermore, we assume the 3D positions of potential pointing
targets to be known. First, we estimate the 3D position of the
head using the above mentioned mapping from bounding box
size to distance. Starting from that position, we construct a
straight line in direction of the roll, pitch, and yaw angle of
the head pose. Finally, we determine the object which has the
closest distance to that line.

IV. EXPERIMENTS

We performed a series of experiments in order to evaluate
our approach. To collect training data, we asked five dif-
ferent people to perform gestures in a distance of 1.5-2.5m
to the camera. We chose two different locations, different
lighting conditions, and different backgrounds (see Fig. 2).
We recorded and processed the videos with a rate of 20fps
and used a resolution of 640 x 480 pixel. We had a database
consisting of 75 samples per gesture which we manually
labeled, i.e., we marked the start and the end of each gesture
as well as the beginning and end of the hold phase.

Composed HMM consisting of the individual phase-HMMs. The first two for one- and two-handed gestures, and the right one for head gestures.

A. Gesture Recognition

After training the phase-HMMs for the hand gestures, we
tested their ability in distinguishing the individual gesture
phases (preparation (p), hold (h), and retraction (r) phase). We
used the Viterbi path and counted the number of correctly rec-
ognized gesture phases from the number of all test sequences.
Tab. I shows the percentage of correctly recognized segments
for one-handed gestures. As can be seen, using the extracted
features, the individual phases of one-handed gestures can
correctly be recognized. Only one error occurs for a segment
containing a retr_point phase which is classified as retr_wave.
This can be explained by the fact that both retraction phases
contain similar movements in the end. When considering a
whole observation sequence consisting of all three phases,
this error does not occur since the preparation and hold phase
are correctly recognized. For the recognition of two-handed
gestures shown in Tab. II, it can be seen that in a single test
sequence, the phases of Thisbig are classified as Dunno. When
sequences in which persons are not performing any gesture are
included into the test set, we achieve an overall recognition
rate of 90% for one- as well as for two-handed gestures. The
largest part of this error results from the fact that it sometimes
happens that no_gesture phases are classified as the preparation
phase of a gesture.

The following experiment is designed to evaluate the perfor-
mance of our system on sequences containing whole gestures.
We computed the Viterbi path in the composed HMMs at each
time step and counted how often the most likely hypothesis
corresponds to the true gesture. Fig. 4 shows the results for
all six gestures. As can be seen, the gestures can be reliably
recognized after processing only few frames. Nodding seems
to be most difficult to recognize because sometimes people
barely move their head. And, again, we made the observation
that Thisbig sometimes tends to be classified as Dunno.

To better evaluate the ability of our HMMs to distinguish
arm gestures, we performed experiments in which we com-
puted for a given observation sequence the Viterbi path and
its likelihood for all individual gesture HMMs consisting of
the corresponding phase-HMMs (i.e., we did not use the
composed HMMs here). We then computed the joint probabil-
ity P(g',g") of the gesture g’ of the left and the gesture g" of
the right hand. Fig. 5 plots the evolution of the probabilities
of the gestures over time for a sequence in which a person
waved with the left hand. In the beginning, the person was not
performing any meaningful gesture and, thus, the no_gesture
model had the highest probability. Afterwards, the probability
of the correct gesture increased.
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dunno 25 0 0 0 100% Fig. 4. Number of frames after which the most likely hypothesis is the
p-thisbig 1 24 0 0 96% correct gesture.
h_thisbig 1 0 24 0 96% .
r_thisbig 1 0 0 24 96% T —

B. Parameter Estimation

Finally, we asked people to point to predefined targets.
We positioned eight different targets within a range of 1.5m
to the camera and at different heights. The hold phase of
all 66 pointing gestures was identified and the correct target
was estimated in 80% of all cases.

Second, we asked people to indicate the size of objects. We
told them to indicate the sizes 25cm, 50cm, 100cm, and 150cm
and estimated the parameter in the hold phase. We performed
32 experiments and counted the nearest neighbor class of each
estimate. Our system was able to determine the correct class
in 94% of all cases.

C. Videos

Illustrating videos can be found at our web page!. The
videos show the robustness of our approach to recognize
complex gestures performed by different people. As the ex-
periments demonstrate, gestures can reliably be recognized
even under varying lighting conditions and with cluttered
background.

V. CONCLUSIONS

We presented an approach to robustly recognize gestures
from data of a monocular camera. We consider typical gestures
performed by humans during an interaction such as nodding
or pointing. To represent people, we locate and track their
heads and hands. We use few, expressive features extracted
from this compact representation as input to HMMs. We
segment complex gestures into three phases and train HMMs
for each phase separately. We then construct HMMs composed
of the individual phase-HMMs. Using the distinction between
different phases, we are able to estimate parameters of gestures
as soon as a certain phase is recognized.

Our approach has been implemented and evaluated on a
humanoid robot. As the experimental results show, our system
is able to reliably spot and recognize gestures, i.e., it distin-
guishes between previously learned gestures and irrelevant or
unconscious movements.

Uhttp://www.informatik.uni-freiburg.de/"maren/animations-gestures.html
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Fig. 5. Evolution of the probabilities of the gestures over time for an
experiment in which a person waved with the left hand.
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Abstract— This paper discusses the role of two antagonist displacements between places (also known as navigation and
neu_ral networks for the learning and control of complex be-_ planning) is strongly related to the localization and magpi
haviors composed as a sequence of elementary states. Leaqi (see for example the SLAM literature). The sequence is

a pathway with a mobile robot or a sequence of actions with v th It of | d of ¢ i
a robot arm can be seen either as the result of the learning of generally the result or a plan composed of motor actions

a temporal sequence or as the result of the natural dynamics OF the result of an imitation (wheel orientation and speed)

of a sensory-motor system using appearance based approashe associated to the recognition of places (localizationhaniag

for instance. As a result, we will discuss the performances the behavior in the robot’s cognitive map.

and the complementary features of each system, and propose|, the field of “manipulating systems”, i.e. non-mobile gyt

a unique control architecture embedding both systems for Ing - L . . )

life learning. performing gestures and/or object manipulation. Différen

models propose to learn and adapt motor trajectories of the

I. INTRODUCTION mechanical system in order to fit with the desired one of

Our long term goal is to design a control architecture allowih® model. The sequence is strongly related to the dynamical
ing a robot to learn, as autonomously as possible, sequene@Eameters allowing shaping the trajectory of the arm'ati
of actions related either to spatial or temporal consteafdis- N order to obtain the right reproduction of the behavior.
placements between places or gestures for instancesyihgar This very short presentation of two important fields of au-
a behavior is often related to learing by reinforcement, Bpnomous robotics illustrates how complex the issue ofdbuil
demonstration or learning by imitation. Learn by imitatio?d @ global system that deals with navigation and arm
has often been considered as a complex behavior, but™@vements as a single problem is. Our approach implicitly
previous work we have showed that the imitation can emer?"i‘éses two crucial questions : how to build control archiitee
from elementary mechanisms. For example: a robot that¢eafRl articulated and mobile robots (to consider manipufatio
a “behavior” consisting in moving at different places an@"d navigation as a single problem)? How to build a neural
performing some very simple but different manipulations girchitecture for spatial and temporal sensory-motor legrn

different objects at each places as shown in figure 1. THR Which each modality could complement, confirm, infirm
and/or enrich the other? What are the minimal requirements

sound for such a merging? Which level for fusion making? Which
jont coding to employ? In order to start to answer to these issues,
m@ we compare two models in the purpose of a unified model.
: light touch 8 eh Both solutions are based on artificial Neural Networks (NN)
Place B inspired from different properties of the cerebellum and th
hippocampus loop.
grab Place A Il. MODELS

Complex Temporal SequencesThe model allows a robot

Fig. 1. Scenario illustrating our long term goal. to learn a sequence as a succession of transitions between th

different sensory-motor situations. An associative leagmule

objective raises the issue of learning a behavior composedatiows learning and predicting the timing of the transigon
actions : the nature of the relevant information is diffdrerMoreover, neural oscillators composed of coupled CTRNN
between "moving from a place to another”, and "using ajBeer, 1994], play the role of an internal context and pro-
arm to push an object”. Indeed, the working spaces, the typiele additional information in order to remove ambiguities
of inputs, the motor commands, are different. in complex sequences [Lagarde et al., 2007]. Applied to
In the field of navigation systems, learning a sequence thfe navigation, the sequence is based on the succession of
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Fig. 2. Model of complex temporal sequences or orientations

orientations (orientation is obtained from the compassj)e O
of the main problems was the time spent by the robot
turn delaying the perception of the orientation during t
reproduction. During this time lag, the internal context(the
activities of the oscillators) changes. Consequentlystrstem
loses the internal state and fails to reproduce the seque
In order to avoid this problem, we propose to resynchroni
the oscillators, according to external signals, when a nd
internal state is learnt. The context can be associateddiogo
to a Least Mean Square (LMS) learning rule. The prope
of resynchronization is crucial so that the system is able
correctly reproduce a sequence. This property is closeédo th

one used in others models like the Echo States Network (ESND. 4. Spatial navigation: picture of leamnt (light arrgwand reproduced
[ Jaeger 2001] (dark arrows) trajectories by the robot with places-adi@ssociations.
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Fig. 3. Model of associations between places and actions. 0 120 140

Iterations

Orienation transition predictions

Association between places and actionsThis model 15 ‘ ‘ ‘
[Giovannangeli and Gaussier, 2007] associates places w
actions (figure 3). A place is a constellation of visual feasu
(landmark, azimuth). The constellation results from thegne
ing of “what” information provided by the visual system tha
extracts local-view centred on points of interest. The “retie o} e o = T — u
information provided by the compass. A simple associati Herations
learning between places and actions enables to generate a

sensory-motor attraction basin for homing or path follogvinFig. 5. Each curves represent the activity of each neuromgqulace (Up) or
behaviors. transition prediction (Down). Up : responses of the pladés aruring learning
(from iteration O to 55) and reproduction (from iteration)5&lowing the
11l. ROBOTIC APPLICATION triggering of each action of the trajectory. Bottom: Adiyviof the transition
prediction group, allowing the reproduction of the seqent orientations

The robot used in our experiments is a Robulabl0 (Ra@ith the correct timing

bosoft) with a pan-tilt video camera and a compass.
Association between places and actionBuring the learn-

i
T

activity

0.

2
T
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Complex Temporal SequencesDuring the learning, the

ing, the robot moves in the environment (figure 4). When thebot moves in the environment as shown in figure 6. When
robot escapes too far from the desired trajectory, we cbitecthe robot makes mistakes, we use a joystick to correct its
with a joystick as a dog guided with a leash. At this momentrajectory. At this moment, the NN learns online (one shot
the NN learns online a new association between the corréearning) a new transition between the previous and the



new orientation. To initiate the sequence of displacemerfmplete the other one in order to learn the spatial and tempo
we set the robot heading to the first learnt orientation (thral properties of complex behaviors. Moreover, the leagroh
robot moves at a constant speed). The orientation infoonatithe timing of the orientation changes should (1) contritiote
triggers on time the prediction of the next orientation thatonfirm or infirm the visual place recognition (being the tigh
will drive the robot's new rotation, and begin the step byrientation at the right time), (2) punctually replace tHace
step reproduction of the sequence : each new orientationcils if their activity is not strong enough (bad visual citioh,
recognized and resynchronizes the oscillators, inducheg tconflict between different places) and (3) contributes tiddbu
next prediction and the realization of the associated actio long sequences, allowing to concatenate behaviors cordpose
of displacements with those made of sequences of manipula-
tions. Neurobiological and psychological studies suggfest
both types of learning cohabit in the brain of mammals. For
example, The results in [Packard and McGaugh, 1996] show
the different roles of the hippocampus and basal ganglia in
the task learning with different learning scales and lesgni
rates, and the implication of different modalities (viswal
proprioceptives). Hence, we propose a new architecture in
Figure 7. This new architecture shows the model connecting
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Transitions
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Learning of the sequence of orientation
— Reproduction of the sequence of orientation Fig. 7.
arrow) could allow re-synchronizing the internal conteie.(the oscillators)
Fig. 6. Learning and reproduction of temporal sequencesur@ of another on place recognition signals.

learnt trajectory (light arrows) and reproduced trajegt@ark arrows) by the
robot.

Proposition of unified model with a hypothetical ceation (bold

both predictors. In order to merge the predictions, botleys
will have their outputs merged in one neural field [Amari,
1977], [Schoner et al., 1995] allowing the cooperation of
the predictions in case of similar responses, but also their
The architecture that learns places-actions associatiaas competition in the case of too different responses (capacit
shown to be robust and reliable. It allows the robot tof bifurcation of the neural field). Moreover, the neural diel
successfully navigate indoor as well as outdoor. In pdrallavill allow coping easily with two systems working at differe
learning sequences of orientations has been successfdly uime scales. The emerging behavior will be the result of
in previous works in the frame of imitation with mobiles ortwo subsystems having different dynamics and categorizing
articulated robots. Of course, the robustness of the ntdoiga predicting complementary modalities.
is strongly dependent on the quality of the visual environtne In a future robotic experiment, this new model will also help
If the visual mechanism has shown to be robust to partid enhance human/robot interaction allowing a mobile robot
changes of the environment, a failure of the camera or vety learn the navigation path directly from following a naive
bad lighting conditions will prevent the system from worin user. During the displacement, the robot will focus on the
Considering this, learning the sequence of orientatiomsafo demonstrator and will learn online the temporal succession
simple navigation task becomes interesting. Indeed, thetroits orientations (short time learning). To anchor the dispt
uses little information from the environment : only a dei@et ment in the environment (which is not possible when focusing
of the orientation variations. During the reproduction bét on the naive user), the robot will reproduce by oneself the
sequence, the robot acts as a “blind” automata. It can watisplacement (i.e. the sequence of successive orienstom
correctly during little iteration without visual informian. Re- will learn during this reproduction the associations betwe
synchronization of internal dynamics with the currentestist places and actions (long time learning). This experiment
necessary after a while. It can not adapt to sudden changesvofild help to study how experiences are stored in the brain.
the environment (e.g. a new obstacle). Nevertheless, vk thMoreover, it would help to study how and why the brain needs
that the models of places-actions associations and segueiocuse different kinds of memories according to learn antkesto
learning should work in parallel. Each architecture seems behaviors between the episodic memory (hippocampus) and

IV. DISCUSSION



the long term memory of the know-how (basal ganglia and/or
cortical structures).

In the purpose of using an arm mounted on the mobile robot,
it is interesting to anticipate that a similar visual medsam
as the “places cells” could guide the arm (for example, the
location of interesting visual objects). This mechanismldo
allow anchoring in the visual working space of the arm tem-
poral sequences of gestures, as well as the navigation model
anchors actions in the wide visual environment. Previous
works on robot arms have show the importance of the visuo-
motor learning for gesture imitation. This solution coftsis
learning on a multi-modal map the associations between the
motor and the visual information of the end-effector.
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I. INTRODUCTION AND PROBLEM STATEMENT

Recently! there has been a growing interest in human
augmented mapping[1, 2]. That is: a mobile robot builds
a low level spatial representation of the environment based
on its sensor readings while a human provides labels for
human concepts, such as rooms, which are then augmented
or anchored to this representation or map [3]. Given such an
augmented map the robot has the ability to communicate with
the human about spatial concepts using the labels that the
human understand. For instance, the robot could report it is
in the “’kitchen”, instead of a set Cartesian coordinates which
are probably meaningless to the human.

Even if the underlying mapping method is perfect, two
main problems occur in the approach of augmented mapping.
When guiding a robot through a number of rooms, humans
tend to not provide labels for every visited room [4]. The
result is that the robot has difficulty to model where one
room ends and the other room starts. This problem could
be solved by detecting room transitions through the sensor
data. Although good attempts using such an approach have
been made in office environments [5, 6], applying these to
other environments such as real homes is nontrivial. Another
problem is that the generalization of the labeled map to
newly acquired sensor data can be much different from the
humans ideas. That is: there is a mismatch between the
human representation and the robots representation. In our
case the robots generalizes labels using visual similarities,
while humans could use the function of the room. Even among
humans there are differences between spatial representations.
Think of a living room with an open kitchen. Where does the
living room end and the kitchen begin?

Our solution to both of these problems is to use pro-active
human robot interaction. We briefly describe how the robot
learns a map of the environment using a vision sensor and
active dialog with a human guide. The method is implemented
on Biron (the Bielefeld Robot Companion) which supports
an integrated human robot interaction system based on XCF
(XML Communication Framework) complete with person
attention, spoken dialog, person following, gesture recognition
and localization components [7].

IThe work described in this paper was conducted within the EU FP6-
002020 COGNIRON (”The Cognitive Companion™) project.
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Fig. 2. Biron and human guide in a home environment.

II. AUGMENTED MAPPING
A. Appearance based topological mapping

To map the environment we use images taken by an omni-
directional vision system. From each image SIFT features are
extracted which are used to find image point correspondences
between pairs of images by matching their SIFT descriptors.
False point correspondences are then removed by imposing
the epipolar constraint. By dividing the minimal number of
SIFT features of two images ¢ and j by the number of
correspondences, one finds a measure for the distance of the
two images in appearance space:

min(#SIFTS;, #SIFTS; )

#correspondences, ;

dij =

These computed distances are put in a graph representation
in which the nodes denote the images and distances are put
on the links, effectively creating a topological map of the
environment. If the distance is above a certain threshold, which
was set to 10 in our experiments then no link was created.

The complete map building system is running in real time
on one of the robot-laptops, processing around one image per
second. To keep the number of comparisons limited we used
the Connected Dominating Set method to pick key images
from the previous image set. For an in depth treatment of this
map building scheme see [8].

B. Human augmentation of room labels

While the robot is driving through the environment follow-
ing the human guide and building a topological map, room-
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A sketch of the proposed method. (a) The human guide provides a label. (b) After a second label is provided the map consists of two subgraphs.

(c) The robot reports a room transition on which the human provides feedback. (d) The feedback is used to update the map.

labels can be provided to the robot, see Figure I for an
example. This is performed by commanding the robot to stop
and telling the robot the name of the room it is in, e.g. ”This is
the kitchen” (see Figure 1(a)). To handle miscommunication,
a powerful grounding-based dialog system is used that can
handle complex conversational repair behavior and facilitate a
smooth conversation (see [2] for more information). The given
label is then added to the next node (image) that is added to
the map.

Using the given labels and the structure of the graph the
robot can partition the map in different subgraphs. Every node
is assigned to that label corresponding to the closest labeled
node computed with Dijkstra’s shorter path algorithm[9] (see
Figure 1(b)). Effectively we are exploiting here the fact that
images taken in a convex space, which usually correspond
to the notion of rooms, are visually much more similar than
images taken while the robot moved through a narrow passage,
a door.

III. INTERACTIVE MAPPING

As can be seen in Figure 1(b) the transition from the "living
room” to the “dining room” is probably not learned in the way
the human had in mind when giving the labels. The human
would probably not notice this until it would send the robot
to the “Living room” after which the robot would move to
the hallway. This can easily be solved by making the robot
pro-actively interact with the human.

Every time the robot adds a new image to the map it
computes its corresponding label. If this label is different than
the label of the previously added node, the robot reports this to
the human in the form of a question. In the case of Figure 1(c)
the robot asked ”We just entered the living room, right?”.
The human now has the opportunity to provide feedback,
possibly reducing the mismatch with its own representation,
see Figure 1(d). If later the robot would really enter the "living
room” it will again report this to the human confirming that
it has correctly learned the transition.

A technical detail is that the robot does not stop driving
while reporting room change to the human, so to not interrupt
the tour. Thus new nodes are added to the graph while it
awaits an answer. The possibly corrected label is put on
the node which triggered the robot. This could lead to race

conditions if there are a lot of transitions close to each other,
e.g. if different locations in the room are also labeled. In the
conducted experiments, however, we did not experience such
problems.

IV. RESULTS

The new interactive mapping approach was recently
implemented on the Biron robot. First test trials were
performed in a rented apartment at Bielefeld which
was furnished to look like a real home environment.
See http://www.science.uva.nl/ obooij/
research/mappingHRI/index.html which features a
video shot during one of the trials illustrating the capabilities
of the complete interactive mapping system.

The robot captured panoramic images once every 2 seconds
and the tour took around 5 minutes resulting in a total set
of 158 images. The complete mapping system, including the
image processing, is performed during the tour in real-time on
one of the laptops attached to the robot.

In Figures 3(a)-(e) the spatial representation is plotted
using hand-corrected odometry data. Note, however, that this
odometry data was not used by the mapping algorithm.

In Figure 3(a) the robot drove from the living room at the
bottom right of the figure through the hallway to the kitchen
on the upper left. By then the only label that was given was in
the living room, so it groups every new node with that label.
In Figure 3(b) it is provided a new label “Dining room” and
as can be seen the graph is split into two groups according
to their distance over the graph. The cut between these two
groups is located somewhere inside the small hallway. This
became apparent to the guide in Figure 3(c) where the robot
was guided back to the hallway and asked if it reentered the
kitchen. After interacting with the guide the label “Hallway”
was added to the map, splitting the graph in three parts, see
Figure 3(d). After reentering the living room the robot again
asked if this was the “Living room” which was confirmed
by the guide resulting in another node being labeled. In
Figure 3(e) the final spatial representation is shown as build
by the robot.

V. CONCLUSION

We have shown that using relatively simple human robot
interaction techniques we can solve two problems apparent
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The spatial representation build by the robot. The different symbols denote nodes (images) of the graph. The lines between the symbols denote

links between the lines, with darker colored lines representing links with a smaller distance. Green circles denote nodes belonging to the “Living room”, pink
squares to the “Dining room” and yellow pentagons to the small “Hallway”. Symbols linked with a label represent nodes that were labeled by the guide. In

addition part of the ground-truth floor map is plotted on top for reference.

in augmented mapping systems. The robot actively asks the
labels of rooms that were not labeled at the first visit and
decreases the mismatch between the human representation of
room transitions and the robots representation. The complete
system can be run in real time on a single laptop and has been
shown to work in a real home environment.

Future work is directed to gathering larger evidence for the
feasibility of the interactive localization approach. The system
scales well to larger environments and is flexible because it
uses only a vision sensor.
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Abstract— This paper describes an interdisciplinary research
project aimed at developing and evaluating effective and user-
friendly non-contact robot-assisted therapy, aimed at in-home
use. Specifically, the research develops and evaluates a method
of on-line user adaptation aimed at both personalizing the
therapy process and maximizing its health-related outcomes. Our
approach is original and promising in that it combines several
ingredients that individually have been shown to be important
for long-term efficacy in motor rehabilitation and cognitive
skills improvement: (1) intensity of task specific training; (2)
engagement and self-management of goal-directed actions. These
principles motivate and guide the strategies used to develop novel
user activity sensing and provide the rationale for development of
socially assistive robotics therapy for monitoring and coaching
users toward customized and optimal rehabilitation and care
programs.

I. INTRODUCTION

Robotic systems are now capable of social interaction with
human users, presenting a new opportunity for providing
individualized care. Mounting evidence shows that human
users respond more readily to robots than to disembodied al-
ternatives such as computer screens, personal digital assistants,
and smart phones.

As the elderly population continues to grow, a great deal of
attention and research is dedicated to assistive systems aimed
at promoting ageing-in-place, facilitating living independently
in ones own home as long as possible.

Two of the main problems encountered in the elder pop-
ulation are the Alzheimer’s disease, which is a form of
dementia, and stroke. In a recent report published by the
American Alzheimer’s Association [1], it is stated that since
the incidence and prevalence of Alzheimer’s disease increase
with advancing age, the number of persons with the disease
is expected to grow as a proportion of this larger older
population. Therefore, the rapidly increasing number of people
suffering from Alzheimer’s disease could cripple healthcare
services in the next few decades. The latest estimate is that
26.6 million people were suffering from Alzheimer’s disease
worldwide in 2006, and that the number will increase to
100 million by 2050, 1 in 85 of the total population. The
statistics also show that stroke [2] is also a very dominant
health problem with more than 15 million people suffering a
stroke worldwide each year.
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These individuals are high users of health care, residential
care and home and community services and they need long-
term care services; for example stroke survivors need to
re-learn skills that were lost when part of the brain was
damaged, and the intensive post-stroke rehabilitation therapy
(usually around 6 hours per day) during the critical months
of the post-stroke period is crucial in the recovery; also for
the individuals suffering of cognitive impairment such as
Alzheimer’s disease, even if there is no cure, medication and
special therapy can improve disease symptoms. Non pharma-
cological treatments focus on physical, emotional and also
mental activation. Engagement in activities is one of the key el-
ements of good dementia care. Activities (e.g., music therapy,
arts and crafts) help individuals with dementia and cognitive
impairment maintain their functional abilities and can enhance
their quality of life. Also cognitive rehabilitation therapies that
focus on recovering and/or maintaining cognitive abilities such
as memory, orientation, and communication skills are other
specific therapeutic protocols designed for individuals with
dementia. Finally, physical rehabilitation therapies that focus
on motor activities help individuals with dementia rehabilitate
damaged functions or maintain their current motor abilities so
as to keep the greater possible extent of autonomy.

Therefore, in this work we investigate the role of robots
active learning in the assistive therapy process and we try
to address the following research question: How should the
behavior and encouragement of the therapist robot adapt as
a function of the users personality, preferences, physical and
cognitive impairment, and task performance?

Il. LEARNING METHODOLOGY

Learning to adapt our daily behavior as a function of differ-
ent internal and external factors it’s a fundamental character-
istic of humans. Creating robots capable of exhibiting similar
sophisticated capabilities has proven to be a very difficult task.
Therefore, providing an engaging and motivating customized
protocol that is adaptable to user personality, preferences,
physical and cognitive impairment, and task performance is a
challenge in robotics, especially when working with vulnerable
user populations, where a careful consideration of the users
needs and disabilities is required.



To the best of our knowledge, no work has yet tackled
the issue of robot personality and behavior adaptation as a
function of user personality and task performance in the as-
sistive human-robot interaction context. In the work described
here, we address these issues and propose a reinforcement-
learning-based approach to robot behavior adaptation. In the
learning approach, the robot incrementally adapts its behavior
and thus its expressed personality, attempting to maximize
the task performance. The robot’s behavior (and therefore
personality and empathy) is expressed through multi-modal
cues which include: interpersonal distances/proxemics, verbal,
para-verbal, and non-verbal communication, and activity that
will allow the robot to be responsive both in terms of temporal
and social appropriateness.

We formulated the problem as policy gradient reinforcement
learning (PGRL) and developed a learning algorithm that
consists of the following steps: (a) parametrization of the
behavior; (b) approximation of the gradient of the reward
function in the parameter space; and (c) movement towards a
local optimum. The main goal of our robot behavior adaptation
system is to enable us to optimize on the fly the three main
interaction parameters (interaction distance/proxemics, speed,
and verbal and paraverbal cues) that define the behavior (and
thus personality and empathy) of the therapist robot, so as to
adapt it to the users profile and thus improve the users task
performance. More details can be found in [3].

As a function of the user population and therefore the
designed task, task performance is measured either as the
number of exercises performed in a given period of time
(in the post-stroke physical rehabilitation setup), or as the
reaction time and the amount of vocalization (in the dementia
cognitive therapy setup). Hence, the learning system changes
the robot’s personality, expressed through the robot’s behavior,
in an attempt to maximize the task performance metric.

I1l. EXPERIMENTAL DESIGN

A. Post-Sroke Physical Rehabilitation

Two different experiments were designed in order to test
the adaptability of the robot’s behavior to the participants
personality and preferences. The experimental task was a
common object transfer task used in post-stroke rehabilitation
and consisted of moving sticks from one box on the left
side of the participant to another box on his/her right side.
One of the boxes was on an electronic scale in order to
measure the user’s task performance. The task was open-
ended. The subject pool consisted of 12 participants (7 male
and 5 female). In order to determine the users’ personality
(based on the Eysenck Personality Inventory (EPI) [4] and
preferences related to the therapy styles or robots vocal cues,
interaction distances, and robots speed from the values used in
the experiments, the participants were asked to complete a pre-
and post- experiment questionnaire. The learning algorithm
was initialized with parameter values that were in the vicinity
of what was thought to be acceptable for both extroverted and
introverted individuals, based on one of our previous study [5]

The first experiment was designed to test the robot behavior
adaptation to user personality-based therapy style. The therapy
styles ranged from coach-like therapy to encouragement-based
therapy for extroverted personality types and from supportive
therapy to nurturing therapy for introverted personality types.
The vocal content for each of these scenarios was selected
in concordance with encouragement language used by profes-
sional rehabilitation therapists.

It is well known that people are more influenced by certain
voices and accents than others. The main goal of our second
experiment was to test and validate the adaptation capability
of the robot to the user preferences related to English accent
and voice gender.

B. Dementia and Alzheimer’s Disease Care

We designed a new experiment to improve the participants
attention and consists of a cognitive game called song dis-
covery or name that tune (i.e., find the correct button for the
song, press it, and say the name of the song). The criteria for
participation (in addition to the dementia diagnosis) in this
experiment include the ability to read large prints and to press
a button. The objective measure of this study is the reaction
time for both song detection and silence detection verbally and
with buttons. The main goal is to minimize the reaction time
and maximize verbalization, which signifies improvement of
cognitve attention.

The participants performance during the game is assessed
using both data obtained from the interaction with the robot
and button recordings, and data obtained from video record-
ings. Music therapist feedback will be gauged through a ques-
tionnaire completed at the end of the experiment. Outcomes
will be quantified by evaluating task performance and time on
task.

IV. EXPERIMENTAL RESULTS

A. Post-Sroke Physical Rehabilitation

The pilot experimental results provided first evidence for the
effectiveness of robot behavior adaptation to user personality
and performance: users (control group - individuals who were
not stroke patients) tended to perform more or longer trials
under the personality matched and therapy style matched con-
ditions. The result is a novel stroke rehabilitation tool that pro-
vides individualized and appropriately challenging/nurturing
therapy style that measurably improves user task performance.

B. Dementia and Alzheimers Disease Care

Two focus groups were conducted at our partners sites:
Silverado Senior Living and The Jewish Home Los Ange-
les. The preliminary focus groups and early studies already
show promise for our approach. More experimental results
validating our hypotheses will be available by the time of the
workshop, as this paper reports on ongoing work in progress.



V. CONCLUSION

This paper presents a novel incremental learning method-
ology for assistive purposes. Our non-contact therapist robot
monitors, assists, encourages, and socially interacts with post-
stroke users and people suffering from cognitive impairement
and/or dementia during rehabilitation/maintenance therapy.
The experimental results provide first evidence for the ef-
fectiveness of robot behavior adaptation to user profile and
performance.
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Abstract- Machine learning techniques have currently been
deployed in a number of real-world application areas — from
casino surveillance to fingerprint matching. That fact, coupled
with advances in computer vision and human-computer
interfaces, positions systems that can learn from human
observation at the point where they can realistically and
reliably be deployed as functional components in autonomous
control systems. Healthcare applications though pose a unique
challenge in that, although autonomous capability might be
available, it might not be desired. And yet, based on recent
studies focused on assessment of the changing demographics of
the world, there is a need for technology that can deal with the
shortcomings envisioned in the workforce. Traditional roles for
robotics have focused on repetitive, hazardous or dull tasks. If
we take the same stance on healthcare applications, we find
that some therapeutic activities fall under this traditional
classification due to the long-repetitive nature of the
therapist-patient interaction. As such, in this paper, we discuss
techniques that can be used to model exercise behavior by
observing the patient during therapist-patient interaction. The
ultimate goal is to monitor patient performance on repetitive
exercises, possibly over the course of multiple days between
therapy sessions.

I. INTRODUCTION

Physical therapy is a very practitioner intensive process.
When patients enter into the process they are often
required/asked to perform exercises that they have been
shown how to do when they are at home between visits.
Proper compliance is strongly correlated with shorter time to
recovery as well as reduction of pain in the long term [1].
During the time between therapy sessions there are many
factors which affect patient compliance, including
forgetfulness, lack of motivation, boredom, and lack of
instant feedback. To deal with these issues, researchers have
shown the positive use of robots in assistive therapy
applications ranging from stroke rehabilitation [2] to motor
development in children [3].

In many of these applications, if we can correctly identify
and match patient exercise behavior based on characteristics
learned during previous therapist-patient session, we can
develop a monitoring mechanism to provide feedback for
patient recovery. To enable this capability, we present two
methods that utilize image-based observation as a means of
gathering sensing information, and classification to identify
subsequent patient behavior based on observations during the
therapist-patient session.

II. ALGORITHM: LEARNING EXERCISE BEHAVIORS

A. Learning of Exercise Primitives through Observation

Learning of exercise primitives involves modeling an
exercise scenario by sequencing a series of repetitive motion
behaviors together. A motion behavior is used to represent
an interpretation of the basic movements of an arm exercise.
It is not designed to compute specific motion vectors (such
as specific arm joint trajectories), but rather to provide
information about general movements. We define a motion
vector

M, =(d,v) ()

where d represents the direction of motion and v represents
the velocity of motion. In addition, the possible values
associated with d and v are discretized based on pre-defined
linguistic classes, as depicted in Table I. As such, there is a
finite number of motion vectors that exist for defining a
low-level motion behavior. We define this finite set of
possible motion vectors as the motion class K,,psion-

Table I. Motion behavior definition structure
Motion Parameter

Linguistic Values

Left, Right, Up, Down

Direction (d)

Velocity (v) Slow, Fast

The direction parameter represents the absolute direction
of a hand with respect to a world coordinate system. The
following direction vectors are used to classify this motion
parameter:

-1 1 0
LEFT =| | RIGHT =| |UP=

0
,LDOWN = )

The velocity of the motion behavior, V, is measured as
follows:

_Ap 2
V= v (px/s) 2

Ap is defined, with respect to an observation, as the
distance between the location of the hand when a motion

initiates and terminates. Af is measured by counting the
frame numbers during a motion and dividing it by the
average frame rate of the camera. Since the velocity
required in this study need not be precise, it is reclassified as
a speed: SLOW/FAST. If a motion is faster than the overall



sequence speed average, it is defined as FAST, and as
SLOW otherwise. As an illustrative example, Table III
shows the association between low-level motion behaviors
and the resulting motion vectors.

Table II. Association - motion behaviors and vectors

[lustrative Description of
Motion Behavior

Motion Vector

Human quickly lifts hand up (Up, Fast)

Human shakes hand to the right (Right, Fast)

The goal of the motion behavior analysis process is to
populate instances of the motion vector based on observation
of a human exercise action (such as depicted in Figure 1).
This process is executed by computing a motion gradient
during human exercise and fitting the motion gradient to the
pre-defined motion class. The motion behavior analysis
process is further described in [4]. Once motion behaviors
are identified, the sequence of motion behaviors associated
with an exercise scenario are stored and labeled (by the
therapist). After therapist-patient interaction, the system is to
match the stored therapy exercise information to the patient
during subsequent exercises using the same motion behavior
analysis process.

Figure 1. Sequence of images captured during observation
(top) 180° left shoulder abduction (middle) 90° left shoulder
abduction (bottom) right shoulder rotation

B. Learning Exercise Behaviors through Observation

In the previous approach, image-based methods were used to
construct an exercise scenario from a sequence of identified
motion behaviors. In the next approach, we utilize a method
that classifies the entire exercise scenario using a single
representation. Based on imaging the patient during a
therapy session, a texture based feature vector is first
generated for each image (frame) and stored in a database.
This database is then used to train an adaptive classifier to
classify the elements in the dataset, using the approach as
described in [5]. During subsequent exercise, the method
presented in [6] is used to extract period and frequency

information for the captured data in order to generate a
mapping between observed state and its position in the
exercise cycle. In this step, we assume only one exercise is
exhibited in the captured data sequence. After
therapist-patient interaction, a measure of similarity using
the 2D Kolomogorov Smirnov test [7] is calculated to
determine the statistical goodness of fit between pairs of
exercise behaviors. This test is used to determine which of
the stored therapy exercises the patient is performing during
subsequent exercises.

III. INTERACTION BETWEEN USER AND ROBOT

In the subsequent section, we outlined two complimentary
methods to correctly identify and match patient exercise
behavior with information captured during therapist-patient
interaction. Since exercise motions depend on individual
capability (and can vary both between individual subjects as
well as between the same subject during different exercise
scenarios), the role of the therapist during these scenarios is
1) to correctly position the robot such that important body
features are in view of the robot, and 2) to correct the
labeling of the behaviors during subsequent sessions with
the patient. In theory, to allow for development of a
monitoring mechanism to provide feedback for patient
recovery, the therapist must interactively work with the
robot to correct learned knowledge.

IV. EXPERIMENTAL SETUP

To generate data akin to that expected with a therapy patient,
the exercises, as shown in Table III, were first performed
during a simulated therapist-patient session, and then
subsequently, in random order, repeated with varying rates
of execution (Figure 1).

Table III. Exercise Cases Considered
Shoulder Abduction Seated
(right, left, 90°, 180°)
Shoulder Rotation Seated
(right, left)
Shoulder Abduction Standing
(right, left, 90°, 180°)

The goal in implementing the two different methodologies is
to assess the capability of the system to correctly identify the
patient exercise and determine the system characteristics that
contribute to success of each approach. Preliminary analysis
show that the recognition methods can uniquely identify
patient behaviors as long as the following assumptions hold:
1) there is no significant change in the activity performed
during subsequent sessions, 2) the therapist correctly shows
the patient how to perform the exercises safely, and the
patient is able to comply, 3) the patient‘s appearance remains
relatively consistent during subsequent sessions, and 4) the
robot can position its camera as appropriate to capture the
execution of each exercise.



V. CONCLUSIONS

In this paper, we present two methods that enable learning
of therapy exercises performed during a therapist-patient
session. The approach uses vision as a means of observing
the user during task execution. The stored exercise sequence
can then be utilized by the system to match subsequent
patient behavior. Future work involves developing
approaches to extract specific performance metrics (i.e.
speed and frequency) to provide feedback to the therapist for
enhancing patient recovery.
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Abstract— In this paper we present a qualitative exploration
strategy for an autonomous robot that learns by experimentéon.

Particularly, we describe a domain in which a mobile robot robot

observes a ball and learns qualitative prediction models fsm orientation

its actions and observation data. At all times it uses these odels :

to predict the results of the actions that it has decided to excute : .

and to design new experiments that would lead it to learn a

better model of the world, and for planning of the execution .
.-~ ball distance

these experiments. The models also represent the insightt the \
robot's knowledge. We experimentaly evaluate the explorabn ball angle
strategy. s

I. INTRODUCTION |: :|

The idea of autonomous robots that are capable of learning
by themselves, without any human intervention is one of the
most fundamental goals of Al. Among several paradigms of Fig. 1. The robot and the ball.
learning, learning by experimentation demands no teabhér,
rather learns autonomously, interacting with the real ddrh o ) ] )
this paper we present a showcase in which an autonomdigsprediction with the actual observations. The resulthog t
robot is learning qualitative models by conducting experits comparison leads to further experiments that helps to eevis
in its environment. the model.

There are several ways of how the robot chooses its actionsRégarding related work, our approach is most similar to [1].
designs and plans experiments. In order to learn efficienttjowever, one of our general goals is to obtain the insights of
the strategy which it uses to explore its environment is vef§Pot’s knowledge, so the models should be understandable t
important. We propose a qualitative exploration strategy fhumans rather than black boxes. In this respect, our work is
autonomous robot learning. We evaluate our strategy by cofihilar to [2]. A broader context also includes [3, 4, 5, 6].
paring it to random strategy. The results show that using our
strategy, the robot is learning faster and it learns bettzteats.

We consider learning ofgualitative models an important
aspect. This is due to the fact that qualitative models asea Our problem domain consists of a mobile robot and a ball.
to learn and sufficient to design and plan the experimenty Th&éhe robot observes its distance to the ball (ball distance,
reduce the complexity of numerical models considerably aménoted bybd) and the angle between its orientation and the
also enable humans to easily understand what the robot had (ball angle, denoted bya), as shown in Fig. 1.

learned. The robot is of differential drive type (Khepera-like) and

The robot has no prior knowledge about its environment. moves by setting the speeds of the left and the right whieel (
particular, it has no knowledge regarding the relationsveen and R respectively). In our casd; and R are always positive,
its actions and observations. Its task is collecting thea dand the robot was restricted to choose between speeds 4 and
and gradually learning a model which it immediately uses f& only. So the robot can move straight ahe@d={ R = 5),
moving and designing new experiments. Its goal is to learnright (L. = 5, R = 4) and left L = 4, R = 5), as shown in
model that would relate its actions to its observations.adthe Fig. 2. The robot is not aware of any coordinate system. It
step, the robot decides on one of several possible actibnsisionly aware of the actions it perform& @nd R) and the
then uses its current model to predict the result of its actioobservations from the sensotisl (@nd ba).
executes the action and collects observations. It then acesp  The overall goal that we want the robot to achieve is that

Il. LEARNING QUALITATIVE MODELS BY
EXPERIMENTATION
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Fig. 2. The actions of the robot.

it learns a qualitative model describing the relations leetmv
its actions and observations. By densely sampling the whdle. 4. The various angles when robot is tuming left andtrigbm ba = 0
space of above mentioned variables and learning a queditati
tree we obtained an “almost ideal” model of our domain. Note,
that we did not use this model in any other way than to see for
ourselves what the robot should eventually learn. This tetm
ideal” qualitative tree for our domain is shown in Fig. 3. The
notation used in the model is explained below.

Q(-bd)
Q(-ba) .-

Q(-bd)

ba=180\/] ba=-180,_ Q(+ba)

Q(+bd)Q(-ba) Q(+bd)Q(+ba)

Fig. 5. The various angles when robot is turning left andtrfighm ba = 180
or ba = —180

wheel respectively. In these equatiofsstands for qualitative
relation as described in [8]. In the paper, we use a shorter
S e S M notation, e.g. + + ——", giving only the signss in the above
Fig. 3. The “almost ideal” model of the robot in our domain. mentioned order. So+ + ——" means:bd = Q(+5L), bd =
Q(+SR), ba = Q(—SL) andba = Q(—Sg). In words: ball

We have performed all the experiments in the simulatéiistance is increasing whefi, and Si are increasing (i.e.
Simon which is a part of the machine learning framework, 12 > 0), and ball angle is decreasing whéfp and Sy are
Orange [7]. increasing. We define the clagsof this domain as a 4-tuple

The robot learns its first model from a small dataset of jusf signs as just described. Figures 4 and 5 clearly shows the
10 samples collected by random movement. This initial modigions of different values of clags.
is not very accurate and useful. Nevertheless, it enablkes th Qualitative models that the robot is learning are in the
robot to use it for making predictions about further actions form of qualitative trees and qualitative non-determinihite

The ability to make predictions enables the choice amo@gitomata (NFA). The robot uses algorithm Padé [8] with
learning strategies. A learning strategy determines thd nelecision trees to learn qualitative trees while it buildSNaA
action. The most primitive learning strategy is randomtetyg, from the temporal sequence of its actions and observations.
in which the robot chooses one of its three possible actibnsTae initial set of attributes includes, R, ba, bd and the
random. Random movement is thus defined by actions ratlegassC. To this set, Padé adds a newly constructed attribute
than by the robot’s positions. The latter is not even possibl/R, obtained by the chain rule, dividing the derivatives of
since in our case the robot is not aware of its coordinates ag@ch wheel's path w.rt. time. The attribufe/ R describes
can not choose to navigate in any coordinate system. the qualitative relation between both speeds and can, as we

The robot is supposed to learn the relations between #iall see, explain the left and right turns. Using the chain
actions and observations. In our simple example, it has twale for attribute construction is a general principle asehot
actions ¢ and R) and two observation variableda(andbd), specifically added to this domain.
so it should learrbd = Q(sSL), bd = Q(sSr), ba = Q(sSL) The robot’s exploration algorithm includes three stragegi
andba = Q(sSg), where signs is + or — andL = S, R = that strive to guide the learning towards the final goal. The
Sk, whereS;, and Sy are the paths of the left and the righimost primitive is therandom strategy — the robot moves




actions so that it could carry out the designed experiment. F
this purpose it maintains a frequency table of class valads a

it observes the difference between the number of examples
in the current state of the NFA and the one with the lowest
frequency in the table. If the number of examples in the
current state of the NFA is greater than a threshold, it selec
uniform strategy and picks persistent otherwise. This liiggs
one iteration of the loop and starts a new one.

< 179.74 > 179.74

s e

Fig. 7. The model created by the robot after 19 steps.

Fig. 6. The NFA learned by the robot. < 562.33 > 562.33

++—=
randomly choosing the actions from its set of availableoest
The second strategy we caihiform strategy; it is used when < 90.44 >90.44
the robot wants to sample the actions so that their distabut
is uniform. Uniform distribution of actions assures thae th - T+

robot is not biased towards one of the actions, e.g. going Fig. 8. The model created by the robot after 1000 steps.
straight ahead all the time. At first glance it may seem that

uniform and random strategies are the same, but the differen

lies in the fact that uniform strategy also accounts for the [1l. RESULTS

action executed using persistent strategy. The thirdeglyat  The exploration algorithm from the previous section engble

is calledpersistent strategy — the robot keeps executing thethe robot to learn by experimentation in an efficient way. To

same action for some time and is collecting more learningnfirm the latter, in this section we compare our approach

examples of the same kind. to the pure random strategy. Again, we stress that random
The robot uses random strategy only for its first ten movegrategy does not mean random sampling of the coordinate

when it has no knowledge about its environment and tkR@ace but rather choosing the actions randomly.

random choice is the best it can make. After it collects th& fir |n random strategy we use a parametieration which

ten learning examples it can already build a first model arféfines the frequency for choosing a random actiodurétion

start using it. At this time, it changes the strategytoform = 1 the action is chosen randomly on each simulation step
and enters the main loop in which it is updating and improvinghile for duration = n it is chosen only each-th step and
the model. maintained the same in between. The latter is actually not

The main loop starts with choosing the next action basedpure random strategy but rather a mixture of random and
on the current strategy (either uniform or persistent).eAft persistent. We use it for comparison anyway since the pure
the robot picks the action it uses the current qualitatiee trrandom strategy performs extremely poor.
to make the prediction using the current state and the actionWe ran 3 runs of each random strategy, varydhugation
When it makes the prediction it executes the action and adnd 9 runs with different initial positions of the robot with
serves the result. It compares its own prediction with thiealc our exploration algorithm. We manually determined the poin
observation. If they match, the robot continues with pégsis at which the robot learned the desired model. We measured the
strategy, otherwise the robot is “surprised” and motiveftad time it had needed to learn the model in the number of steps
further exploration of the unknown behaviors. The reasan fi performed until that state. Using a pure random stratdgy,
the mismatch is the false prediction of qualitative behgviaobot never managed to learn the model and the process was
i.e. the signs in the class value were predicted wrongly. Therminated after 30000 steps. Using our exploration giyate
robot updates the NFA with a new state and transition aftdalways learned the model we expected in the average of
also updates the qualitative tree. After it updates the 1lnod8582 steps. Table | presents the results over different thas
the robot starts designing a new experiment and planning égerages and standard errors.



Random our exploration strategy
Run | Stepsize[ Steps taken to reach best modelStepsize| Steps taken to reach best model
1 Not until 30000 1 2674
2 1 Not until 30000 1 3685
3 Not until 30000 1 1991
4 Not until 30000 1 2078
5 10 Not until 30000 1 3530
6 Not until 30000 1 3254
7 15967 1 7317
8 100 Not until 30000 1 4866
9 27654 1 2843

aEven this does not result in the ideal model, but very closi

to

bThis resulted in a model separated at the rootZbinstead ofLL/R

TABLE |
COMPARISON BETWEEN RANDOM ACTION SELECTION AND

OUR EXPLORAIDN STRATEGY PRESENTED HERE
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> —90.93 /' < 90.93 < —89.42 \ = —89.42
[1]
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<89.68 \ = 89.68 <9044 /' >90.44 2
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Fig. 9. The final model created by the robot after 2674 steps.

[4]

The results show that the robot learns significantly better
and faster with our exploration algorithm as opposed fd
the pure random strategy or random-persistent strategies. [6]
have no formal proof to explain why our strategy works.
Nevertheless, it is clear from the way humans experime[ﬁ}c
that we pursue one direction until there arises a reasongr
motivation to change it.

IV. CONCLUSION

We showed a simple example of a robot that is capable
of learning by making experiments in its environment. The
exploration algorithm that we presented proved to be a lsefu
tool for the autonomous learner that has to design, plan and
execute the experiments in order to obtain some knowledge
about how its actions influence its observations in the given
world. One of the contributions in our opinion is the use of
qualitative models only and the combination of qualitatie=
and the NFA. Both models do not only suffice to support the
robot in its actions, but also offer insights into the knodge
that the robot acquired in the learning process. Further, we
believe that our approach can be generalized to other more
complex domains and that it can scale well due to the
simplicity of learning the qualitative models.
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