
INTERACTIVE ROBOT LEARNING

-

RSS 2008 WORKSHOP
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1 Welcome

This workshop on Interactive Robot Learning will span the breadth of research
questions at the intersection of Machine Learning and Human-Robot Interac-
tion.

Many future applications for autonomous robots bring them into human
environments as helpful assistants to untrained users in homes, offices, hospitals,
and more. These applica- tions will often require robots to flexibly adapt to the
dynamic needs of human users. Rather than being pre-programmed at the
factory with a fixed repertoire of skills, these personal robots will need to be
able to quickly learn how to perform new tasks and skills from natural human
instruction. Moreover, it is our belief that people should not have to learn a new
form of interaction in order to teach these machines, that the robots should be
able to take advantage of communication channels that are natural and intuitive
for the human partner.

Topics:

• Human-Robot Interaction

• Machine Learning

• Learning by demonstration

• Learning by imitation

• Reinforcement learning with human input

• Active Learning

• Communication of knowledge and metaknowledge

• Identification of new requirements for ML in social domains

• Identification of suitable metrics for interactive learning

• User studies on interactive robot learning

2 Invited speakers

2.1 Jan Peters

2.1.1 Talk: Towards Motor Skill Learning in Robotics

Autonomous robots that can assist humans in situations of daily life have been
a long standing vision of robotics, artificial intelligence, and cognitive sciences.
A first step towards this goal is to create robots that can learn tasks triggered
by environmental context or higher level instruction. However, learning tech-
niques have yet to live up to this promise as only few methods manage to scale
to high-dimensional manipulator or humanoid robots. In this talk, we investi-
gate a general framework suitable for learning motor skills in robotics which is
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based on the principles behind many analytical robotics approaches. It involves
generating a representation of motor skills by parameterized motor primitive
policies acting as building blocks of movement generation, and a learned task
execution module that transforms these movements into motor commands.

Learning parameterized motor primitives usually requires reward-related
self-improvement, i.e., reinforcement learning. We propose a new, task-appropriate
architecture, the Natural Actor-Critic. This algorithm is based on natural pol-
icy gradient updates for the actor while the critic estimates the natural policy
gradient. Empirical evaluations illustrate the effectiveness and applicability to
learning control on an anthropomorphic robot arm.

For the proper execution of motion, we need to learn how to realize the be-
havior prescribed by the motor primitives in their respective task space through
the generation of motor commands. This transformation corresponds to solv-
ing the classical problem of operational space control through machine learning
techniques. Such robot control problems can be reformulated as immediate re-
ward reinforcement learning problems. We derive an EM-based reinforcement
learning algorithm which reduces the problem of learning with immediate re-
wards to a reward-weighted regression problem. The resulting algorithm learns
smoothly without dangerous jumps in solution space, and works well in appli-
cation to complex high degree-of-freedom robots.

2.1.2 Bio

Jan Peters is a Senior Research Scientist at the Max-Planck Institute for Bi-
ological Cybernetics and head of the new Robot Learning Lab (RoLL) in the
Schoelkopf Department. Before joining MPI, he received a Ph.D. from the
University of Southern California, working at the Computational Learning and
Motor Control lab with Stefan Schaal, Sethu Vijyakumar and Firdaus Udwadia.
He received a M.Sc. in Computer Science and M.Sc. in Mechanical Engineering
from University of Southern California as well as a Diplom-Informatiker from
Hagen University and a Diplom-Ingenieur in Electrical Engineering from Munich
University of Technology (TU Muenchen). He has been a visiting researcher at
Advanced Telecommunication Research Center (ATR), Kyoto, Japan in 2000
and 2003, a visiting researcher at National University of Singapore (NUS) in
2001 and worked as graduate research assistant at the Institute of Robotics and
Mechatronics of the German Aerospace Research Institute (DLR) in Oberp-
faffenhofen, Germany form 1997-2000. His research interests include robotics,
nonlinear control, machine learning, and motor skill learning.

MORE INFO: http://www.jan-peters.net

2.2 Aude Billard

2.2.1 Talk: Adaptive Control and Imitation Learning in Robots

A key issue in robot imitation learning is to find ”what to imitate”, i.e. to
determine the key components of a task that are relevant for its completion.
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Such information is crucial for a proper generalization over a set of examples.
Moreover, it provides a way to speed up learning by reducing the dimensionality
of the features’ space. However, this issue has received scant attention so far.

In this talk, a framework for extracting the relevant components of a task is
presented. It is based on Gaussian Mixture Models (GMM) of multi-dimensional
signals in concurrent frames of reference. The relative importance of each part of
the signals is estimated through the covariance matrices of the GMM. Gaussian
Mixture Regression is then applied to infer an optimal generalized signal which
can further drive the reproduction of the task. An extension of this framework
for learning a dynamical model of the task as a second order derivative of the
end-effector’s motion is also presented.

A second crucial component to robot imitation learning is the problem of
”how to imitate”. On one hand, the robot must find a way to translate the
motions demonstrated by the human in motions feasible for its body, whose size
and range of motions differ from those of the demonstrator. On the other hand,
the robot must be able to adapt its movements to achieve a proper completion
of the task when the context differ from the one used during the demonstrations.

In the framework presented here, the control of the robot’s motions is pro-
vided by a stable dynamical system, active in a hybrid cartesian-joint angle
frame of reference. The dynamic nature of the controller ensures on-line de-
termination of the trajectory if perturbations occur and stable convergence to
the target. The redundancy of the representation of the motion offers an ele-
gant solution to the joint limit avoidance problem. Reproduction of the task
is obtained by modulating the hybrid dynamical systems using the trajectories
inferred from the demonstration.

2.2.2 Bio

Aude Billard is Associate Professor and head of the LASA Laboratory at the
School of Engineering at the Swiss Federal Institute of Technology in Lausanne.
She received her B.Sc. (1994) and M.Sc. (1995) in Physics from EPFL, with
specialization in Particle Physics at the European Center for Nuclear Research
(CERN), a MSc. in Knowledge-based Systems (1996) and a Ph.D. in Artificial
Intelligence from the Department of Artificial Intelligence at the University of
Edinburgh. She worked as a Post-doctoral Fellow at IDSIA and LAMI (EPFL,
1998-1999), then as research associate (1999-2000), Research Assistant Profes-
sor (2000-2002) at the department of Computer Sciences at the University of
Southern California, prior to joining the EPFL.

Learning Algorithm and Systems Laboratory, School of Engineering, EPFL -
Swiss Federal Institute of Technology in Lausanne, Lausanne 1015, Switzerland
http://lasa.epfl.ch Email: aude.billard@epfl.ch
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2.3 Jeff Orkin

2.3.1 Talk: Learning Models of Social Behavior and Dialogue with
The Restaurant Game

We look forward to a future where robots collaborate with humans in the home
and workplace, and virtual agents collaborate with humans in games and train-
ing simulations. A representation of common ground for everyday scenarios is
essential for these agents if they are to be effective collaborators and commu-
nicators. Effective collaborators can infer a partner’s goals and predict future
actions. Effective communicators can infer the meaning of utterances based
on semantic context. This talk describes a multiplayer video game used to
collect data from thousands of people about everyday scenarios, an unsuper-
vised system that learns statistical models of language and interaction, and
first steps towards generating dialogue and behavior from these models. Specif-
ically, the talk will describe learning the restaurant scenario from data col-
lected from over 10,000 players of an online game called The Restaurant Game
(http://theRestaurantGame.net).

2.3.2 Bio

Jeff Orkin is a PhD student in Professor Deb Roy’s Cognitive Machines Group
at the MIT Media Lab. Jeff’s research focuses on Artificial Intelligence for
characters that learn to communicate and collaborate by observing humans
playing online multiplayer games. Prior to enrolling at the Media Lab, Jeff
developed several generations of A.I. systems in the game industry. As a Senior
Engineer at Monolith Productions, Jeff focused on goal-oriented autonomous
character behavior and planning, while developing A.I. systems for the award
winning titles No One Lives Forever 2 and F.E.A.R. Jeff is a Contributing
Author and Section Editor of the A.I. Game Programming Wisdom book series,
has presented at the Game Developer’s Conference and AIIDE, and holds a
Master’s degree in Computer Science from the University of Washington and
Bachelor’s degree in Computer Science from Tufts University with a minor in
Studio Art.
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A robot programming by demonstration framework
integrating statistical and social cues

Sylvain Calinon and Aude Billard

Abstract— We present a probabilistic approach in robot pro-
gramming by demonstration that allows to extract incrementally
the constraints of a task in a continuous form and to reproduce a
generalization of the learned skill in new situations. Throughout
this work, we highlight the importance of including the user’s
teaching abilities in the machine learning process by using
different modalities to convey the demonstrations (observational
learning and kinesthetic teaching), and by designing human-robot
interactive scenarios mimicking the human process of teaching.
We then present our current research towards a socially driven
statistical learning framework to reduce the complexity of the
skill transfer process.

I. ROBOT PROGRAMMING BY DEMONSTRATION

Robot Programming by Demonstration (RPD) covers meth-
ods by which a robot learns new skills through human
guidance. Our research aims at bringing such user-friendly
human-robot teaching systems that would speed up the skill
transfer process. We present a generic probabilistic framework
gathering information from cross-situational observations of
a skill with information extracted from different social cues
observed during the interaction.

Generic approaches to transfer new skills to a robot are
those that allow the robot to extract automatically what are
the important features characterizing each task and to search
for a controller that optimizes the reproduction of these
characteristic features. A key concept at the bottom of these
approaches is that of determining ametric of imitation per-
formance. A metric of imitation provides a way of expressing
quantitatively the user’s intentions during the demonstrations
and to evaluate the robot’s faithfulness at reproducing those. To
learn the metric (i.e. infer the task constraints), one common
approach consists of creating a model of the skill based on
several demonstrations performed in slightly different condi-
tions (cross-situational statistical learning). This generalization
process consists of exploiting the variability inherent tothe
various demonstrations to extract which are the essential
components of the task. These essential components should be
those that remain invariant across the various demonstrations.

A large body of work explored the use of a symbolic
representation to both the learning and the encoding of skills

This work was supported by the European Commission as part of
the Robot@CWE project (http://www.robot-at-cwe.eu) under
contract FP6-2005-IST-5, and as part of the FEELIX GROWING project
(http://www.feelix-growing.org) under contract FP6 IST-
045169.

S. Calinon and A. Billard are with the Learning Algo-
rithms and Systems Laboratory (LASA), Ecole Polytechnique
Féd́erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
{sylvain.calinon,aude.billard}@epfl.ch
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Fig. 1. Information flow across the complete system, where the constraints
of a task are extracted statistically through the observation of multiple
demonstrations performed in slightly different situations and where various
social cues can be used to scaffold the teaching interactionin order to speed
up the learning process.

and tasks. The main advantage of a symbolic approach is
that high-level skills (consisting of sequences or hierarchies
of symbolic cues) can be learned efficiently through an in-
teractive process. However, because of the symbolic nature
of their encoding, these methods rely on a large amount
of prior knowledge to predefine the important cues and to
segment those efficiently. Another body of work focusses on
representing the task constraints at a trajectory level to avoid
putting too much prior knowledge in the controllers required
to reproduce a skill.1 We follow this approach in our work by
usingGaussian Mixture Model(GMM) andGaussian Mixture
Regression(GMR) to respectively encode a set of trajectories
and retrieve a smooth generalized version of these trajectories
and associated variabilities. Fig. 1 presents the principles of
our approach.

1For an exhaustive review and comparisons of the different methods
proposed in RPD, the interested reader can refer to [1].



II. EXTRACTING THE TASK CONSTRAINTS THROUGH

STATISTICAL LEARNING

Through the use of GMM, a robot can extract autonomously
the essential characteristics of a set of trajectories captured
through the demonstrations [3]. GMR can then be used to
retrieve a generalized version of the trajectories either in joint
space or in task space [2].

Fig. 2 presents the principles of the system. Fig. 3 illustrates
the generalization and reproduction methods with an exper-
iment involving manipulation and displacement of objects.
In this experiment, the skill is represented as constraintsin
task space by considering the right hand path relative to
two objects tracked by the robot in its environment. The
constraints associated with the position of the right hand with
respect to an objectn are thus represented by the generalized
trajectoryx̂(n) and associated covariance matrices. We see that
by encapsulating the task constraints through GMR, the robot
can reproduce the learned skill in new situations (new initial
positions of objects).

A. Scaffolding by using different modalities

A trend of research draws the attention on the role of the
teacher as being one of the most important key component for
an efficient transfer of the skill, where the teaching interaction
allows the user to become an active participant in the learning
process (i.e. not only a model of expert behaviour). This active
teaching process allows the learner to experience and adapt
the skill for his/her particular body capacities, as suggested
by developmental psychology studies.

In [2], we adopted this strategy and showed that the skill
transfer process could benefit from the user’s capacity to
adapt his/her teaching strategies to the particular context. We
presented experiments where a humanoid robot learns new
manipulation skills by first observing a human demonstrator
(through motion sensors) and then gradually refining its skill
through kinesthetic teaching (see Fig. 4). The user thus pro-
vides scaffolds to the robot for the reproduction of the skill
by moving kinesthetically a subset of the motors. Through
the supervision of the user who progressively dismantles the
scaffolds after each reproduction attempt, the robot can finally
reproduce the skill on its own.

We take the perspective that unlike observational learning,
pedagogyis required to facilitate the transfer of the skill,
which is a special type of communication used to manifest the
relevant knowledge of a skill. We thus suggest to use different
modalities to produce the demonstrations, similarly to a teach-
ing process where a human teacher would first demonstrate
the complete skill to the learner, followed by practice trials
performed by the learner under the supervision of the teacher.
In our setup, the user can first control simultaneously a large
number of degrees of freedom through the motion sensors
suit to demonstrate natural gestures. Then, he/she can provide
partial demonstrations through kinesthetic teaching (seeFig.
5), i.e. by using the robot’s own kinematics in the robot’s own
environment, which allows him/her to feel the robot’s body
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Fig. 2. Illustrative example for the encoding and reproduction of three
demonstrations of a motion.First row: The set of trajectories{t, x, ẋ} are
first encoded in a Gaussian Mixture Model (GMM), where the components
represent respectively temporal, position and velocity values (the motion
is represented here only in a 2D plane).Second row:Gaussian Mixture
Regression (GMR) is then used during the reproduction process to retrieve
P (x, ẋ|t), which allows to define a dynamics component (left) estimating the
velocity command required at each iteration to follow the dynamics learned by
the system (with respect to the current position), and a trajectory component
(right) used by the system to come back to a known position in task space
(i.e. the learned trajectory is used here as an attractor).Third row: Influence of
the two velocity commands when used separately and by startingfrom several
initial positions (equally distributed in the workspace).On the one hand, the
dynamics component follows the learned motion but tends to become unstable
after a few iterations or by starting from an unexplored position. On the other
hand, the trajectory component acts as an attractor to the closest point of the
generalized trajectory.Fourth row: Reproduction behaviour by considering
simultaneously at each iteration the influence of the two velocity components.
The dynamics component allows to follow the demonstrated dynamics while
the trajectory component prevents the robot from moving far away from an
unlearned situation and to come back to an already encountered position if a
perturbation occurs.
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Fig. 3. Incremental refinement of a stacking task that consistsof grasping a first object (a cylinder) and putting it on a second object (a cube). The robot learns
generalized trajectories coded in frames of reference located on the objects that are manipulated. The three columns of thegraph correspond respectively to a
representation of the task constraints after 1, 3 and 6 demonstrations. The first two rows show the refinement of the GMR model representing the constraints
for the cylinder (first row) and for the cube (second row) along the movement. After a few demonstrations, the trajectories relative to the two objects are
highly constrained for particular subparts of the task, namely when reaching for the cylinder (thin envelope around time step 30) and when placing it on the
cube (thin envelope around time step 100). The last row shows the robot’s reproduction attempts (after 1, 3 and 6 demonstrations) for a new situation that
has not been demonstrated. After 6 demonstrations, the robot correctly reproduces the essential characteristics of the skill, namely reaching for the cylinder
and dropping it on the cube (see [2] for a complete descriptionof the results).

Fig. 4. Different modalities are used to convey the demonstrations and
scaffolds required by the robot to learn a skill. The user first demonstrates
the whole movement while wearing motion sensors (top) and then helps the
robot refine its skill through kinesthetic teaching (bottom), that is, by grasping
the robot’s arms and moving them through the motion. The motors are set
to passive mode, which allows the user to move freely the corresponding
degrees of freedom while the robot executes the task, thus providing partial
demonstrations while the robot executes the remaining motion (see [2] for
details).

limitations and provide appropriate examples that take these
limitations into consideration.

B. Extending the approach to the use of social cues

The system presented above requires to observe the skill
in slightly different situations. Even if this variation appears
naturally when executing the skill several times, the robot’s
capacity to generalize over different contexts also depends on
the pedagogical quality of the demonstrations provided (e.g.
gradual variability of the situations and exaggerations ofthe
key features to reproduce).

This fact shares similarities with the human way of teach-
ing. Indeed, a good teacher also extends the demonstrations
progressively so that the learner can more easily infer the con-
nections between the different examples and the range of the
possible situations where the skill may apply. In the application
presented above, an expert user displaces progressively the
objects after each demonstration to provide variability inthe
exposures of the skill. In such a situation, it is nearly always
possible for the robot to extract the task constraints with only a
few demonstrations (from four to ten for most of the tasks that
we have considered). However, it may happen that untrained
users provide a set of demonstrations remaining either too
similar or too different from one example to the other.

To weaken the drawback of such situations, we propose
to enhance the statistical learning strategy with information
coming from various social cues, and show that these cues
can be represented statistically as priors in the GMM/GMR
framework. We provide two examples with gaze and speech



Fig. 5. Illustration of the scaffolding process where the learned motion is
represented in thick line with an associated surrounding envelope, resulting
from the Gaussian Mixture Regression process described in Fig. 2. 1. The
robot begins to reproduce the learned skill by starting froma new initial
position.2. At some point during the reproduction, the user holds the robot’s
arm and provides support for the reproduction of the skill.3. The robot lets
the user move manually the selected motors (kinesthetic teaching) and records
proprioceptive information about its own body motion, while trying to follow
the demonstrated motion with the remaining motors that are not controlled by
the user.4. By releasing the robot’s arm, the user then lets the robot pursue the
remaining part of the motion on its own. We see here that the robot smoothly
comes back to the learned motion. This new demonstration is thenused by
the robot to refine its model of the skill.

Fig. 6. Estimation of the user’s gaze direction during the demonstration of a
task as an additional source of information to speed up the learning process.
The orientation of the head is recorded through the use of motion sensors
(see also Fig. 4). The focus of attention is first estimated by representing the
gaze direction as a cone of vision which intersects with the table (forming an
ellipse that can also be represented as a covariance matrix).By knowing the
position of the objects through the robot’s stereoscopic vision system, it is
then possible to associate at each time step weighting factors to the different
objects observed by the robot in order to highlight the use ofthese different
objects for the particular sub-tasks of the demonstration.

information. By representing gaze direction as a cone of vision
turned towards several objects on a table, the intersectionof
the cone with the surface can be represented as a Gaussian
distribution that can be incorporated easily in the learning
framework, see Fig. 6. Similarly, by extracting energy and
pitch information from the vocal trace,Hidden Markov Models
(HMMs) can be used to sort out attentional bids from neutral
utterances, see Fig. 7.

These early results show that the integration of social cues
within our statistical learning approach is promising. As only
a very limited dataset has been used so far, the robustness
of the approach still needs to be evaluated with untrained
users teaching new skills in real-world experimental setups.
One direction of ongoing work is thus to investigate the
dependencies and relevance of these different cues in a human-
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Fig. 7. Extraction of priors from speech for the task depicted in Fig. 3
by extracting attentional events in the vocal trace throughpitch and energy
information (the temporal window of sizeW used to detect attentional
cues is represented in dashed line). The first row shows the sound signal
corresponding to the sentence”You take THIS and you put it THERE”told
by the user when executing the skill (while observed by the robot, see top
snapshot in Fig. 4). We see that the particular events in the demonstration,
corresponding respectively to the subparts when the user grasps one object
(”THIS” ) and drops it on the other object (”THERE” ), are highlighted
through the user’s voice. These events correspond roughly to local patterns
characterized by a higher energy and a larger pitch amplitudewith consecutive
rising and falling intonation contours, which are typical to prosodic patterns
serving as spotlights during the interaction, and which areautomatically
captured through the Hidden Markov Model encoding. The bottom graph
represents the extracted probabilitypS

j at time tj of hearing an attentional
utterance.

robot teaching interaction context.
Further work will extend the proposed scenarios to more

complex interactions where the robot can also refine a learned
motion on its own by exploring its environment, and by
designing learning scenarios where the teaching phase and
reproduction phase are more closely intertwined, allowing
richer interactions where the user can provide advices and
feedbacks to the robot on its reproduction attempts. Longer-
term goals focalize on developing robots that would have the
capability to understand and predict the user’s intent behind
his/her demonstrations, which would for example allow them
to learn new skills even from failed attempts.
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Robust Recognition of Complex Gestures

for Natural Human-Robot Interaction

Maren Bennewitz∗, Tobias Axenbeck∗, Sven Behnke†, and Wolfram Burgard∗

∗Institute for Computer Science, University of Freiburg, D-79110 Freiburg, Germany
†Institute for Computer Science, University of Bonn, D-53117 Bonn, Germany

Abstract— Robots coexisting with humans in everyday envi-
ronments should be able to interact with them in an intuitive
way. This requires that the robots are able to recognize typical
gestures performed by humans such as pointing gestures, waving,
or head shaking/nodding. We present a system that is able to
spot and recognize complex, parameterized gestures from data
of a monocular camera. To represent people, we locate their
faces and hands using trained classifiers and track them over
time. We use few, expressive features extracted from this compact
representation as input to hidden Markov models (HMMs). First,
we segment the gestures into distinct phases and train HMMs
for each phase separately. Then, we construct composed HMMs,
which consist of the individual phase-HMMs. Once a specific
phase is recognized, we estimate the parameter of a gesture such
as the target of a pointing gesture. As we demonstrate in the
experiments, our system is able to robustly spot and recognize a
variety of complex gestures.

I. INTRODUCTION

Robotic assistants designed to communicate with untrained

users must be able to interact with them in a natural way.

Our humanoid robot (see Fig. 1) is able to generate a variety

of natural arm and head gestures that support its speech [1].

When evaluating questionnaires filled out by people who

interacted with the robot at former public demonstrations, we

discovered that they were confused by the asymmetry between

action generation and perception. The robot’s visual perception

of people was limited to head position and size at that time.

To reduce this asymmetry, it is necessary that the robot also

recognizes gestures performed by humans. This requires robust

and accurate tracking of human body parts as well as the

ability to spot and recognize typical gestures in order to infer

non-verbal signals of attention and intention.

We present a system that is able to spot and recognize

complex gestures from data of a monocular camera. We

consider gestures performed with head and arms, such as head

shaking/nodding or hand waving as well as parameterized

gestures, such as pointing gestures or gestures indicating the

size of objects. Figure 2 shows examples of such typical

gestures performed by humans during an interaction.

The contribution of our work is a robust and fast gesture

recognition method that relies only on data of a monocular

camera (no stereo). In contrast to previous approaches relying

on monocular image sequences (e.g., [7, 4]), our system works

under realistic settings such as varying and difficult lighting

conditions, multiple people, and cluttered background. On a

notebook computer, we achieve a frame rate of 20 fps and are

able to spot gestures as well as to recognize them, i.e., our

Fig. 1. Our humanoid robot interacts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.

(a) (b) (c)

Fig. 2. Snapshots of typical gestures analyzed in our experiments: (a) waving,
(b) indicating the size of an object, and (c) pointing to an object. Our system
works robustly even with cluttered background and under different lighting
conditions. The bounding boxes highlight detected faces and hands.

system distinguishes between previously learned gestures and

irrelevant or unconscious movements.

Our approach proceeds in three stages. First, we locate faces

and hands in the images and update a probabilistic belief

which tracks detected faces and hands over time. Second, we

extract features from this compact representation of humans.

Finally, these features are used as input to Hidden Markov

Models (HMMs) which are trained for individual phases of the

gestures. Our system recognizes a variety of complex gestures

and can estimate their parameters. Existing techniques for

parameter estimation of gestures either concentrate on pointing

gestures only [3, 5] or rely on the assumption that the whole

gesture can be observed [11]. In contrast to that, our approach

allows for the estimation of parameters for general gestures

once a specific phase is recognized.

II. REPRESENTATION AND TRACKING OF HUMANS

For locating faces and hands in the images, we use the

object detection framework proposed by Viola and Jones [9]

and train reliable and fast classifiers which operate on grey-

scale images. To speed-up the search for hands and to increase

robustness, we use an adaptive skin color model (which is

initially based on the detected face) and constrain the search

to skin-colored regions.



We train two kinds of hand classifiers: a generic classi-

fier that detects hands and rejects non-hands and a specific

classifier that is able to discriminate right hands from left

ones. Our hand detection system proceeds in two stages. First,

the generic hand detector is applied to skin-colored regions.

In case it succeeds, the specific hand classifier is applied.

In contrast to other approaches [2, 6], our system is able

to robustly locate and track hands with a large number of

substantially different shapes and to furthermore determine

whether a hand is a left or right one.

We maintain a probabilistic belief about the existence of

people and the positions of their faces and hands over time.

Using this belief, our system improves robustness, can deal

with false detections, and is not restricted to a single person.

Additionally, we track the 3D head pose of people. We use

an appearance-based approach [8] which locates distinctive

facial features. The positions of the features within the face

bounding box serve as input to a neural network which

computes the three Euler angles of rotation around the neck.

III. LEARNING AND RECOGNIZING COMPLEX GESTURES

In our work, we focus on typical gestures performed by hu-

mans during an interaction. We currently consider six different

types of gestures:

1) Waving: One-handed gesture.

2) Pointing: Parametric one-handed gesture.

3) Thisbig: This parametric two-handed gesture is carried

out to indicate the size of an object.

4) Dunno: This two-handed gesture is used to express

ignorance (informal short for don’t know).

5) Head shaking.

6) Head nodding.

A. Gesture Modeling

To model the complex arm gestures Waving, Pointing, and

Thisbig, we use three phases: the preparation phase which

is an initial movement before the main gesture, the hold

phase which characterizes the gesture, and the retraction phase

in which the hand moves back to a resting position. Our

motivation behind this segmentation is that once the hold

phase is recognized, the parameters of Pointing and Thisbig

can be estimated. Furthermore, this segmentation supports

the modeling of Waving during which similar movements

are repeated several times. The less complex gestures Dunno

and Head shaking/nodding are modeled monolithically. We

train individual HMMs for each phase of a gesture separately.

Accordingly, we train an overall number of 12 HMMs for the

gestures/gesture phases.

In our experiments, continuous left-right HMMs with 3-

5 (non-skip) states and a mixture of two Gaussians as output

distribution performed best to learn the gestures. We use

Viterbi training and the Baum-Welch algorithm to estimate

for an HMM λ the transition probabilities aλ
ij between states i

and j and the observation probabilities bλ
j (o) for a state j given

an observation o.

To be able to identify movements not corresponding to any

learned gesture, we train an additional model. Here, we follow

the approach presented by Yang et al. [12] and build a HMM

by copying all states from all trained models and arrange them

in a fully connected HMM with smoothed output probabilities.

B. Gesture Recognition via Composed HMMs

The gesture phases appear in a specific order which has to

be considered during recognition. Fig. 3 illustrates the HMM

topology for one- and two-handed gestures as well as for

head gestures. As indicated by the arrow, the hold phase can

occur several times or last differently long. To identify the

most likely gesture given a composed HMM, we apply the

Viterbi algorithm [10]. The Viterbi algorithm computes the

state sequence with maximum likelihood given an observation

sequence O1:T = o1, . . . , oT . For the HMM λ, the likelihood

of the best state sequence of length t ending in state j is

recursively defined as

δt(j) = max
1≤i≤Nλ

δt−1(i)a
λ
ijb

λ
j (ot), δ1(j) = πλ

j bλ
j (o1).(1)

Here, aλ and bλ are the parameters of λ, Nλ is the number of

states, and πλ
j specifies the initial state distribution. The algo-

rithm terminates with the computation of the most likely path

x∗T (which is found via backtracking) and its probability P ∗

P ∗ = max
1≤i≤Nλ

δT (i). (2)

In theory, it would be possible to model one- and two-

handed gestures in one large HMM. However, to reduce the

amount of necessary training data and to improve recognition

accuracy, we use separate HMMs for one- and two-handed

gestures. Since the HMMs with differently dimensional input

features cannot be compared directly, we consider the two-

handed HMM if and only if the HMMs for the right and left

hand report the same most-likely gesture. This heuristics is

applicable since all our two-handed gestures are symmetric.

C. Input Features

As input to the HMMs, we use few, expressive features

extracted from the trajectories of head and hands. First, we

transform the position of the hands into coordinates relative

to the head position and normalize the coordinates with respect

to the size of the face bounding box. For one-handed gestures,

we use polar coordinates in the image with the head as origin

and the velocity. Accordingly, the feature vector fone is defined

as

fone = (r, φ, v). (3)

Here, r is the distance of the hand to the head, φ is the angle,

and v is the velocity.

Since the two-handed gestures we consider are symmet-

ric, we measure the difference in x/y-direction of their left

and right hand coordinates (x
l/r
t , y

l/r
t ) at time t in the fea-

tures dx = |xl
t| − |xr

t | and dy = yl
t − yr

t . Furthermore,

we record the sum of the y-coordinates of the hands in the



Fig. 3. Composed HMM consisting of the individual phase-HMMs. The first two for one- and two-handed gestures, and the right one for head gestures.

feature ylr = yl
t + yr

t and consider the change of the hand

coordinates in x-direction

∆xlxr = |xl
t| − |xl

t−1
|+ |xr

t | − |xr
t−1

|. (4)

As a final feature, we consider the velocities of the hands vlr =
vl

t + vr
t . Thus, the feature vector ftwo is defined as

ftwo = (dx, dy, ylr ,∆xlxr, vlr ). (5)

The head gestures nodding and shaking are described by a

feature vector fhead which consists of the three Euler angles

of rotation roll, pitch, and yaw as well as their velocities

fhead = (θr , θp , θy , vθr , vθp , vθy ). (6)

D. Estimating Parameters of Gestures

Currently, we consider two parameterized gestures: Thisbig

and Pointing. The corresponding parameters are estimated dur-

ing the hold phase of the respective gesture. For Thisbig, the

estimation is done straightforwardly using a learned mapping

to estimate the distance of the person to the camera given the

bounding box size of the face.

For the estimation of pointing targets, we use of the three

rotation angles of the head pose. We assume that people are

looking to the object of interest they want to draw the attention

to and that the head pose coincides with the gaze direction.

Furthermore, we assume the 3D positions of potential pointing

targets to be known. First, we estimate the 3D position of the

head using the above mentioned mapping from bounding box

size to distance. Starting from that position, we construct a

straight line in direction of the roll, pitch, and yaw angle of

the head pose. Finally, we determine the object which has the

closest distance to that line.

IV. EXPERIMENTS

We performed a series of experiments in order to evaluate

our approach. To collect training data, we asked five dif-

ferent people to perform gestures in a distance of 1.5-2.5m

to the camera. We chose two different locations, different

lighting conditions, and different backgrounds (see Fig. 2).

We recorded and processed the videos with a rate of 20fps

and used a resolution of 640× 480 pixel. We had a database

consisting of 75 samples per gesture which we manually

labeled, i.e., we marked the start and the end of each gesture

as well as the beginning and end of the hold phase.

A. Gesture Recognition

After training the phase-HMMs for the hand gestures, we

tested their ability in distinguishing the individual gesture

phases (preparation (p), hold (h), and retraction (r) phase). We

used the Viterbi path and counted the number of correctly rec-

ognized gesture phases from the number of all test sequences.

Tab. I shows the percentage of correctly recognized segments

for one-handed gestures. As can be seen, using the extracted

features, the individual phases of one-handed gestures can

correctly be recognized. Only one error occurs for a segment

containing a retr point phase which is classified as retr wave.

This can be explained by the fact that both retraction phases

contain similar movements in the end. When considering a

whole observation sequence consisting of all three phases,

this error does not occur since the preparation and hold phase

are correctly recognized. For the recognition of two-handed

gestures shown in Tab. II, it can be seen that in a single test

sequence, the phases of Thisbig are classified as Dunno. When

sequences in which persons are not performing any gesture are

included into the test set, we achieve an overall recognition

rate of 90% for one- as well as for two-handed gestures. The

largest part of this error results from the fact that it sometimes

happens that no gesture phases are classified as the preparation

phase of a gesture.

The following experiment is designed to evaluate the perfor-

mance of our system on sequences containing whole gestures.

We computed the Viterbi path in the composed HMMs at each

time step and counted how often the most likely hypothesis

corresponds to the true gesture. Fig. 4 shows the results for

all six gestures. As can be seen, the gestures can be reliably

recognized after processing only few frames. Nodding seems

to be most difficult to recognize because sometimes people

barely move their head. And, again, we made the observation

that Thisbig sometimes tends to be classified as Dunno.

To better evaluate the ability of our HMMs to distinguish

arm gestures, we performed experiments in which we com-

puted for a given observation sequence the Viterbi path and

its likelihood for all individual gesture HMMs consisting of

the corresponding phase-HMMs (i.e., we did not use the

composed HMMs here). We then computed the joint probabil-

ity P (gl, gr) of the gesture gl of the left and the gesture gr of

the right hand. Fig. 5 plots the evolution of the probabilities

of the gestures over time for a sequence in which a person

waved with the left hand. In the beginning, the person was not

performing any meaningful gesture and, thus, the no gesture

model had the highest probability. Afterwards, the probability

of the correct gesture increased.



TABLE I

RECOGNITION OF ONE-HANDED GESTURE PHASES.

p wave h wave r wave p point h point r point rec. rate

p wave 25 0 0 0 0 0 100%
h wave 0 25 0 0 0 0 100%
r wave 0 0 25 0 0 0 100%
p point 0 0 0 25 0 0 100%
h point 0 0 0 0 25 0 100%
r point 0 0 1 0 0 24 96%

TABLE II

RECOGNITION OF TWO-HANDED GESTURE PHASES.

dunno p thisbig h thisbig r thisbig rec. rate

dunno 25 0 0 0 100%
p thisbig 1 24 0 0 96%
h thisbig 1 0 24 0 96%
r thisbig 1 0 0 24 96%

B. Parameter Estimation

Finally, we asked people to point to predefined targets.

We positioned eight different targets within a range of 1.5m

to the camera and at different heights. The hold phase of

all 66 pointing gestures was identified and the correct target

was estimated in 80% of all cases.

Second, we asked people to indicate the size of objects. We

told them to indicate the sizes 25cm, 50cm, 100cm, and 150cm

and estimated the parameter in the hold phase. We performed

32 experiments and counted the nearest neighbor class of each

estimate. Our system was able to determine the correct class

in 94% of all cases.

C. Videos

Illustrating videos can be found at our web page1. The

videos show the robustness of our approach to recognize

complex gestures performed by different people. As the ex-

periments demonstrate, gestures can reliably be recognized

even under varying lighting conditions and with cluttered

background.

V. CONCLUSIONS

We presented an approach to robustly recognize gestures

from data of a monocular camera. We consider typical gestures

performed by humans during an interaction such as nodding

or pointing. To represent people, we locate and track their

heads and hands. We use few, expressive features extracted

from this compact representation as input to HMMs. We

segment complex gestures into three phases and train HMMs

for each phase separately. We then construct HMMs composed

of the individual phase-HMMs. Using the distinction between

different phases, we are able to estimate parameters of gestures

as soon as a certain phase is recognized.

Our approach has been implemented and evaluated on a

humanoid robot. As the experimental results show, our system

is able to reliably spot and recognize gestures, i.e., it distin-

guishes between previously learned gestures and irrelevant or

unconscious movements.

1http://www.informatik.uni-freiburg.de/˜maren/animations-gestures.html
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Abstract— This paper discusses the role of two antagonist
neural networks for the learning and control of complex be-
haviors composed as a sequence of elementary states. Learning
a pathway with a mobile robot or a sequence of actions with
a robot arm can be seen either as the result of the learning of
a temporal sequence or as the result of the natural dynamics
of a sensory-motor system using appearance based approaches
for instance. As a result, we will discuss the performances
and the complementary features of each system, and propose
a unique control architecture embedding both systems for long
life learning.

I. I NTRODUCTION

Our long term goal is to design a control architecture allow-
ing a robot to learn, as autonomously as possible, sequences
of actions related either to spatial or temporal constraints (dis-
placements between places or gestures for instances). Learning
a behavior is often related to learning by reinforcement, by
demonstration or learning by imitation. Learn by imitation
has often been considered as a complex behavior, but in
previous work we have showed that the imitation can emerge
from elementary mechanisms. For example: a robot that learns
a “behavior” consisting in moving at different places and
performing some very simple but different manipulations of
different objects at each places as shown in figure 1. This

Fig. 1. Scenario illustrating our long term goal.

objective raises the issue of learning a behavior composed of
actions : the nature of the relevant information is different
between ”moving from a place to another”, and ”using an
arm to push an object”. Indeed, the working spaces, the type
of inputs, the motor commands, are different.
In the field of navigation systems, learning a sequence of

displacements between places (also known as navigation and
planning) is strongly related to the localization and mapping
(see for example the SLAM literature). The sequence is
generally the result of a plan composed of motor actions
or the result of an imitation (wheel orientation and speed)
associated to the recognition of places (localization) anchoring
the behavior in the robot’s cognitive map.
In the field of “manipulating systems”, i.e. non-mobile systems
performing gestures and/or object manipulation. Different
models propose to learn and adapt motor trajectories of the
mechanical system in order to fit with the desired one of
the model. The sequence is strongly related to the dynamical
parameters allowing shaping the trajectory of the arm’s joints
in order to obtain the right reproduction of the behavior.
This very short presentation of two important fields of au-
tonomous robotics illustrates how complex the issue of build-
ing a global system that deals with navigation and arm
movements as a single problem is. Our approach implicitly
raises two crucial questions : how to build control architecture
for articulated and mobile robots (to consider manipulation
and navigation as a single problem)? How to build a neural
architecture for spatial and temporal sensory-motor learning
in which each modality could complement, confirm, infirm
and/or enrich the other? What are the minimal requirements
for such a merging? Which level for fusion making? Which
coding to employ? In order to start to answer to these issues,
we compare two models in the purpose of a unified model.
Both solutions are based on artificial Neural Networks (NN)
inspired from different properties of the cerebellum and the
hippocampus loop.

II. M ODELS

Complex Temporal Sequences.The model allows a robot
to learn a sequence as a succession of transitions between the
different sensory-motor situations. An associative learning rule
allows learning and predicting the timing of the transitions.
Moreover, neural oscillators composed of coupled CTRNN
[Beer, 1994], play the role of an internal context and pro-
vide additional information in order to remove ambiguities
in complex sequences [Lagarde et al., 2007]. Applied to
the navigation, the sequence is based on the succession of



Fig. 2. Model of complex temporal sequences or orientations.

orientations (orientation is obtained from the compass). One
of the main problems was the time spent by the robot to
turn delaying the perception of the orientation during the
reproduction. During this time lag, the internal context (i.e. the
activities of the oscillators) changes. Consequently, thesystem
loses the internal state and fails to reproduce the sequence.
In order to avoid this problem, we propose to resynchronize
the oscillators, according to external signals, when a new
internal state is learnt. The context can be associated according
to a Least Mean Square (LMS) learning rule. The property
of resynchronization is crucial so that the system is able to
correctly reproduce a sequence. This property is close to the
one used in others models like the Echo States Network (ESN)
[Jaeger, 2001].

Fig. 3. Model of associations between places and actions.

Association between places and actions.This model
[Giovannangeli and Gaussier, 2007] associates places with
actions (figure 3). A place is a constellation of visual features
(landmark, azimuth). The constellation results from the merg-
ing of “what” information provided by the visual system that
extracts local-view centred on points of interest. The “where”
information provided by the compass. A simple associative
learning between places and actions enables to generate a
sensory-motor attraction basin for homing or path following
behaviors.

III. ROBOTIC APPLICATION

The robot used in our experiments is a Robulab10 (Ro-
bosoft) with a pan-tilt video camera and a compass.

Association between places and actions.During the learn-
ing, the robot moves in the environment (figure 4). When the
robot escapes too far from the desired trajectory, we correct it
with a joystick as a dog guided with a leash. At this moment,
the NN learns online a new association between the correct

of motor command and the current place. When the robot
recognizes a place, it triggers the associated action. After 3
or 4 iterations of learning, the robot navigates autonomously
without correction from the teacher. The system does not tryto
recognize a place, but use a competitive mechanism between
the learnt associations to build an attraction basin. The system
adapts to the dynamic of the environment (obstacles, others
agents).

Fig. 4. Spatial navigation: picture of learnt (light arrows) and reproduced
(dark arrows) trajectories by the robot with places-actions associations.
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Complex Temporal Sequences.During the learning, the
robot moves in the environment as shown in figure 6. When
the robot makes mistakes, we use a joystick to correct its
trajectory. At this moment, the NN learns online (one shot
learning) a new transition between the previous and the



new orientation. To initiate the sequence of displacement,
we set the robot heading to the first learnt orientation (the
robot moves at a constant speed). The orientation information
triggers on time the prediction of the next orientation that
will drive the robot’s new rotation, and begin the step by
step reproduction of the sequence : each new orientation is
recognized and resynchronizes the oscillators, inducing the
next prediction and the realization of the associated action.

Reproduction of the sequence of orientation
Learning of the sequence of orientation

Fig. 6. Learning and reproduction of temporal sequences: picture of another
learnt trajectory (light arrows) and reproduced trajectory (dark arrows) by the
robot.

IV. D ISCUSSION

The architecture that learns places-actions associationshas
shown to be robust and reliable. It allows the robot to
successfully navigate indoor as well as outdoor. In parallel,
learning sequences of orientations has been successfully used
in previous works in the frame of imitation with mobiles or
articulated robots. Of course, the robustness of the navigation
is strongly dependent on the quality of the visual environment.
If the visual mechanism has shown to be robust to partial
changes of the environment, a failure of the camera or very
bad lighting conditions will prevent the system from working.
Considering this, learning the sequence of orientations for a
simple navigation task becomes interesting. Indeed, the robot
uses little information from the environment : only a detection
of the orientation variations. During the reproduction of the
sequence, the robot acts as a “blind” automata. It can work
correctly during little iteration without visual information. Re-
synchronization of internal dynamics with the current state is
necessary after a while. It can not adapt to sudden changes of
the environment (e.g. a new obstacle). Nevertheless, we think
that the models of places-actions associations and sequence
learning should work in parallel. Each architecture seems to

complete the other one in order to learn the spatial and tempo-
ral properties of complex behaviors. Moreover, the learning of
the timing of the orientation changes should (1) contributeto
confirm or infirm the visual place recognition (being the right
orientation at the right time), (2) punctually replace the place
cells if their activity is not strong enough (bad visual condition,
conflict between different places) and (3) contributes to build
long sequences, allowing to concatenate behaviors composed
of displacements with those made of sequences of manipula-
tions. Neurobiological and psychological studies suggestthat
both types of learning cohabit in the brain of mammals. For
example, The results in [Packard and McGaugh, 1996] show
the different roles of the hippocampus and basal ganglia in
the task learning with different learning scales and learning
rates, and the implication of different modalities (visualvs.
proprioceptives). Hence, we propose a new architecture in
Figure 7. This new architecture shows the model connecting

Fig. 7. Proposition of unified model with a hypothetical connection (bold
arrow) could allow re-synchronizing the internal context (i.e. the oscillators)
on place recognition signals.

both predictors. In order to merge the predictions, both systems
will have their outputs merged in one neural field [Amari,
1977], [Schöner et al., 1995] allowing the cooperation of
the predictions in case of similar responses, but also their
competition in the case of too different responses (capacity
of bifurcation of the neural field). Moreover, the neural field
will allow coping easily with two systems working at different
time scales. The emerging behavior will be the result of
two subsystems having different dynamics and categorizing,
predicting complementary modalities.

In a future robotic experiment, this new model will also help
to enhance human/robot interaction allowing a mobile robot
to learn the navigation path directly from following a naive
user. During the displacement, the robot will focus on the
demonstrator and will learn online the temporal successionof
its orientations (short time learning). To anchor the displace-
ment in the environment (which is not possible when focusing
on the naive user), the robot will reproduce by oneself the
displacement (i.e. the sequence of successive orientations) and
will learn during this reproduction the associations between
places and actions (long time learning). This experiment
would help to study how experiences are stored in the brain.
Moreover, it would help to study how and why the brain needs
to use different kinds of memories according to learn and store
behaviors between the episodic memory (hippocampus) and



the long term memory of the know-how (basal ganglia and/or
cortical structures).

In the purpose of using an arm mounted on the mobile robot,
it is interesting to anticipate that a similar visual mechanism
as the “places cells” could guide the arm (for example, the
location of interesting visual objects). This mechanism could
allow anchoring in the visual working space of the arm tem-
poral sequences of gestures, as well as the navigation model
anchors actions in the wide visual environment. Previous
works on robot arms have show the importance of the visuo-
motor learning for gesture imitation. This solution consists in
learning on a multi-modal map the associations between the
motor and the visual information of the end-effector.
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I. INTRODUCTION AND PROBLEM STATEMENT

Recently1 there has been a growing interest in human
augmented mapping[1, 2]. That is: a mobile robot builds
a low level spatial representation of the environment based
on its sensor readings while a human provides labels for
human concepts, such as rooms, which are then augmented
or anchored to this representation or map [3]. Given such an
augmented map the robot has the ability to communicate with
the human about spatial concepts using the labels that the
human understand. For instance, the robot could report it is
in the ”kitchen”, instead of a set Cartesian coordinates which
are probably meaningless to the human.

Even if the underlying mapping method is perfect, two
main problems occur in the approach of augmented mapping.
When guiding a robot through a number of rooms, humans
tend to not provide labels for every visited room [4]. The
result is that the robot has difficulty to model where one
room ends and the other room starts. This problem could
be solved by detecting room transitions through the sensor
data. Although good attempts using such an approach have
been made in office environments [5, 6], applying these to
other environments such as real homes is nontrivial. Another
problem is that the generalization of the labeled map to
newly acquired sensor data can be much different from the
humans ideas. That is: there is a mismatch between the
human representation and the robots representation. In our
case the robots generalizes labels using visual similarities,
while humans could use the function of the room. Even among
humans there are differences between spatial representations.
Think of a living room with an open kitchen. Where does the
living room end and the kitchen begin?

Our solution to both of these problems is to use pro-active
human robot interaction. We briefly describe how the robot
learns a map of the environment using a vision sensor and
active dialog with a human guide. The method is implemented
on Biron (the Bielefeld Robot Companion) which supports
an integrated human robot interaction system based on XCF
(XML Communication Framework) complete with person
attention, spoken dialog, person following, gesture recognition
and localization components [7].

1The work described in this paper was conducted within the EU FP6-
002020 COGNIRON (”The Cognitive Companion”) project.

Fig. 2. Biron and human guide in a home environment.

II. AUGMENTED MAPPING

A. Appearance based topological mapping
To map the environment we use images taken by an omni-

directional vision system. From each image SIFT features are
extracted which are used to find image point correspondences
between pairs of images by matching their SIFT descriptors.
False point correspondences are then removed by imposing
the epipolar constraint. By dividing the minimal number of
SIFT features of two images i and j by the number of
correspondences, one finds a measure for the distance of the
two images in appearance space:

dij =
min(#SIFTSi, #SIFTSj)

#correspondencesij

These computed distances are put in a graph representation
in which the nodes denote the images and distances are put
on the links, effectively creating a topological map of the
environment. If the distance is above a certain threshold, which
was set to 10 in our experiments then no link was created.

The complete map building system is running in real time
on one of the robot-laptops, processing around one image per
second. To keep the number of comparisons limited we used
the Connected Dominating Set method to pick key images
from the previous image set. For an in depth treatment of this
map building scheme see [8].

B. Human augmentation of room labels
While the robot is driving through the environment follow-

ing the human guide and building a topological map, room-



This is the 
living

R  O  B  O  T  I  C  S
ActivMedia

(a)

Living

Kitchen

(b)

the coridor
No, this is

Are we entering the 
the kitchen?

R  O  B  O  T  I  C  S
ActivMedia

(c)

Kitchen

Living
Corridor

(d)

Fig. 1. A sketch of the proposed method. (a) The human guide provides a label. (b) After a second label is provided the map consists of two subgraphs.
(c) The robot reports a room transition on which the human provides feedback. (d) The feedback is used to update the map.

labels can be provided to the robot, see Figure I for an
example. This is performed by commanding the robot to stop
and telling the robot the name of the room it is in, e.g. ”This is
the kitchen” (see Figure 1(a)). To handle miscommunication,
a powerful grounding-based dialog system is used that can
handle complex conversational repair behavior and facilitate a
smooth conversation (see [2] for more information). The given
label is then added to the next node (image) that is added to
the map.

Using the given labels and the structure of the graph the
robot can partition the map in different subgraphs. Every node
is assigned to that label corresponding to the closest labeled
node computed with Dijkstra’s shorter path algorithm[9] (see
Figure 1(b)). Effectively we are exploiting here the fact that
images taken in a convex space, which usually correspond
to the notion of rooms, are visually much more similar than
images taken while the robot moved through a narrow passage,
a door.

III. INTERACTIVE MAPPING

As can be seen in Figure 1(b) the transition from the ”living
room” to the ”dining room” is probably not learned in the way
the human had in mind when giving the labels. The human
would probably not notice this until it would send the robot
to the ”Living room” after which the robot would move to
the hallway. This can easily be solved by making the robot
pro-actively interact with the human.

Every time the robot adds a new image to the map it
computes its corresponding label. If this label is different than
the label of the previously added node, the robot reports this to
the human in the form of a question. In the case of Figure 1(c)
the robot asked ”We just entered the living room, right?”.
The human now has the opportunity to provide feedback,
possibly reducing the mismatch with its own representation,
see Figure 1(d). If later the robot would really enter the ”living
room” it will again report this to the human confirming that
it has correctly learned the transition.

A technical detail is that the robot does not stop driving
while reporting room change to the human, so to not interrupt
the tour. Thus new nodes are added to the graph while it
awaits an answer. The possibly corrected label is put on
the node which triggered the robot. This could lead to race

conditions if there are a lot of transitions close to each other,
e.g. if different locations in the room are also labeled. In the
conducted experiments, however, we did not experience such
problems.

IV. RESULTS

The new interactive mapping approach was recently
implemented on the Biron robot. First test trials were
performed in a rented apartment at Bielefeld which
was furnished to look like a real home environment.
See http://www.science.uva.nl/˜obooij/
research/mappingHRI/index.html which features a
video shot during one of the trials illustrating the capabilities
of the complete interactive mapping system.

The robot captured panoramic images once every 2 seconds
and the tour took around 5 minutes resulting in a total set
of 158 images. The complete mapping system, including the
image processing, is performed during the tour in real-time on
one of the laptops attached to the robot.

In Figures 3(a)-(e) the spatial representation is plotted
using hand-corrected odometry data. Note, however, that this
odometry data was not used by the mapping algorithm.

In Figure 3(a) the robot drove from the living room at the
bottom right of the figure through the hallway to the kitchen
on the upper left. By then the only label that was given was in
the living room, so it groups every new node with that label.
In Figure 3(b) it is provided a new label “Dining room” and
as can be seen the graph is split into two groups according
to their distance over the graph. The cut between these two
groups is located somewhere inside the small hallway. This
became apparent to the guide in Figure 3(c) where the robot
was guided back to the hallway and asked if it reentered the
kitchen. After interacting with the guide the label “Hallway”
was added to the map, splitting the graph in three parts, see
Figure 3(d). After reentering the living room the robot again
asked if this was the “Living room” which was confirmed
by the guide resulting in another node being labeled. In
Figure 3(e) the final spatial representation is shown as build
by the robot.

V. CONCLUSION

We have shown that using relatively simple human robot
interaction techniques we can solve two problems apparent
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Fig. 3. The spatial representation build by the robot. The different symbols denote nodes (images) of the graph. The lines between the symbols denote
links between the lines, with darker colored lines representing links with a smaller distance. Green circles denote nodes belonging to the “Living room”, pink
squares to the “Dining room” and yellow pentagons to the small “Hallway”. Symbols linked with a label represent nodes that were labeled by the guide. In
addition part of the ground-truth floor map is plotted on top for reference.

in augmented mapping systems. The robot actively asks the
labels of rooms that were not labeled at the first visit and
decreases the mismatch between the human representation of
room transitions and the robots representation. The complete
system can be run in real time on a single laptop and has been
shown to work in a real home environment.

Future work is directed to gathering larger evidence for the
feasibility of the interactive localization approach. The system
scales well to larger environments and is flexible because it
uses only a vision sensor.
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Abstract— This paper describes an interdisciplinary research
project aimed at developing and evaluating effective and user-
friendly non-contact robot-assisted therapy, aimed at in-home
use. Specifically, the research develops and evaluates a method
of on-line user adaptation aimed at both personalizing the
therapy process and maximizing its health-related outcomes. Our
approach is original and promising in that it combines several
ingredients that individually have been shown to be important
for long-term efficacy in motor rehabilitation and cognitive
skills improvement: (1) intensity of task specific training; (2)
engagement and self-management of goal-directed actions. These
principles motivate and guide the strategies used to develop novel
user activity sensing and provide the rationale for development of
socially assistive robotics therapy for monitoring and coaching
users toward customized and optimal rehabilitation and care
programs.

I. INTRODUCTION

Robotic systems are now capable of social interaction with
human users, presenting a new opportunity for providing
individualized care. Mounting evidence shows that human
users respond more readily to robots than to disembodied al-
ternatives such as computer screens, personal digital assistants,
and smart phones.

As the elderly population continues to grow, a great deal of
attention and research is dedicated to assistive systems aimed
at promoting ageing-in-place, facilitating living independently
in ones own home as long as possible.

Two of the main problems encountered in the elder pop-
ulation are the Alzheimer’s disease, which is a form of
dementia, and stroke. In a recent report published by the
American Alzheimer’s Association [1], it is stated that since
the incidence and prevalence of Alzheimer’s disease increase
with advancing age, the number of persons with the disease
is expected to grow as a proportion of this larger older
population. Therefore, the rapidly increasing number of people
suffering from Alzheimer’s disease could cripple healthcare
services in the next few decades. The latest estimate is that
26.6 million people were suffering from Alzheimer’s disease
worldwide in 2006, and that the number will increase to
100 million by 2050, 1 in 85 of the total population. The
statistics also show that stroke [2] is also a very dominant
health problem with more than 15 million people suffering a
stroke worldwide each year.

These individuals are high users of health care, residential
care and home and community services and they need long-
term care services; for example stroke survivors need to
re-learn skills that were lost when part of the brain was
damaged, and the intensive post-stroke rehabilitation therapy
(usually around 6 hours per day) during the critical months
of the post-stroke period is crucial in the recovery; also for
the individuals suffering of cognitive impairment such as
Alzheimer’s disease, even if there is no cure, medication and
special therapy can improve disease symptoms. Non pharma-
cological treatments focus on physical, emotional and also
mental activation. Engagement in activities is one of the key el-
ements of good dementia care. Activities (e.g., music therapy,
arts and crafts) help individuals with dementia and cognitive
impairment maintain their functional abilities and can enhance
their quality of life. Also cognitive rehabilitation therapies that
focus on recovering and/or maintaining cognitive abilities such
as memory, orientation, and communication skills are other
specific therapeutic protocols designed for individuals with
dementia. Finally, physical rehabilitation therapies that focus
on motor activities help individuals with dementia rehabilitate
damaged functions or maintain their current motor abilities so
as to keep the greater possible extent of autonomy.

Therefore, in this work we investigate the role of robots
active learning in the assistive therapy process and we try
to address the following research question: How should the
behavior and encouragement of the therapist robot adapt as
a function of the users personality, preferences, physical and
cognitive impairment, and task performance?

II. LEARNING METHODOLOGY

Learning to adapt our daily behavior as a function of differ-
ent internal and external factors it’s a fundamental character-
istic of humans. Creating robots capable of exhibiting similar
sophisticated capabilities has proven to be a very difficult task.
Therefore, providing an engaging and motivating customized
protocol that is adaptable to user personality, preferences,
physical and cognitive impairment, and task performance is a
challenge in robotics, especially when working with vulnerable
user populations, where a careful consideration of the users
needs and disabilities is required.



To the best of our knowledge, no work has yet tackled
the issue of robot personality and behavior adaptation as a
function of user personality and task performance in the as-
sistive human-robot interaction context. In the work described
here, we address these issues and propose a reinforcement-
learning-based approach to robot behavior adaptation. In the
learning approach, the robot incrementally adapts its behavior
and thus its expressed personality, attempting to maximize
the task performance. The robot’s behavior (and therefore
personality and empathy) is expressed through multi-modal
cues which include: interpersonal distances/proxemics, verbal,
para-verbal, and non-verbal communication, and activity that
will allow the robot to be responsive both in terms of temporal
and social appropriateness.

We formulated the problem as policy gradient reinforcement
learning (PGRL) and developed a learning algorithm that
consists of the following steps: (a) parametrization of the
behavior; (b) approximation of the gradient of the reward
function in the parameter space; and (c) movement towards a
local optimum. The main goal of our robot behavior adaptation
system is to enable us to optimize on the fly the three main
interaction parameters (interaction distance/proxemics, speed,
and verbal and paraverbal cues) that define the behavior (and
thus personality and empathy) of the therapist robot, so as to
adapt it to the users profile and thus improve the users task
performance. More details can be found in [3].

As a function of the user population and therefore the
designed task, task performance is measured either as the
number of exercises performed in a given period of time
(in the post-stroke physical rehabilitation setup), or as the
reaction time and the amount of vocalization (in the dementia
cognitive therapy setup). Hence, the learning system changes
the robot’s personality, expressed through the robot’s behavior,
in an attempt to maximize the task performance metric.

III. EXPERIMENTAL DESIGN

A. Post-Stroke Physical Rehabilitation

Two different experiments were designed in order to test
the adaptability of the robot’s behavior to the participants
personality and preferences. The experimental task was a
common object transfer task used in post-stroke rehabilitation
and consisted of moving sticks from one box on the left
side of the participant to another box on his/her right side.
One of the boxes was on an electronic scale in order to
measure the user’s task performance. The task was open-
ended. The subject pool consisted of 12 participants (7 male
and 5 female). In order to determine the users’ personality
(based on the Eysenck Personality Inventory (EPI) [4] and
preferences related to the therapy styles or robots vocal cues,
interaction distances, and robots speed from the values used in
the experiments, the participants were asked to complete a pre-
and post- experiment questionnaire. The learning algorithm
was initialized with parameter values that were in the vicinity
of what was thought to be acceptable for both extroverted and
introverted individuals, based on one of our previous study [5]

The first experiment was designed to test the robot behavior
adaptation to user personality-based therapy style. The therapy
styles ranged from coach-like therapy to encouragement-based
therapy for extroverted personality types and from supportive
therapy to nurturing therapy for introverted personality types.
The vocal content for each of these scenarios was selected
in concordance with encouragement language used by profes-
sional rehabilitation therapists.

It is well known that people are more influenced by certain
voices and accents than others. The main goal of our second
experiment was to test and validate the adaptation capability
of the robot to the user preferences related to English accent
and voice gender.

B. Dementia and Alzheimer’s Disease Care

We designed a new experiment to improve the participants
attention and consists of a cognitive game called song dis-
covery or name that tune (i.e., find the correct button for the
song, press it, and say the name of the song). The criteria for
participation (in addition to the dementia diagnosis) in this
experiment include the ability to read large prints and to press
a button. The objective measure of this study is the reaction
time for both song detection and silence detection verbally and
with buttons. The main goal is to minimize the reaction time
and maximize verbalization, which signifies improvement of
cognitve attention.

The participants performance during the game is assessed
using both data obtained from the interaction with the robot
and button recordings, and data obtained from video record-
ings. Music therapist feedback will be gauged through a ques-
tionnaire completed at the end of the experiment. Outcomes
will be quantified by evaluating task performance and time on
task.

IV. EXPERIMENTAL RESULTS

A. Post-Stroke Physical Rehabilitation

The pilot experimental results provided first evidence for the
effectiveness of robot behavior adaptation to user personality
and performance: users (control group - individuals who were
not stroke patients) tended to perform more or longer trials
under the personality matched and therapy style matched con-
ditions. The result is a novel stroke rehabilitation tool that pro-
vides individualized and appropriately challenging/nurturing
therapy style that measurably improves user task performance.

B. Dementia and Alzheimers Disease Care

Two focus groups were conducted at our partners sites:
Silverado Senior Living and The Jewish Home Los Ange-
les. The preliminary focus groups and early studies already
show promise for our approach. More experimental results
validating our hypotheses will be available by the time of the
workshop, as this paper reports on ongoing work in progress.



V. CONCLUSION

This paper presents a novel incremental learning method-
ology for assistive purposes. Our non-contact therapist robot
monitors, assists, encourages, and socially interacts with post-
stroke users and people suffering from cognitive impairement
and/or dementia during rehabilitation/maintenance therapy.
The experimental results provide first evidence for the ef-
fectiveness of robot behavior adaptation to user profile and
performance.
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Abstract- Machine learning techniques have currently been 
deployed in a number of real-world application areas – from 
casino surveillance to fingerprint matching. That fact, coupled 
with advances in computer vision and human-computer 
interfaces, positions systems that can learn from human 
observation at the point where they can realistically and 
reliably be deployed as functional components in autonomous 
control systems.  Healthcare applications though pose a unique 
challenge in that, although autonomous capability might be 
available, it might not be desired.  And yet, based on recent 
studies focused on assessment of the changing demographics of 
the world, there is a need for technology that can deal with the 
shortcomings envisioned in the workforce. Traditional roles for 
robotics have focused on repetitive, hazardous or dull tasks. If 
we take the same stance on healthcare applications, we find 
that some therapeutic activities fall under this traditional 
classification due to the long-repetitive nature of the 
therapist-patient interaction.  As such, in this paper, we discuss 
techniques that can be used to model exercise behavior by 
observing the patient during therapist-patient interaction. The 
ultimate goal is to monitor patient performance on repetitive 
exercises, possibly over the course of multiple days between 
therapy sessions. 

   

I. INTRODUCTION 
Physical therapy is a very practitioner intensive process.  
When patients enter into the process they are often 
required/asked to perform exercises that they have been 
shown how to do when they are at home between visits. 
Proper compliance is strongly correlated with shorter time to 
recovery as well as reduction of pain in the long term [1].  
During the time between therapy sessions there are many 
factors which affect patient compliance, including 
forgetfulness, lack of motivation, boredom, and lack of 
instant feedback. To deal with these issues, researchers have 
shown the positive use of robots in assistive therapy 
applications ranging from stroke rehabilitation [2] to motor 
development in children [3]. 

In many of these applications, if we can correctly identify 
and match patient exercise behavior based on characteristics 
learned during previous therapist-patient session, we can 
develop a monitoring mechanism to provide feedback for 
patient recovery. To enable this capability, we present two 
methods that utilize image-based observation as a means of 
gathering sensing information, and classification to identify 
subsequent patient behavior based on observations during the 
therapist-patient session. 
 

 

II. ALGORITHM: LEARNING EXERCISE BEHAVIORS 

A. Learning of Exercise Primitives through Observation 
Learning of exercise primitives involves modeling an 
exercise scenario by sequencing a series of repetitive motion 
behaviors together. A motion behavior is used to represent 
an interpretation of the basic movements of an arm exercise. 
It is not designed to compute specific motion vectors (such 
as specific arm joint trajectories), but rather to provide 
information about general movements. We define a motion 
vector  

! 

"
v

= (d,v)          (1) 

where d represents the direction of motion and v represents 
the velocity of motion. In addition, the possible values 
associated with d and v are discretized based on pre-defined 
linguistic classes, as depicted in Table I. As such, there is a 
finite number of motion vectors that exist for defining a 
low-level motion behavior. We define this finite set of 
possible motion vectors as the motion class κmotion.  
 

Table I.  Motion behavior definition structure 
Motion Parameter Linguistic Values 

Direction (d) Left, Right, Up, Down 

Velocity (v) Slow, Fast 
 

The direction parameter represents the absolute direction 
of a hand with respect to a world coordinate system. The 
following direction vectors are used to classify this motion 
parameter: 
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The velocity of the motion behavior, v , is measured as 
follows: 

! =
"p

"t
 (px/s)          (2) 

!p  is defined, with respect to an observation, as the 
distance between the location of the hand when a motion 
initiates and terminates. !t is measured by counting the 
frame numbers during a motion and dividing it by the 
average frame rate of the camera.  Since the velocity 
required in this study need not be precise, it is reclassified as 
a speed: SLOW/FAST. If a motion is faster than the overall 
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sequence speed average, it is defined as FAST, and as 
SLOW otherwise. As an illustrative example, Table III 
shows the association between low-level motion behaviors 
and the resulting motion vectors. 

Table II.  Association - motion behaviors and vectors 
Illustrative Description of 

Motion Behavior  Motion Vector 

Human quickly lifts hand up (Up, Fast)  

Human shakes hand to the right  (Right, Fast) 
 

The goal of the motion behavior analysis process is to 
populate instances of the motion vector based on observation 
of a human exercise action (such as depicted in Figure 1). 
This process is executed by computing a motion gradient 
during human exercise and fitting the motion gradient to the 
pre-defined motion class. The motion behavior analysis 
process is further described in [4].  Once motion behaviors 
are identified, the sequence of motion behaviors associated 
with an exercise scenario are stored and labeled (by the 
therapist). After therapist-patient interaction, the system is to 
match the stored therapy exercise information to the patient 
during subsequent exercises using the same motion behavior 
analysis process.  

 
Figure 1. Sequence of images captured during observation 
(top) 180° left shoulder abduction (middle) 90° left shoulder 
abduction (bottom) right shoulder rotation 

  

B. Learning Exercise Behaviors through Observation 
In the previous approach, image-based methods were used to 
construct an exercise scenario from a sequence of identified 
motion behaviors. In the next approach, we utilize a method 
that classifies the entire exercise scenario using a single 
representation. Based on imaging the patient during a 
therapy session, a texture based feature vector is first 
generated for each image (frame) and stored in a database. 
This database is then used to train an adaptive classifier to 
classify the elements in the dataset, using the approach as 
described in [5]. During subsequent exercise, the method 
presented in [6] is used to extract period and frequency 

information for the captured data in order to generate a 
mapping between observed state and its position in the 
exercise cycle. In this step, we assume only one exercise is 
exhibited in the captured data sequence. After 
therapist-patient interaction, a measure of similarity using 
the 2D Kolomogorov Smirnov test [7] is calculated to 
determine the statistical goodness of fit between pairs of 
exercise behaviors. This test is used to determine which of 
the stored therapy exercises the patient is performing during 
subsequent exercises. 

III. INTERACTION BETWEEN USER AND ROBOT 
In the subsequent section, we outlined two complimentary 
methods to correctly identify and match patient exercise 
behavior with information captured during therapist-patient 
interaction. Since exercise motions depend on individual 
capability (and can vary both between individual subjects as 
well as between the same subject during different exercise 
scenarios), the role of the therapist during these scenarios is 
1) to correctly position the robot such that important body 
features are in view of the robot, and 2) to correct the 
labeling of the behaviors during subsequent sessions with 
the patient.  In theory, to allow for development of a 
monitoring mechanism to provide feedback for patient 
recovery, the therapist must interactively work with the 
robot to correct learned knowledge. 

IV. EXPERIMENTAL SETUP 
To generate data akin to that expected with a therapy patient, 
the exercises, as shown in Table III, were first performed 
during a simulated therapist-patient session, and then 
subsequently, in random order, repeated with varying rates 
of execution (Figure 1).  

 
Table III. Exercise Cases Considered 

Shoulder Abduction Seated 
(right, left, 90°, 180°) 

Shoulder Rotation Seated 
(right, left) 

Shoulder Abduction Standing 
(right, left, 90°, 180°) 

 
The goal in implementing the two different methodologies is 
to assess the capability of the system to correctly identify the 
patient exercise and determine the system characteristics that 
contribute to success of each approach. Preliminary analysis 
show that the recognition methods can uniquely identify 
patient behaviors as long as the following assumptions hold: 
1) there is no significant change in the activity performed 
during subsequent sessions, 2) the therapist correctly shows 
the patient how to perform the exercises safely, and the 
patient is able to comply, 3) the patient‘s appearance remains 
relatively consistent during subsequent sessions, and 4) the 
robot can position its camera as appropriate to capture the 
execution of each exercise. 
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V. CONCLUSIONS  

In this paper, we present two methods that enable learning 
of therapy exercises performed during a therapist-patient 
session. The approach uses vision as a means of observing 
the user during task execution. The stored exercise sequence 
can then be utilized by the system to match subsequent 
patient behavior. Future work involves developing 
approaches to extract specific performance metrics (i.e. 
speed and frequency) to provide feedback to the therapist for 
enhancing patient recovery. 
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JureŽabkar and Ivan Bratko
AI Lab, Faculty of Computer

and Information Science,
University of Ljubljana,

SI-1000 Ljubljana, Slovenia
Email: jure.zabkar@fri.uni-lj.si

Ashok Mohan and Erwin Prassler
University of Applied Sciences

Bonn-Rhein-Sieg
Grantham-Allee 20,

53757 Sankt Augustin, Germany

Abstract— In this paper we present a qualitative exploration
strategy for an autonomous robot that learns by experimentation.
Particularly, we describe a domain in which a mobile robot
observes a ball and learns qualitative prediction models from
its actions and observation data. At all times it uses these models
to predict the results of the actions that it has decided to execute
and to design new experiments that would lead it to learn a
better model of the world, and for planning of the execution of
these experiments. The models also represent the insights of the
robot’s knowledge. We experimentaly evaluate the exploration
strategy.

I. I NTRODUCTION

The idea of autonomous robots that are capable of learning
by themselves, without any human intervention is one of the
most fundamental goals of AI. Among several paradigms of
learning, learning by experimentation demands no teacher,but
rather learns autonomously, interacting with the real world. In
this paper we present a showcase in which an autonomous
robot is learning qualitative models by conducting experiments
in its environment.

There are several ways of how the robot chooses its actions,
designs and plans experiments. In order to learn efficiently,
the strategy which it uses to explore its environment is very
important. We propose a qualitative exploration strategy for
autonomous robot learning. We evaluate our strategy by com-
paring it to random strategy. The results show that using our
strategy, the robot is learning faster and it learns better models.
We consider learning ofqualitative models an important
aspect. This is due to the fact that qualitative models are easier
to learn and sufficient to design and plan the experiment. They
reduce the complexity of numerical models considerably and
also enable humans to easily understand what the robot has
learned.

The robot has no prior knowledge about its environment. In
particular, it has no knowledge regarding the relations between
its actions and observations. Its task is collecting the data
and gradually learning a model which it immediately uses for
moving and designing new experiments. Its goal is to learn a
model that would relate its actions to its observations. At each
step, the robot decides on one of several possible actions. It
then uses its current model to predict the result of its action,
executes the action and collects observations. It then compares

ball distance
ball angle

robot
orientation

Fig. 1. The robot and the ball.

its prediction with the actual observations. The result of this
comparison leads to further experiments that helps to revise
the model.

Regarding related work, our approach is most similar to [1].
However, one of our general goals is to obtain the insights of
robot’s knowledge, so the models should be understandable to
humans rather than black boxes. In this respect, our work is
similar to [2]. A broader context also includes [3, 4, 5, 6].

II. L EARNING QUALITATIVE MODELS BY

EXPERIMENTATION

Our problem domain consists of a mobile robot and a ball.
The robot observes its distance to the ball (ball distance,
denoted bybd) and the angle between its orientation and the
ball (ball angle, denoted byba), as shown in Fig. 1.

The robot is of differential drive type (Khepera-like) and
moves by setting the speeds of the left and the right wheel (L
andR respectively). In our case,L andR are always positive,
and the robot was restricted to choose between speeds 4 and
5 only. So the robot can move straight ahead (L = R = 5),
right (L = 5, R = 4) and left (L = 4, R = 5), as shown in
Fig. 2. The robot is not aware of any coordinate system. It
is only aware of the actions it performs (L and R) and the
observations from the sensors (bd andba).

The overall goal that we want the robot to achieve is that



R R R

R

left(L)
straight(S)

right(R)

Fig. 2. The actions of the robot.

it learns a qualitative model describing the relations between
its actions and observations. By densely sampling the whole
space of above mentioned variables and learning a qualitative
tree we obtained an “almost ideal” model of our domain. Note,
that we did not use this model in any other way than to see for
ourselves what the robot should eventually learn. This “almost
ideal” qualitative tree for our domain is shown in Fig. 3. The
notation used in the model is explained below.

L/R

ba

< 0.9

ba

< 89.76

−−++

≥ −90.31

+ + ++

< −90.31

+ + ++

≥ 89.76

ba

≥ 0.9

+ +−−

≥ 90.62

ba

< 90.62

−−−−

≥ −89.78

+ +−−

< −89.78

Fig. 3. The “almost ideal” model of the robot in our domain.

We have performed all the experiments in the simulator
Simon which is a part of the machine learning framework
Orange [7].

The robot learns its first model from a small dataset of just
10 samples collected by random movement. This initial model
is not very accurate and useful. Nevertheless, it enables the
robot to use it for making predictions about further actions.

The ability to make predictions enables the choice among
learning strategies. A learning strategy determines the next
action. The most primitive learning strategy is random strategy,
in which the robot chooses one of its three possible actions at
random. Random movement is thus defined by actions rather
than by the robot’s positions. The latter is not even possible
since in our case the robot is not aware of its coordinates and
can not choose to navigate in any coordinate system.

The robot is supposed to learn the relations between its
actions and observations. In our simple example, it has two
actions (L andR) and two observation variables (ba andbd),
so it should learnbd = Q(sSL), bd = Q(sSR), ba = Q(sSL)
andba = Q(sSR), where signs is + or − andL = ṠL, R =
ṠR, whereSL andSR are the paths of the left and the right
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Q(+ba)
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Q(-ba)

ba=180 ba=-180

Fig. 4. The various angles when robot is turning left and right from ba = 0

?ba=180 ba=-180

ba=-90ba=90

m �-

ba=0 ba=0

Q(+bd)Q(-ba)

Q(-bd)

Q(-ba)

Q(+bd)Q(+ba)

Q(-bd)
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Fig. 5. The various angles when robot is turning left and right from ba = 180

or ba = −180

wheel respectively. In these equations,Q stands for qualitative
relation as described in [8]. In the paper, we use a shorter
notation, e.g. ”+ +−−”, giving only the signss in the above
mentioned order. So ”+ + −−” means:bd = Q(+SL), bd =
Q(+SR), ba = Q(−SL) and ba = Q(−SR). In words: ball
distance is increasing whenSL and SR are increasing (i.e.
L, R > 0), and ball angle is decreasing whenSL andSR are
increasing. We define the classC of this domain as a 4-tuple
of signs as just described. Figures 4 and 5 clearly shows the
regions of different values of classC.

Qualitative models that the robot is learning are in the
form of qualitative trees and qualitative non-deterministic finite
automata (NFA). The robot uses algorithm Padé [8] with
decision trees to learn qualitative trees while it builds anNFA
from the temporal sequence of its actions and observations.
The initial set of attributes includesL, R, ba, bd and the
classC. To this set, Padé adds a newly constructed attribute
L/R, obtained by the chain rule, dividing the derivatives of
each wheel’s path w.r.t. time. The attributeL/R describes
the qualitative relation between both speeds and can, as we
shall see, explain the left and right turns. Using the chain
rule for attribute construction is a general principle and is not
specifically added to this domain.

The robot’s exploration algorithm includes three strategies
that strive to guide the learning towards the final goal. The
most primitive is therandom strategy — the robot moves
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Fig. 6. The NFA learned by the robot.

randomly choosing the actions from its set of available actions.
The second strategy we calluniform strategy; it is used when
the robot wants to sample the actions so that their distribution
is uniform. Uniform distribution of actions assures that the
robot is not biased towards one of the actions, e.g. going
straight ahead all the time. At first glance it may seem that
uniform and random strategies are the same, but the difference
lies in the fact that uniform strategy also accounts for the
action executed using persistent strategy. The third strategy
is calledpersistent strategy — the robot keeps executing the
same action for some time and is collecting more learning
examples of the same kind.

The robot uses random strategy only for its first ten moves
when it has no knowledge about its environment and the
random choice is the best it can make. After it collects the first
ten learning examples it can already build a first model and
start using it. At this time, it changes the strategy touniform
and enters the main loop in which it is updating and improving
the model.

The main loop starts with choosing the next action based
on the current strategy (either uniform or persistent). After
the robot picks the action it uses the current qualitative tree
to make the prediction using the current state and the action.
When it makes the prediction it executes the action and ob-
serves the result. It compares its own prediction with the actual
observation. If they match, the robot continues with persistent
strategy, otherwise the robot is “surprised” and motivatedfor
further exploration of the unknown behaviors. The reason for
the mismatch is the false prediction of qualitative behavior,
i.e. the signs in the class value were predicted wrongly. The
robot updates the NFA with a new state and transition and
also updates the qualitative tree. After it updates the model,
the robot starts designing a new experiment and planning its

actions so that it could carry out the designed experiment. For
this purpose it maintains a frequency table of class values and
it observes the difference between the number of examples
in the current state of the NFA and the one with the lowest
frequency in the table. If the number of examples in the
current state of the NFA is greater than a threshold, it selects
uniform strategy and picks persistent otherwise. This finishes
one iteration of the loop and starts a new one.

ba

+ + ++

< 179.74

+ +−−

≥ 179.74

Fig. 7. The model created by the robot after 19 steps.

bd

+ +−−
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ba

≥ 562.33

−−−−

< 90.44

+ +−−

≥ 90.44

Fig. 8. The model created by the robot after 1000 steps.

III. R ESULTS

The exploration algorithm from the previous section enables
the robot to learn by experimentation in an efficient way. To
confirm the latter, in this section we compare our approach
to the pure random strategy. Again, we stress that random
strategy does not mean random sampling of the coordinate
space but rather choosing the actions randomly.

In random strategy we use a parameterduration which
defines the frequency for choosing a random action. Ifduration
= 1 the action is chosen randomly on each simulation step
while for duration = n it is chosen only eachn-th step and
maintained the same in between. The latter is actually not
a pure random strategy but rather a mixture of random and
persistent. We use it for comparison anyway since the pure
random strategy performs extremely poor.

We ran 3 runs of each random strategy, varyingduration
and 9 runs with different initial positions of the robot with
our exploration algorithm. We manually determined the point
at which the robot learned the desired model. We measured the
time it had needed to learn the model in the number of steps
it performed until that state. Using a pure random strategy,the
robot never managed to learn the model and the process was
terminated after 30000 steps. Using our exploration strategy
it always learned the model we expected in the average of
3582 steps. Table I presents the results over different runs, the
averages and standard errors.



Random our exploration strategy
Run Stepsize Steps taken to reach best modelStepsize Steps taken to reach best model

1
1

Not until 30000 1 2674
2 Not until 30000 1 3685
3 Not until 30000 1 1991
4

10
Not until 30000 1 2078

5 Not until 30000 1 3530
6 Not until 30000 1 3254
7

100
15967a 1 7317

8 Not until 30000 1 4866
9 27654b 1 2843

aEven this does not result in the ideal model, but very close toit
bThis resulted in a model separated at the root byL instead ofL/R

TABLE I

COMPARISON BETWEEN RANDOM ACTION SELECTION AND OUR EXPLORATION STRATEGY PRESENTED HERE.
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Fig. 9. The final model created by the robot after 2674 steps.

The results show that the robot learns significantly better
and faster with our exploration algorithm as opposed to
the pure random strategy or random-persistent strategies.We
have no formal proof to explain why our strategy works.
Nevertheless, it is clear from the way humans experiment
that we pursue one direction until there arises a reason or
motivation to change it.

IV. CONCLUSION

We showed a simple example of a robot that is capable
of learning by making experiments in its environment. The
exploration algorithm that we presented proved to be a useful
tool for the autonomous learner that has to design, plan and
execute the experiments in order to obtain some knowledge
about how its actions influence its observations in the given
world. One of the contributions in our opinion is the use of
qualitative models only and the combination of qualitativetree
and the NFA. Both models do not only suffice to support the
robot in its actions, but also offer insights into the knowledge
that the robot acquired in the learning process. Further, we
believe that our approach can be generalized to other more
complex domains and that it can scale well due to the
simplicity of learning the qualitative models.
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