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ABSTRACT: 
 
There is a fundamental difference between robots that are equipped with sensory, motor and 

cognitive capabilities, vs. simulations or non-embodied cognitive systems.  Via their perceptual and 

motor capabilities, these robotic systems can interact with humans in an increasingly more “natural” 

way, physically interacting with shared objects in cooperative action settings.  Indeed, such cognitive 

robotic systems provide a unique opportunity to developmental psychologists for implementing their 

theories and testing their hypotheses on systems that are becoming increasingly “at home” in the sensory 

motor and social worlds, where such hypotheses are relevant.  The current research is the result of 

interaction between research in computational neuroscience and robotics on the one hand, and 

developmental psychology on the other.  One of the key findings in the developmental psychology 

context is that with respect to other primates, humans appear to have a unique ability and motivation to 

share goals and intentions with others.  This ability is expressed in cooperative behavior very early in 

life, and appears to be the basis for subsequent development of social cognition.  Here we attempt to 

identify a set of core functional elements of cooperative behavior and the corresponding shared 

intentional representations.  We then begin to specify how these capabilities can be implemented in a 

robotic system, the Cooperator, and tested in human-robot interaction experiments.  Based on the results 

of these experiments we discuss the mutual benefit for both fields of the interaction between robotics 

and developmental psychology. 

 
1. INTRODUCTION : 

 
There is a long history of interaction between theoretical aspects of psychology and the 

information and computer sciences.  The “information processing” model of cognitive psychology 

developed by Neisser (1967) and Broadbent (1965) borrowed notions such as input, representation, 

processing and output from computer science and applied them to the analysis of mental processes.  

Whether or not one holds with specific application of computing metaphors to psychological theories, it 
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appears clear that the use of such metaphors is useful in that it confronts psychological theory with 

specific questions to be addressed, related to representations and processes underlying cognitive 

functions.  Today the psychological and computing sciences are entering a new period of interaction that 

is linked to new technological developments in the domain of robotics.  Unlike simulation and 

traditional artificial intelligence programs that are constrained at best to “live” in simulated artificial 

worlds, robots are equipped with sensory and motor capabilities that allow them to exist in the physical 

world of the humans that they can interact with.  That is, robots can provide experimental platforms to 

cognitive scientists for implementing and testing theories about the intricate relation between a 

developing system and its physical environment.   Likewise, from the robot technology perspective, 

robotics scientists have reasoned that the most complex behavior cannot be exclusively programmed by 

hand, but rather should result from adaptive and developmental mechanisms that are based on those 

identified in the development of physiological systems (Brooks 1990, Pfeifer 1999, Pfeifer & Gomez 

2005).   

One of the most interesting opportunities provided by this interaction between robotics and 

psychology will be in the domain of developmental psychology.  Research in this domain is beginning 

to focus in on the functional aspects of social cognition that make humans unique in the animal world. It 

appears that part of the uniquely human aspects concern the ability and motivation to shared intentional 

states with others (Tomasello et al. 2005). The objective of the current research is to begin to identify 

some of the core elements of the human ability to share intentions based on experimental and theoretical 

results from developmental psychology, and to then begin to determine how these elements can be 

implemented on a corresponding robotic system designed for interacting and cooperating with humans.  

We believe that this work is important because it motivates psychologists to formalize their hypotheses 

in sufficient detail that they can lead to implementation and testing in artificial but naturally inspired 

cognitive systems.  Of particular interest are the underlying representations required for these shared 
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intentions.   We also believe that this work is important because it will begin to endow robots with 

human-like abilities to cooperate. 

Tomasello et al (2005) proposed that the human ability to share intentions develops via the 

interaction of two distinct capabilities.  The first concerns the ability to “read” or determine the 

intentions of other agents through observation of their behavior, and more generally the ability to 

represent and understand others as intentional goal directed agents.  The second capability concerns the 

motivation to share intentions with others.  While non-human and human primates are skilled at the first 

- reading the intentions of others based on action and gaze direction, only humans seem to possess an 

additional capability that will make a significant difference.  This is the motivation to cooperate: to 

share mental states, including goal based intentions which form the basis of cooperation.    

Perhaps one of the most insightful methods of establishing the properties of human social 

cognition is the comparison of human and great ape performance in equivalent conditions (see 

Tomasello & Carpenter 2007).  In this context, Warneken, Chen and Tomasello (2006) engaged 18-to-

24 month old children and young chimpanzees in goal-oriented tasks and social games which required 

cooperation.  They were interested both in how the cooperation would proceed under optimal 

conditions, but also how the children and chimps would respond when the adult stopped performing the 

task.  The principal finding was that children enthusiastically participate both in goal directed  

cooperative tasks and social games, and spontaneously attempt to reengage and help the adult when he 

stops.  In contrast, chimpanzees are uninterested in non-goal directed social games, and appear wholly 

fixed on attaining food goals, independent of cooperation.  Warneken et al. thus observed what appears 

to be a very early human capacity for (1) actively engaging in cooperative activities just for the sake of 

cooperation, and (2) for helping or reengaging the perturbed adult (Warneken & Tomasello 2006, 

Warneken et al. 2006).     

In one of the social games, the experiment began with a demonstration where one participant sent 



 
 

5 

a wooden block sliding down an inclined tube and the other participant caught the block in a tin cup that 

made a rattling sound.  This can be considered more generally as a task in which one participant 

manipulates an object so that the second participant can then in turn manipulate the object.  This 

represents a minimal case of a coordinated action sequence.  After the demonstration, in Trials 1 and 2 

the experimenter sent the block down one of the tubes three times, and then switched to the other, and 

the child was required to choose the same tube as the partner.  In Trials 3 and 4 during the game, the 

experimenter interrupted the behavior for 15 seconds and then resumed.   

Behaviorally, children successfully participated in the game in Trials 1 and 2.  In the interruption 

Trials 3 and 4 they displayed two particularly interesting types of response that were (a) to reengage the 

experimenter with a communicative act (on 38% of the interruption trials for 24 month olds), or less 

often, (b) to attempt to perform the role of the experimenter themselves (on 22% of interruption trials 

for 24 month olds).  Though (b) was considered a non-cooperative behavior, i.e. as an attempt to solve 

the task individually, it still indicates that the children had a clear awareness both of their role and that 

of the adult in the shared coordinated activity.  Importantly, after only a few demonstrations of the game 

(and only one demonstration for the 24 month children) it was apparent that the children had a “bird’s 

eye view” or third person representation of the interaction, allowing them to subsequently take either 

role in the game – that of the launcher or of the receiver of the sliding block.  This implies a rather 

clever representation scheme which can keep track of the goal directed actions of multiple agents, and 

their interaction, allowing the observer to then take the role of either of the observed agents.  In a related 

study, Warneken & Tomasello (2006) demonstrated that 18 and 24 month old children spontaneously 

help adults in a variety of situations.  This is interpreted as evidence for an altruistic motivation to help, 

and an ability to understand and represent the goals and intentions of others.  Indeed, such helping 

represents a mutual commitment to the shared activity which is one of the defining features of shared 

cooperative activity (Bratman 1992). 
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The ability to represent the action from multiple perspectives was examined more directly in a 

study of role reversal imitation conducted by Carpenter et al. (2005).  In one experiment of this study, 

children observed the experimenter cover a “Big Bird” figurine with a cloth.  The experimenter then 

asked the child “Where is big bird?  Can you find him?” and the child (or the experimenter) lifted the 

cloth to reveal the toy.  After three such demonstrations, the experimenter handed the cloth to the child 

and said “It’s your turn now.”  Approximately 70% of the 21 18 month old children tested successfully 

performed the role reversal.  Again, this suggests that the child maintains a representation of the 

alternating roles of both participants in a third-person perspective that can then be used to allow the 

child to take on either of the two roles. 

In order to begin to think about how such a system has come to be (and could be built), we can 

look to recent results in human and primate neurophysiology and neuroanatomy.  It has now become 

clearly established that neurons in the parietal and the premotor cortices encode simple actions both for 

the execution of these actions as well as for the perception of these same actions when they performed 

by a second agent (di Pelligrino et al. 1992 , Rizzolatti & Craighero 2004). This research corroborates 

the emphasis from behavioral studies on the importance of the goal (rather than the details of the means) 

in action perception (Bekkering et al. 2000, Carpenter & Call 2007, Sommerville & Woodward 2005, 

Tomasello et al. 2005).   It has been suggested that these premotor and parietal “mirror” neurons play a 

crucial role in imitation, as they provide a common representation for the perception and subsequent 

execution of a given action.  Interestingly, however, it has been clearly demonstrated that the imitation 

ability of non-human primates is severely impoverished when compared to that of humans (see 

Rizzolatti  & Craighero 2004, Tomasello et al. 2005). This indicates that the human ability to imitate 

novel actions and action sequences in real time (i.e. after only one or two demonstrations) relies on 

additional neural mechanisms to those found in non-human primates.   

In this context, a recent study of human imitation learning (Buchine et al. 2004) implicates 
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Brodmann’s area (BA) 46 as responsible for orchestrating and selecting the appropriate actions in novel 

imitation tasks. We have recently proposed that BA 46 participates in a dorsal stream mechanism for the 

manipulation of variables in abstract sequences and language (Dominey et al. 2006).  Thus, variable 

“slots” that can be instantiated by arbitrary motor primitives during the observation of new behavior 

sequences are controlled in BA 46, and their sequential structure is under the control of corticostriatal 

systems which have been clearly implicated in sensorimotor sequencing (see Dominey et al. (2006)).  

This allows us to propose that this evolutionarily more recent cortical area BA 46 may play a crucial 

role in allowing humans to perform compositional operations (i.e. sequence learning) on more primitive 

action representations in the ventral premotor and parietal motor cortices.  In other words, ventral 

premotor and parietal cortices instantiate shared perceptual and motor representations of atomic actions, 

and BA46 provides the capability to compose arbitrary sequences of these atomic actions, while relying 

on well known corticostriatal neurophysiology for sequence storage and retrieval.  The functional result 

is the human ability to observe and represent novel behavioral action sequences.  We further claim that 

this system can represent behavioral sequences from the “bird’s eye view” or third person perspective, 

as required for the cooperative tasks of Warneken et al. (2006).  That is, it can allow one observer to 

perceive and form an integrated representation of the coordinated actions of two other agents engaged in 

a cooperative activity.  The observer can then use this representation to step in and play the role of either 

of the two agents.   This is a “dialogic cognitive representation,” or “we intention” in that it represents 

the “dialog” of interaction between agents.    

Given this overview of some of the core functional elements of cooperative behavior and the 

corresponding representations (including the “bird’s eye view”), we can now take on the task of 

beginning to specify how these capabilities can be implemented in a robotic system, and tested in 

human-robot interaction experiments.  When making the transition from human behaviour to 

technological implantation, there is the risk that the implementation will be biased in terms of specific 
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computational or functionalist solutions.  In this context,  we are making a concerted effort in “cognitive 

systems engineering,” a process in which the cognitive robotics systems we build are constrained by (1) 

functional requirements (i.e. specification of how the system behaves) derived from behaviour from 

developmental psychology, and (2) architectural constraints from the neurosciences.  To as large a 

degree as possible, we avoid arbitrary constraints from the purely computational aspects of the 

implementation platform. 

   

2. THE ROBOTIC SYSTEM – THE COOPERATOR 

In the current experiments the human and robot cooperate by moving physical objects to different 

positions in a shared work-space as illustrated in Figures 1 and 2.  The cooperative activity will involve 

interactive tasks that preserve the important aspects of the “block launching” task of Warneken et al., 

transposed into a domain of objects suitable for our robot system. The 4 moveable objects are pieces of 

a wooden puzzle, representing a dog, a pig, a duck and a cow.  These pieces can be moved by the robot 

and the user in the context of cooperative activity.  Each has fixed to it a vertically protruding metal 

screw, which provides an easy grasping target both for the robot and for humans.  In addition there are 6 

images that are fixed to the table and serve as landmarks for placing the moveable objects, and 

correspond to a light, a turtle, a hammer, a rose, a lock and a lion, as partially illustrated in Figures 1 & 

2.  In the interactions, human and robot are required to place objects in zones next to the different 

landmarks, so that the robot can more easily determine where objects are, and where to grasp them.  

Figure 1 provides an overview of the architecture, and Figure 2, which corresponds to Experiment 6 

provides an overview of the actual physical state of affairs during a cooperative interaction.   
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2.1 Representation 

The structure of the internal representations is a central factor determining how the system will 

function, and how it will generalize to new conditions.  Based on the neurophysiology reviewed above, 

we use a common representation of action for both perception and production.  In the context of the 

current study, actions involve moving objects to different locations, and are identified by the agent, the 

object, and the target location the object is moved to.  As illustrated in Figure 1, by taking the “short 

loop” from vision, via Current Action Representation, to Motor Command, the system is thus 

configured for a form of goal-based action imitation.  This will be expanded upon below.   

In order to allow for more elaborate cooperative activity, the system must be able to store and 

retrieve actions in a sequential structure, and must be able to associate each action with its agent.  We 

thus propose that the ability to store a sequence of actions, each tagged with its agent, provides an initial 

capability for dialogic cognitive representation.  This form of real time sequence learning for imitation 

is not observed in non-human primates (see Rizzolatti & Craighero 2004).  In this context, an fMRI 

study (Buchine et al. 2004) which addressed the human ability to observe  and program arbitrary actions 

indicated that a cortical area (BA46) which is of relatively recent phylogenetic origin is involved in such 

processes. Rizzolatti and Craighero (2004) have thus suggested that the BA 46 in man will orchestrate 

the real-time capability to store and retrieve recognized actions, and we can further propose that this 

orchestration will recruit canonical brain circuitry for sequence processing including the cortico-striatal 

system (see Dominey 2005, and Dominey et al. 2006 for discussion of such sequence processing).  

An additional important representational feature of the system is the World Model that represents 

the physical state of the world, and can be accessed and updated by vision, motor control, and language, 

similar to the Grounded Situation Model of Mavridis and Roy (2006). The World Model encodes the 

physical locations of objects and is updated by vision and proprioception (i.e. robot action updates 

World Model with new object location).  Changes observed in the World Model in terms of an object 
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being moved allows the system to detect actions in terms of these object movements. Actions are 

represented in terms of the agent, the object and the goal of the action, in the form MOVE(object, goal 

location, agent). These representations can be used for commanding action, for describing recognized 

action, and thus for action imitation and narration, as seen below.    

In the current study we address behavioral conditions which focus on the observation and 

immediate re-use of an intentional (goal directed) action plan.  However, in the more general case, one 

should consider that multiple intentional action plans can be observed and stored in a repertory (IntRep 

or Intentional Plan Repertory in Figure 1).  When the system is subsequently observing the behavior of 

others, it can compare the ongoing behavior to these stored sequences.  Detection of a match with the 

beginning of a stored sequence can be used to retrieve the entire sequence.  This can then be used to 

allow the system to “jump into” the scenario, to anticipate the other agent’s actions, and/or to help that 

agent if there is a problem. 

 

2.2 Visual perception 

Visual perception is a challenging technical problem.  To simplify, standard lighting conditions 

and a small set (n = 10) of visual objects to recognize are employed (4 moveable objects and 6 location 

landmarks).  A VGA webcam is positioned at 1.25 meters above the robot workspace.  Vision 

processing is provided by the Spikenet Vision System (http://www.spikenet-technology.com/).  Three 

recognition models for each object at different orientations (see Fig. 3) were built with an offline model 

builder. During real-time vision processing, the models are recognized, and their (x, y) location in 

camera coordinates are provided.  Our vision post-processing eliminates spurious detections and returns 

the reliable (x, y) coordinates of each moveable object.  The nearest of the 6 fixed landmarks is then 

calculated in order to localize the object. 
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2.3 Motor Control & Visual-Motor Coordination 

While visual-motor coordination is not the focus of the current work, it was necessary to provide 

some primitive functions (i.e. visually guided object grasping) to allow goal directed action.  All of the 

robot actions, whether generated in a context of imitation, spoken command or cooperative interaction 

will be of the form move(x to y) where x is a member of a set of visually perceivable objects, and y is a 

member of the set of 6 fixed landmark locations on the work plan. 

Robot motor control for transport and object manipulation with the Cooperator’s two finger 

gripper is provided by the 6 degree of freedom Lynx6 arm (www.lynxmotion.com).  The 6 motors of the 

arm are coordinated by a parallel controller connected to a PC computer that provides transmission of 

robot commands over the RS232 serial port. 

Human users (and the robot Cooperator) are constrained when they move an object, to place it in 

one of the zones designated next to each of the six landmarks (see Fig 3).  This way, when the nearest 

landmark for an object has been determined, this is sufficient for the robot to grasp that object at the 

prespecified zone.   

In a calibration phase, target points are marked next to each of the 6 fixed landmark locations, 

such that they are all on an arc that is equidistant to the center of rotation of the robot arm base.  For 

each, the rotation angle of Joint 0 (the rotating shoulder base of the robot arm) necessary to align the 

arm with that point is then determined.  We then determined a common set of joint angles for Joints 1 – 

5 that position the gripper to seize an object once the should angle is established.  Angles for Joint 6 that 

controls the closing and opening of the gripper to grasp and release an object were then identified.  

Finally a neutral position to which the arm could be returned in between movements was defined.  The 

system was thus equipped with a set of action primitives that could be combined to position the robot at 

any of the 6 grasping locations, grasp the corresponding object, move to a new position, and place the 

object there.  
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2.4 Cooperation Control Architecture 

The spoken language control architecture illustrated in Fig 4 is implemented with the CSLU Rapid 

Application Development toolkit (http://cslu.cse.ogi.edu/toolkit/).  This system provides a state-based 

dialog management system that allows interaction with the robot (via the serial port controller) and with 

the vision processing system (via file i/o).  Most importantly it also provides the spoken language 

interface that allows the user to determine what mode of operation he and the robot will work in, and to 

manage the interaction via spoken words and sentences. 

Figure 4 illustrates the flow of control of the interaction management.  In the Start state the system 

first visually observes where all of the objects are currently located. From the start state, the system 

allows the user to specify if he wants to ask the robot to perform actions via spoken commands (Act), to 

imitate the user, or to play (Imitate/Play).  In the Act state, the user can specify actions of the form “Put 

the dog next to the rose” and a grammatical construction template (Dominey et al. 2003, Dominey et al. 

2005, Dominey & Boucher 2005, Dominey et al. 2004, Dominey et al. 2006) is used to extract the 

action that the robot then performs, in the form Move(object, location).   In the Imitate state, the robot 

first verifies the current state (Update World) and then invites the user to demonstrate an action (Invite 

Action).  The user shows the robot one action.  The robot then begins to visually observe the scene until 

it detects the action, based on changes in object locations detected (Detect Action).  This action is then 

saved and transmitted (via Play the Plan with Robot as Agent) to execution (Execute action).  A 

predicate(argument) representation of the form Move(object, landmark) is used both for action 

observation and execution.   Imitation is thus a minimal case of Playing in which the “game” is a single 

action executed by the robot.   

The more general case corresponds to “games” in which the robot and human will take turns in the 

execution of a shared plan.  In the current implementation of this, the user can demonstrate multiple 

successive actions, and indicate the agent (by saying “You/I do this”) for each action.  Improvements in 
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the visual processing will allow the more general case in which the system can observe two agents 

interacting and attribute each action to its respective agent.   

The resulting intentional plan specifies what is to be done by whom.  When the user specifies that 

the plan is finished, the system moves to the Save Plan, and then to the Play Plan states.  For each 

action, the system recalls whether that action is to be executed by the robot or the user.  Robot execution 

takes the standard Execute Action pathway.  User execution performs a check (based on user response) 

concerning whether the action was correctly performed or not.  Interestingly, the ability of the robot to 

“help” the user comes quite naturally, based on the shared intentional plan.  If the user action is not 

performed, the robot “knows” the failed action based on its own representation of the plan.  The robot 

can thus communicate with the user, and if the user agrees, the robot can help by performing the action 

itself.  Thus, “helping” was quite naturally implemented by combining an evaluation of the user action, 

with the existing capability to perform a stored action representation. Still, it is worth noting that one 

crucial difference between the helping by the robot and what Warneken et al.  tested in the helping study 

(Warneken & Tomasello 2006) was that the children and chimpanzees helped the other with their 

action, not just performing the other’s action completely, but complementing the other’s action. 

 

2.5  “Bird’s Eye View and Role Reversal 

In an initial set of experiments (Experiments 1-6 below), the “intentional plan” was represented 

for the robot as a sequence of actions in the “We Intention” of Figure 1, with the attribution of the agent 

fixed for each action.  We know however from the experimental results of Warneken et al. (2006), and 

from the role reversal studies of Carpenter et al. (2005) that this representation is flexible, in the sense 

that the child can take on the role of either of the two represented agents.  Once the adult indicates the 

role he takes, the child then spontaneously adapts and takes the other role.  In the current system, we 

thus introduce a new capability in which, prior to the playing of the game, the roles can be determined 
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and modified.   When control reaches the “Plan Play” node in the controller (Figure 4), i.e. after a new 

game has been demonstrated, or after the user chooses to play the old game, the robot now asks the user 

if he wants to go first.  If the user responds yes, then the roles of user and robot remain as they were in 

the demonstration.  If the user says no, then the roles are reversed. Reversal corresponds to 

systematically reassigning the agents (i.e. robot or user) associated with each action.  Indeed, technically 

it would be possible that based upon the first move by the user (or the users insistent waiting for the 

robot to start), the robot infers who does what (i.e. whether to reverse roles or not) and what role it will 

take in the cooperative plan, though this has was not implemented in the current version of the system. 

 

3. EXPERIMENTAL  RESULTS 

For each of the 6 following experiments, equivalent variants were repeated at least ten times to 

demonstrate the generalized capability and robustness of the system.  In less than 5 percent of the trials 

overall, errors of two types were observed to occur.  Speech errors resulted from a failure in the voice 

recognition, and were recovered from by the command validation check (Robot: “Did you say …?”).  

Visual image recognition errors occurred when the objects were rotated beyond 20° from their upright 

position.  These errors were identified when the user detected that an object that should be seen was not 

reported as visible by the system, and were corrected by the user re-placing the object and asking the 

system to “look again”.  At the beginning of each trial the system first queries the vision system, and 

updates the World Model with the position of all visible objects.  It then informs the user of the 

locations of the different objects, for example “The dog is next to the lock, the horse is next to the lion.”  

It then asks the user “Do you want me to act, imitate, play or look again?”, and the user responds with 

one of the action-related options, or with “look again” if the scene is not described correctly.   
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3.1 Experiment 1:  Validation of Sensorimotor Control  

In this experiment, the user says that he wants the “Act” state (Fig 4), and then uses spoken 

commands such as “Put the horse next to the hammer”.  Recall that the horse is among the moveable 

objects, and hammer is among the fixed landmarks.  The robot requests confirmation and then extracts 

the predicate-argument representation - Move(X to Y) - of the sentence based on grammatical 

construction templates. In the Execute Action state, the action Move(X to Y) is decomposed into two 

components of Get(X), and Place-At(Y). Get(X) queries the World Model in order to localize X with 

respect to the different landmarks, and then performs a grasp at the corresponding landmark target 

location.  Likewise, Place-At(Y) simply performs a transport to target location Y and releases the object.  

Decomposing the get and place functions allows the composition of all possible combinations in the 

Move(X to Y) space.  Ten trials were performed moving the four objects to and from different landmark 

locations.  In these ten experimental runs, the system performed correctly.  Experiment 1 thus 

demonstrates that the system has (1) the ability to transform a spoken sentence into a Move(X to Y) 

command, (2) the ability to perform visual localization of the target object, and (3) the sensory-motor 

ability to grasp the object and put it at the specified location.  . 

3.2 Experiment 2:  Imitation 

In this experiment the user chooses the “imitate” state.  As stated above, imitation is centered on 

the achieved ends – in terms of observed changes in state – rather than the  detailed trajectory or means 

by which these ends were achieved (Bekkering et al. 2000, Carpenter et al. 2005).  Before the user 

performs the demonstration of the action to be imitated, the robot queries the vision system, and updates 

the World Model (Update World in Fig 4) and then invites the user to demonstrate an action.  The robot 

pauses, and then again queries the vision system and continues to query until it detects a difference 

between the currently perceived world state and the previously stored World Model (in State 

Comparator of Fig 1, and Detect Action in Fig 4), corresponding to an object displacement.  Extracting 



 
 

16 

the identity of the displaced object, and its new location (with respect to the nearest landmark) allows 

the formation of an Move(object, location) action   representation.  Before imitating, the robot operates 

on this representation with a meaning-to-sentence construction in order to verify the action to the user, 

as in “Did you put the dog next to the rose?”  It then asks the user to put things back as they were so that 

it can perform the imitation.  At this point, the action is executed (Execute Action in Fig 4).  In ten 

experimental runs the system performed correctly.  This demonstrates (1) the ability of the system to 

detect the final “goal” of user-generated actions as defined by visually perceived state changes, and (2) 

the utility of a common representation of action for perception, description and execution. 

 

3.3 Experiment 3:  A Cooperative Game  

The cooperative game is similar to imitation, except that there is a sequence of actions (rather than 

just one), and the actions can be effected by either the user or the robot in a cooperative, turn taking 

manner.  In this experiment, the user responds to the system request and enters the “play” state.  In what 

corresponds to the demonstration in Warneken et al. (2006) the robot invites the user to start showing 

how the game works.  Note that in these experiments, two experimenters demonstrate the game and the 

subject is observing this interaction from a third-person-perspective. The experimenters invite the child 

to see how the game works by showing it to them first and then have them participate afterwards.  For 

technical limitations of the visual system, we currently use the following modification:  The user then 

begins to perform a sequence of actions that are observed by the robot.  For each action, the user 

specifies who does the action, i.e. either “you do this” or “I do this”.   The intentional plan is thus stored 

as a sequence of action-agent pairs, where each action is the movement of an object to a particular target 

location.  Note that because the system can detect actions, if it is capable of identifying distinct users (by 

some visual cue on their hands for example) then the system could observe two humans perform the 

task, thus adhering more closely to the protocol of Warneken et al. 2006.  In Fig 1, the resulting 
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interleaved sequence is stored as the “We intention”, i.e. an action sequence in which there are different 

agents for different actions. When the user is finished he says “play the game”.  The robot then begins to 

execute the stored intentional plan.  During the execution, the “We intention” is decomposed into the 

components for the robot (Me Intention) and the human (You intention). 

In one run, during the demonstration, the user said “I do this” and moved the horse from the lock 

location to the rose location.  He then said “you do this” and moved the horse back to the lock location.  

After each move, the robot asks “Another move, or shall we play the game?”  When the user is finished 

demonstrating the game, he replies “Play the game.”  During the playing of this game, the robot 

announced “Now user puts the horse by the rose”.  The user then performed this movement.  The robot 

then asked the user “Is it OK?” to which the user replied “Yes”.  The robot then announced “Now robot 

puts the horse by the lock” and performed the action.  In two experimental runs of different 

demonstrations, and 5 runs each of the two demonstrated games, the system performed correctly.  This 

demonstrates that the system can learn a simple intentional plan as a stored action sequence in which the 

human and the robot are agents in the respective actions. 

3.4 Experiment 4:  Interrupting a Cooperative Game 

In this experiment, everything proceeds as in experiment 3, except that after one correct repetition 

of the game, in the next repetition, when the robot announced “Now user puts the horse by the rose” the 

user did nothing.  The robot asked “Is it OK” and during a 15 second delay, the user replied “no”.  The 

robot then said “Let me help you” and executed the move of the horse to the rose.  Play then continued 

for the remaining move of the robot.  This illustrates how the robot’s stored representation of the action 

that was to be performed by the user allowed the robot to “help” the user. 
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3.5 Experiment 5:  A More Complex Game 

Experiment 3 represented the simplest behavior that could qualify as a cooperative action 

sequence.  In order to more explicitly test the intentional sequencing capability of the system, this 

experiment replicates Exp 3 but with a more complex task, illustrated in Figure 2.  In this game (Table 

1), the user starts by moving the dog, and after each move the robot “chases” the dog with the horse, 

until they both return to their starting places.   

 

 

 

 

 

 

 

Action User identifies 
 agent 

User Demonstrates Action  Ref in Figure 2 

1. I do this Move dog from the lock to the rose B 
2. You do this Move the horse from the lion to the lock B 
3. I do this  Move the dog from the rose to the hammer C 
4. You do this  Move the horse from the lock to the rose C 
5. You do this Move the horse from the rose to the lion D 
6. I do this  Move the dog from the hammer to the lock D 

Table 1.  Cooperative “horse chase the dog” game specified by the user in terms of who does the 

action (indicated by saying) and what the action is (indicated by demonstration).  Illustrated in Figure 2. 

 

As in Experiment 3, the successive actions are visually recognized and stored in the shared “We 

Intention” representation.  Once the user says “Play the game”, the final sequence is stored, and then 

during the execution, the shared sequence is decomposed into the robot and user components based on 

the agent associated with each action.  When the user is the agent, the system invites the user to make 

the next move, and verifies (by asking) if the move was OK.  When the system is the agent, the robot 
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executes the movement.  After each move the World Model is updated.  As in Exp 3, two different 

complex games were learned, and each one “played” successfully 5 times.  This illustrates the learning 

by demonstration (Zöllner et al. 2004) of a complex intentional plan in which the human and the robot 

are agents in a coordinated and cooperative activity. 

 

3.6 Experiment 6:  Interrupting the Complex Game 

As in Experiment 4, the objective was to verify that the robot would take over if the human had a 

problem.  In the current experiment this capability is verified in a more complex setting.  Thus, when 

the user is making the final movement of the dog back to the “lock” location, he fails to perform 

correctly, and indicates this to the robot.  When the robot detects failure, it reengages the user with 

spoken language, and then offers to fill in for the user.  This is illustrated in Figure 2H.  This 

demonstrates the generalized ability to help that can occur whenever the robot detects the user is in 

trouble. 

3.7  Experiment 7:  Role reversal in the Complex Game 

Carpenter et al. (2005) demonstrated that 18 month old children can observe and participate in a 

cooperative turn-taking task, and then reverse their role, indicating that they develop a third person 

“bird’s eye view” perspective of the interaction.  The current experiment tests the ability of the system 

to benefit from the “bird’s eye view” representation of the shared intentional plan in order to take either 

role in the plan.  In one test, the same “old game” from experiments 5 and 6 was used, with the modified 

version of the system that asks, prior to playing the game “do you want to go first”.  To test the role 

reversal, the human responds “no”.  In the demonstrated game, the human went first, so the “no” 

response constitutes a role reversal.  The system thus systematically reassigns the You and Me actions of 

the We intention in Figure 1.  Once this reassignment has been made, then the shared plan execution 
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mechanism proceeds in the standard manner.  The system successfully performed this role reversal.  

Again, it is technically feasible for the robot to infer its own role based upon only what the user does, by 

detecting whether or not the user initiates the first action in the game, and such an implementation will 

be pursued in our future work. 

4. DISCUSSION 

 Significant progress has been made in identifying some of the fundamental characteristics of 

human cognition in the context of cooperative interaction, particularly with respect to social cognition 

(Fong et al. 2003, Goga & Billard 2005, Kozima & Yano 2001, Lieberman 2007).  Breazeal and 

Scassellati (2001) investigate how perception of socially relevant face stimuli and object motion will 

both influence the emotional and attentional state of the system and thus the human-robot interaction.  

Scassellati (2002) further investigates how developmental theories of human social cognition can be 

implemented in robots.  In this context, Kozima and Yano (2001) outline how a robot can attain 

intentionality – the linking of goal states with intentional actions to achieve those goals – based on 

innate capabilities including: sensory-motor function and a simple behavior repertoire, drives, an 

evaluation function, and a learning mechanism.   

The abilities to observe an action, determine its goal and attribute this to another agent are all 

clearly important aspects of the human ability to cooperate with others.  The current research 

demonstrates how these capabilities can contribute to the “social” behavior of learning to play a 

cooperative game, playing the game, and helping another player who has gotten stuck in the game, as 

displayed in 18-24 month old children (Warneken et al. 2006, Warneken & Tomasello 2006).  While the 

primitive basis of such behavior is visible in chimpanzees, its full expression is uniquely human (see 

Warneken et al. 2006 and Warneken & Tomasello 2006).  As such, it can be considered a crucial 

component of human-like behavior for robots.   

The current research is part of an ongoing effort to understand aspects of human social cognition 
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by bridging the gap between cognitive neuroscience, simulation and robotics (Boucher & Dominey 

2006, Dominey et al. 2003, Dominey et al. 2005, Dominey & Boucher 2005, Dominey et al. 2004, 

Dominey et al. 2006).  The experiments presented here indicate that functional requirements derived 

from human child behavior and neurophysiological constraints can be used to define a system that 

displays some interesting capabilities for cooperative behavior in the context of imitation.  Likewise, 

they indicate that evaluation of another’s progress, combined with a representation of his/her failed goal 

provides the basis for the human characteristic of “helping.”  This may be of interest to developmental 

scientists, and the potential collaboration between these two fields of cognitive robotics and human 

cognitive development is promising.    The developmental cognition literature lays out a virtual roadmap 

for robot cognitive development (Tomasello et al. 2005, Dominey 2005).  In this context, we are 

currently investigating the development of hierarchical means-end action sequences (Sommerville & 

Woodward 2005).. At each step, the objective will be to identify the characteristic underlying behavior 

and to implement it in the most economic manner in this continuously developing system for human-

robot cooperation.  

Here we begin to address the mechanisms that allow agents to make changes in perspective.  In 

the experiments of Warneken et al. the child watched two adults perform a coordinated task (one adult 

launching the block down the tube, and the other catching the block).  At 18-24 months, the child can 

thus observe the two roles being played out, and then step into either role (Carpenter et al. 2005).  This 

indicates a “bird’s eye view” representation of the cooperation, in which rather than assigning “me” and 

“other” agent roles from the outset, the child represents the two distinct agents A and B, and associates 

one of these with each action in the cooperative sequence.  Then, once the perspective shift is 

established (by the adult taking one of the roles, or letting the child choose one) the roles A and B are 

assigned to me and you (or vice versa) as appropriate.   

This is consistent with the system illustrated in Figure 1.  We could improve the system: rather 
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than having the user tell the robot “you do this” and “I do this,” the vision system can be modified to 

recognize different agents who can be identified by saying their name as they act, or via visually 

identified cues on their acting hands.  In the current system we demonstrate that the roles associated 

with “you” and “me” can be reversed.  More generally, they can also be dissociated from “you” and 

“me” and linked with other agents.  The key is that there is a central representation corresponding to the 

“We intention” in Figure 1, which allows the “bird’s eye view”, and a remapping mechanism that can 

then assign these component actions to their respective agents (corresponding to the Me and You 

intentions in Figure 1).  Clearly there remains work to be done in this area, but the current results 

represent a first step in specifying how these intentional representations could be implemented.  

 Indeed, we take a clear position in terms of internal representational requirements, defined by a 

hybrid form of representation.  At one level, online action and perception are encoded in an “embodied” 

form in terms of joint angles, and continuous values from the visual system.  At a different level, “we 

intentions” which allow an extension in time, are distinct sequences of predicate-argument propositional 

elements.  Thus there is a continuum of embodiment and representation. In the context of representing a 

joint activity through observation – the action perception is linked to the sensorimotor system, but the 

system that stores and replays these sequences can be considered to be independent.  Indeed, it is this 

simulation capability that might well provide the basis for abstract processing (Barsalou 1999)  More 

broadly speaking, though the demands of requiring implementation, robot experiments such as these can 

help us to shed further light on the nature and necessity of internal representations 

An important open issue that has arisen through this research has to do with inferring intentions.  

The current research addresses one cooperative activity at a time, but nothing prevents the system from 

storing multiple such intentional plans in a repertory (IntRep in Fig 1).  In this case, as the user begins to 

perform a sequence of actions involving himself and the robot, the robot can compare this ongoing 

sequence to the initial subsequences of all stored sequences in the IntRep.  In case of a match, the robot 
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can retrieve the matching sequence, and infer that it is this that the user wants to perform.  This can be 

confirmed with the user and thus provides the basis for a potentially useful form of learning for 

cooperative activity.  Indeed, this development in the robotics context provides interesting predictions 

about how these inferences will be made that can be tested with children. 

A potential criticism of this work could hold that while it might demonstrate an interesting and 

sophisticated simulation, everything of interest seems to be built in rather than emergent or developed, 

thus of relatively thin relevance to psychologists.  We would respond that any implementation must 

make choices about what is built in and what is emergent.  Here we have built in functions that provide 

the ability to perceive actions, encode action-agent sequences, and to use these sequences in behaviour.  

What results is the open ended capability to learn arbitrary cooperative behaviors, to help, and to 

changes perspectives/roles.  The relevance to psychologists is twofold, in terms of what the resulting 

system can do, and in terms of where it fails.  

Thus, while we have begun to implement some aspects of these intention representations, we 

should also stress how the robot’s capabilities still differ from what these young children already do, 

including the following.  (1) Children learn intentional plans quickly without direct teaching, but just by 

observing from the outside how two people interact. (2) They are not told who performs which role, but 

they themselves are able to parse the interaction into roles. (3) They spontaneously provide help without 

the experimenter asking them for help and without them asking the experimenter whether he wants help.  

(4) They not only help the other with his role but they insist on the partner performing his role when he 

interrupts. In other words, they seem to insist on the joint commitment to perform the respective roles.  

For the most part, these differences are “peripheral” in that they are related to the perception and action 

capabilities, rather than to the structure of internal representations.  Point (1) will rely on a “salience” 

system that determines what behavior is interesting and merits learning (perhaps any behavior between 

multiple agents operating on the same objects).  Point (2) will require vision processing that allows 
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identification of different individuals.  For points (3) and (4), the behavior is currently available, i.e. it is 

wholly feasible for the robot to help and to insist that the other partner participates spontaneously as the 

situation requires.  

In conclusion, the current research has attempted to build and test the Cooperator, a robotic system 

for cooperative interaction with humans, based on behavioral and neurophysiological requirements 

derived from the respective literatures.  The interaction involves spoken language and the performance 

and observation of actions in the context of cooperative action.  The experimental results demonstrate a 

rich set of capabilities for robot perception and subsequent use of cooperative action plans in the context 

of human-robot cooperation.  This work thus extends the imitation paradigm into that of sequential 

behavior, in which the learned intentional action sequences are made up of interlaced action sequences 

performed in cooperative and flexible alternation by the human and robot.  While many technical 

aspects of robotics (including visuomotor coordination and vision) have been simplified, we believe that 

this work makes a useful contribution in demonstrating how empirical and theoretical results in 

developmental psychology can be formalized to the extent that they can be implemented and tested in a 

robotic system.  In doing so, we gain further insight into the core functions required for cooperation, and 

help to increase the cooperative capabilities of robots in human-robot interaction.    
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Fig 1.  Cooperation System. In a shared work-space, human and robot manipulate objects 

(green, yellow, read and blue  circles corresponding to dog, horse, pig and duck), placing them next 

to the fixed landmarks (light, turtle, hammer, etc.). Action: Spoken commands interpreted as 

individual words or grammatical constructions, and the command and possible arguments are 

extracted using grammatical constructions in Language Proc.  The resulting Action(Agent, Object, 

Recipient) representation is the Current Action.  This is converted into robot command primitives 

(Motor Command) and joint angles (Motor Control) for the robot. Perception:  Vision provides 

object location input, allowing action to be perceived as changes in World State (State Comparator).  

Resulting Current Action used for action description, imitation, and cooperative action sequences.  

Imitation: The user performed action is perceived and encoded in Current Action, which is then used 

to control the robot under the supervision of Executive Control.  Cooperative Games.  During 

observations, individual actions are perceived, and attributed to the agent or the other player (Me or 

You).  The action sequence is stored in the We Intention structure, that can then be used to 

separately represent self vs. other actions.     
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Figure 2.  Cooperative task of Exp 5-6.  Robot arm Cooperator, with 6 landmarks (Light, turtle, 

hammer, rose, lock and lion from top to bottom).  Moveable objects include Dog and Horse. In A-D, 

human demonstrates a “horse chase the dog” game, and successively moves the Dog then Horse, 

indicating that in the game, the user then the robot are agents, respectively.  After demonstration, human 

and robot “play the game”. In each of E – F user moves Dog, and robot follows with Horse. In G robot 

moves horse, then in H robot detects that the user is having trouble and so “helps” the user with the final 

move of the dog.  See Exp 5 & 6.   
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Figure 3.  Vision processing.  Above: A. – D.  Three templates each for the Dog, Duck, Horse and 

Pig objects at three different orientations.  Below, encompassing circles indicate template recognition 

for the four different objects near different fixed landmarks, as seen from the camera over the robot 

workspace 
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Figure 4.  Spoken Language Based Cooperation flow of control.  Interaction begins with proposal 

to act, or imitate/play a game.  Act – user says an action that is verified and executed by robot.  World 

Model updated based on action.  Downward arrow indicates return to Start.  Imitate/Play – user 

demonstrates actions to robot and says who the agent should be when the game is to be played (e.g. 

“You/I do this”).  Each time, system checks the state of the world, invites the next action and detects the 

action based on visual object movement.  When the demo is finished, the plan (of a single item in the 

case of imitation) is stored and executed (Play Plan).  If the user is the agent (encoded as part of the 

game sequence), system checks execution status and helps user if failure.  If robot is agent, system 

executes action, and then moves on to next item. 

 


